HW \#3 Quality Control, Spring 2013, Due 6/7 (Fri),

1. $[+5]$ Perform profile monitoring for the data in Table 10.3. The value of α is chosen so that the in-control ARL is 200 [p. 479 of the textbook]. Then, compare your chart with Fig. 10.28. [provide all necessary information, such as UCL/LCL, center, calculation of α, regression estimates, etc.; missing information leads to the reduction in your score]
2. [+2] I told you in class
3. [+6] Let $\mathbf{X}_{1 k}, \ldots, \mathbf{X}_{n k} \stackrel{i i d}{\sim} \sim N_{3}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), k=1, . ., m$, where $\boldsymbol{\mu}=\left(\begin{array}{l}-1 \\ -1 \\ -1\end{array}\right)$ and $\Sigma=\left(\begin{array}{ccc}1 & 0.5 & 0.5 \\ 0.5 & 1 & 0.5 \\ 0.5 & 0.5 & 1\end{array}\right)$.

Let $n=25, m=1000$, and $\alpha=0.05$.
(1) $[+1]$ Calculate Σ^{-1} (with derivation).
(2) $[+2]$ Generate the data by R mvrnorm and draw a chi-square chart. Compare the observed ratio of out-of-control points with the nominal $\alpha=0.05$.
(3) $[+1]$ If $\boldsymbol{\mu}$ and Σ are unknown, we estimate them by $\overline{\overline{\mathbf{X}}}=\frac{1}{m} \sum_{k=1}^{m} \overline{\mathbf{X}}_{k}$ and $S=\frac{1}{m} \sum_{k=1}^{m} S_{k}$, where $\quad \overline{\mathbf{X}}_{k}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i k}$ and $S_{k}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{X}_{i k}-\overline{\mathbf{X}}_{k}\right)\left(\mathbf{X}_{i k}-\overline{\mathbf{X}}_{k}\right)^{\prime}$. Compare $\overline{\overline{\mathbf{X}}}$ and S with $\boldsymbol{\mu}$ and Σ, respectively.
(4) [+2] Draw a chi-square chart by replacing $\boldsymbol{\mu}$ and Σ by $\overline{\overline{\mathbf{X}}}$ and S, respectively, and by using the same UCL and LCL as (2). Compare the observed ratio of out-of-control points with the nominal $\alpha=0.05$. (This is called "the Hotelling T^{2} chart")

HW \#3 Quality Control
1.

We have ARL = 200, $\sigma=0.06826, \bar{x}=\frac{0.76+3.29+8.89}{3}=4.3133$ and
model $\mathrm{y}_{\mathrm{ij}}=0.2817+0.9767 \mathrm{x}_{\mathrm{j}}+\varepsilon_{\mathrm{ij}}$.

```
> # data
>x = c(0.76,3.29,8.89)
> y = c(1.12,3.49,9.11,0.99,3.53,8.89,1.05,
+ 3.46,9.02,0.76,3.75,9.3,0.96,3.53,
+ 9.05,1.03,3.52,9.02)
>
> # center data
> x_bar = mean(x)
> centered_x = x - x_bar
>
> # model: yij = 0.2817 + 0.9767xj + error
>0.2817 + 0.9767 * x_bar
[1] 4.494533
> # centered model: yij = 4.494533 + 0.9767(xj - x_bar) + error
>beta =c(4.494533,0.9767)
```

Hence, the centered model is

$$
\mathrm{y}_{\mathrm{ij}}=4 . .494533+0.9767\left(\mathrm{x}_{\mathrm{j}}-\bar{x}\right)+\varepsilon_{\mathrm{ij}} .
$$

To draw the chart of $\beta_{0}, \beta_{1}, \sigma^{2}(\mathrm{MSE})$, we need to calculate $\widehat{\beta_{l 0}}, \widehat{\beta_{l 1}}$ and $M S E_{i}$.

```
> Sxx = sum(centered_x^2)
>
> # Calculate beta hat and MSE
> beta_hat = matrix(0,6,2)
> MSE = numeric(6)
> for(i in 1:6){
+ a = 1+3*(i-1)
+ b = 3*i
+ Y = y[a:b]
+ beta_hat[i,1] = mean(Y)
+ beta_hat[i,2] = sum(Y*centered_x)/Sxx
+ MSE[i] = sum((Y-beta_hat[i,1]-beta_hat[i,2]*centered_x)^2)
+}
```

```
> beta_hat
    [,1] [,2]
[1,] 4.573333 0.9862215
[2,] 4.470000 0.9692984
[3,] 4.510000 0.9823952
[4,] 4.6033331.0406046
[5,] 4.5133330.9935296
[6,] 4.523333 0.9826744
> MSE
[1] 8.627677e-03 4.234966e-03
[3] 3.137103e-03 7.032217e-02
[5] 1.750634e-03 8.097610e-06
```

Since ARL $=200, \alpha^{\text {overall }}=0.005, \alpha=1-\left(1-\alpha^{\text {overall }}\right)^{1 / 3}=0.00167$ and $z_{\alpha / 2}=$ 3.143492.

```
> (alpha = 1-(1-0.005)^(1/3))
[1] 0.001669452
> sigma = 0.06826
> (z = qnorm(1-alpha/2))
[1] 3.143492
```

In addition, $U C L_{\beta 0}=\beta_{0}+Z_{\alpha / 2} \sqrt{\frac{\sigma^{2}}{n}}=4.6184, \mathrm{LCL}_{\beta 0}=\beta_{0}-\mathrm{Z}_{\alpha / 2} \sqrt{\frac{\sigma^{2}}{n}}=4.3706$,

$$
\begin{aligned}
& \text { UCL }_{\beta 1}=\beta_{1}+\mathrm{Z}_{\alpha / 2} \sqrt{\frac{\sigma^{2}}{s_{x x}}}=1.013, \mathrm{UCL}_{\beta 1}=\beta_{1}-\mathrm{Z}_{\alpha / 2} \sqrt{\frac{\sigma^{2}}{s_{x x}}}=0.9402, \\
& \text { UCL }_{\mathrm{MSE}}=0.0520 \text { and } \mathrm{LCL}_{\mathrm{MSE}}=5.0997 \times 10^{-9}
\end{aligned}
$$

```
> se_beta = sigma * sqrt(c(1/3,1/Sxx))
>
> # imformation for chart for beta0
> UO = beta[1]+z*se_beta[1]
> LO = beta[1]-z*se_beta[1]
> cat("\nUCL = ",U0,"\nLCL = ",L0,
+ "\ncenter = ",beta[1],"\n\n")
UCL= 4.618418
LCL = 4.370648
center = 4.494533
>
> # imformation for chart for beta1
> U1 = beta[2]+z*se_beta[2]
> L1 = beta[2]-z*se_beta[2]
> cat("\nUCL = ",U1,"\nLCL = ",L1,
+ "\ncenter = ",beta[2],"\n\n")
```

```
UCL = 1.013169
LCL = 0.9402314
center = 0.9767
>
> # imformation for chart for sigma2
> U = sigma^2*qchisq(1-alpha/2,1)
>L = sigma^2*qchisq(alpha/2,1)
> cat("\nUCL = ",U,"\nLCL = ",L,
+ "\ncenter = ",sigma^2,"\n\n")
UCL= 0.05201032
LCL = 5.099652e-09
center = 0.004659428
```

Next, plot the chart of $\beta_{0}, \beta_{1}, \sigma^{2}$ (MSE).

```
> plot(beta_hat[,1] , type = "b" ,
+ ylim = c(4.3,4.7) ,
+ xlab = "" , ylab = "intercept" ,
+ main = "Control chat for monitoring the intervept")
> abline(U0,0,lty = 2)
> abline(LO,0,lty = 2)
> abline(beta[1],0)
> plot(beta_hat[,2] , type = "b",
+ ylim = c(0.93,1.05) ,
+ xlab = "" , ylab = "slope" ,
+ main = "Control chat for monitoring the slope")
> abline(U1,0,lty = 2)
> abline(L1,0,lty = 2)
> abline(beta[2],0)
> plot(MSE , type = "b" ,
+ ylim =c(0,0.025) ,
+ xlab = "", ylab = "MSE",
+ main = "Control chat for monitoring the error
variance")
> abline(U,0,lty = 2)
> abline(L,0,lty = 2)
> abline(sigma^2,0)
```

Control chat for monitoring the intercep

Control chat for monitoring the error variance

These figures are pretty similar to the figures in textbook, except the UCL ${ }_{\text {MSE }}$ (it's close to 0.005 in textbook).
2.
(1) Prove $\mathbf{X} \sim N_{p}(\boldsymbol{\mu}, \Sigma) \rightarrow Z=\Sigma^{-1 / 2}(\mathbf{X}-\boldsymbol{\mu}) \sim N_{p}\left(0_{p}, I_{p}\right)$

Since $\Sigma^{-1 / 2}(\mathbf{X}-\boldsymbol{\mu})$ is linear in \mathbf{X}, \mathbf{Z} is multivatiate normal.
Moreover,

$$
\begin{aligned}
& E[Z]=E\left[\Sigma^{-1 / 2}(X-\mu)\right]=\Sigma^{-1 / 2}(E[X]-\mu)=0_{p} \\
& \begin{aligned}
\operatorname{Cov}\left[\Sigma^{-1 / 2}(X-\mu)\right] & =\Sigma^{-1 / 2} \operatorname{Cov}[X-\mu] \Sigma^{-1 / 2^{\prime}}=\Sigma^{-1 / 2} \operatorname{Cov}[X] \Sigma^{-1 / 2^{\prime}} \\
& =\Sigma^{-1 / 2} \Sigma^{1 / 2^{\prime}} \Sigma^{1 / 2} \Sigma^{-1 / 2^{\prime}}=I_{p}
\end{aligned}
\end{aligned}
$$

Hence, $\mathbf{Z} \sim N_{p}\left(0_{p}, I_{p}\right)$.
(2) Prove $X_{1}, \ldots, X_{n} \sim N_{p}(\boldsymbol{\mu}, \Sigma) \rightarrow \bar{X} \sim N_{p}\left(\boldsymbol{\mu}, \frac{\Sigma}{n}\right)$

Since $\overline{\boldsymbol{X}}$ is linear in $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathrm{n}}, \overline{\boldsymbol{X}}$ is multivariate normal.
Moreover,

$$
\begin{aligned}
& \mathrm{E}[\overline{\boldsymbol{X}}]=\frac{1}{n} \mathrm{E}\left[\mathbf{X}_{1}+\ldots+\mathbf{X}_{\mathrm{n}}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left[\mathbf{X}_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{\mu}=\boldsymbol{\mu} \\
& \begin{aligned}
\operatorname{Cov}[\overline{\boldsymbol{X}}] & =\frac{1}{n^{2}} \operatorname{Cov}\left[\mathbf{X}_{1}+\ldots+\mathbf{X}_{n}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Cov}\left[\mathbf{X}_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \Sigma \\
& =\frac{\Sigma}{n}
\end{aligned}
\end{aligned}
$$

Hence, $\overline{\boldsymbol{X}} \sim \mathrm{N}_{\mathrm{p}}\left(\boldsymbol{\mu}, \frac{\Sigma}{n}\right)$.
3.
(1)

Since $\Sigma=(1-0.5) I_{3}+0.511^{\prime}$,
$\Sigma^{-1}=\frac{1}{1-0.5} I_{3}-\frac{0.5}{(1-0.5)[1+0.5(3-1)]} \mathbf{1 1}^{\prime}=2 I_{3}-0.5 \mathbf{1 1}^{\prime}$
$=\left(\begin{array}{ccc}1.5 & -0.5 & -0.5 \\ -0.5 & 1.5 & -0.5 \\ -0.5 & -0.5 & 1.5\end{array}\right)$
(2)

```
library(MASS)
mu = c(-1,-1,-1)
sigma = 0.5*diag(1,3) + 0.5*rep(1,3)%*%t(rep(1,3))
> set.seed(465)
chi = numeric(1000)
for(i in 1:1000){
    X = mvrnorm(25,mu,sigma)
    X_bar = colMeans(X)
    temp = X_bar - mu
    chi[i] = 25*t(temp)%*%solve(sigma)%*%(temp)
```

```
UCL = qchisq(0.95,3)
U = max(max(chi),UCL)
plot(chi , type = "b", ylim = c(0,U+0.1) ,
    main = "Chi-square chart" , xlab = "k" ,
    ylab = "X^2_0,k")
abline(UCL, 0, Ity = 2)
> (ratio = sum(chi > UCL)/1000)
[1] 0.049
```

Chi-square chart

The ratio of out-of-control points is 0.049 and it's close to the nominal $\alpha=0.05$.
(3)

```
> library(MASS)
> mu = c(-1,-1,-1)
> sigma = 0.5*diag(1,3) + 0.5*rep(1,3)%*%t(rep(1,3))
>
> set.seed(465)
>
> X_bar_k = matrix(0,3,1000)
> Sk = array(0,dim=c(3,3,1000))
> for(i in 1:1000){
+ X = mvrnorm(25,mu,sigma)
+ X_bar_k[,i] = colMeans(X)
+ Sk[,,i] = cov(X)
+ }
>
> (X_bar_bar = rowMeans(X_bar_k))
[1] -1.013276-1.010876 -1.005413
>
>(S = rowMeans(Sk, dim = 2))
```

[1]	[,2]	
[1,] 1.0244434 0.50297640 .5072474		
[2,] 0.50297641 .00111440 .5024538		
[3,] 0.5072474 0.5024538 1.0066791		

The $\overline{\bar{X}}$ and S seem to be close to the $\boldsymbol{\mu}$ and Σ.
(4)

```
> chisq = numeric(1000)
> for(j in 1:1000){
+ temp = X_bar_k[j] - X_bar_bar
+ chisq[j] = 25*t(temp)%*%solve(S)%*%temp
+}
>
> UCL = qchisq(0.95,3)
>
> U = max(max(chisq),UCL)
> plot(chisq , type = "b" , ylim = c(0,U+0.1),
+ main = "Chi-square chart" , xlab = "k",
+ ylab = "X^2_0,k")
> abline(UCL, 0, Ity = 2)
> abline(0, 0, Ity = 2)
>
> (ratio = sum(chisq > UCL)/1000)
[1] 0.046
```

Chi-square chart

The ratio of out-of-control points is 0.046 . It's close to the nominal $\alpha=0.05$, but slightly less than the value in (2).

