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 Example 10.1.21  

Let nXX ,,1   be independent and identical distributed random variables from )(Ber p . Then 

the maximum likelihood estimator (MLE) of p  is nXp i

n

i /ˆ
1 . By the invariant property of 

the MLE, the MLE of )1( pp   is nnXXpp i

n

ii

n

i /)/1()ˆ1(ˆ 11   .  

We first derive the true variance of )ˆ1(ˆ pp  . Since ),(Bin~1 pnXY i

n

i , we have 
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where the binominal moments are 

npYE )( ,   )1()( 2 nppnpYE  ,    

)32331()( 22223 pnnppnppnpYE  , 

)611661812771()( 33323322224 pnpnnpppnnppnppnpYE  . 

Therefore, we have obtained the true variance of )ˆ1(ˆ pp  . 

However, the true variance of )ˆ1(ˆ pp   depends on p . In real applications, we can 

never know the true value of p . Thus, we have to apply some methods to estimate its variance. 

One possible approach is applying the delta method. According to Example 10.1.14, we have 

))1(,0()ˆ( ppNppn
d

 ,   as n , 

where “
d

 ” denotes convergence in distribution. Let )1()( pppg   then we have 

pdppdgpg 21/)()(   and 2/)()(  dppgdpg . For 2/1p  (i.e., 0)(  pg ), 

by applying the first-order delta method, we obtain 

))21)(1(,0(})1()ˆ1(ˆ{ 2pppNppppn
d

 ,   as n . 



For 2/1p , by applying the second-order delta method, we obtain 

2

1df)1(})1()ˆ1(ˆ{  ppppppn
d

,   as n . 

With replacing p  by p̂ , we can estimate the variance of )ˆ1(ˆ pp   by 

n

ppp 2)ˆ21)(ˆ1(ˆ 
,   if 2/1p ;   

2

22 )ˆ1(ˆ2

n

pp 
,   if 2/1p . 

Another possible approach is applying the non-parametric bootstrap method to 

approximate the distribution of )ˆ1(ˆ pp   then estimates its variance. Concretely, we perform: 

Algorithm 1  Non-parametric bootstrap variance 

Let B  be a large integer. 

Step 1.  Resample )()(

1 ,, b

n

b XX   from data nXX ,,1   with replacement for Bb ,,1  . 

Step 2.  Based on the bootstrap samples, compute  
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Step 3.  Estimate })ˆ1(ˆvar{ pp   by 
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where Bpppp bbB

b

bb /)ˆ1(ˆ)ˆ1(ˆ )()(
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)()(   . 

Remark 1:  Following the textbook, we set 24n  for simulations. For the case 4/1ˆ p , we 

set data 161  XX   and 0247  XX   to yield the desired MLE. Similarly, we set 

data 1121  XX   and 02413  XX   for the case 2/1ˆ p ; 1161  XX   and 

02417  XX   for the case 3/2ˆ p . 

Now, we compare the estimates of })ˆ1(ˆvar{ pp   based on the bootstrap (Algorithm 1) 

and delta method. Table 1 shows that the results on the delta method agree with the textbook. 

However, the results on the bootstrap method and true value violate the textbook. Table 1 also 

reveals that the bootstrap variance gives a slightly better approximation than the delta method 

variance. This is due to that the delta method relies on asymptotic approximation while our 



sample size 24n  is small. One should note that the computational cost of the bootstrap 

method is much higher than the delta method. We provide R codes that reproduce Table 1 in 

Appendix 1. 

 

 

Table 1.  The non-parametric bootstrap and delta method variances for )ˆ1(ˆ pp  . The true 

variance is calculated by assuming pp ˆ . 

Variance 4/1ˆ p  2/1ˆ p  3/2ˆ p  

Bootstrap ( 000,1B ) 0.002068 0.000214 0.001105 

Bootstrap ( 000,10B ) 0.001963 0.000208 0.001087 

Bootstrap ( 000,100B ) 0.001904 0.000206 0.001110 

Delta Method 0.001953 0.000217 0.001029 

True 0.001911 0.000208 0.001109 

 

 

 

 



 Example 10.1.22  

Suppose that we have a sample  

-1.81,  0.63,  2.22,  2.41,  2.95,  4.16,  4.24,  4.53,  5.09. 

with 
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We aim to apply the parametric bootstrap method based on normal distribution to estimate the 

variance of 2

nS . Here, we first follow the textbook and estimate the normal parameters   and 

2  by nX  and 2

nS , respectively. Concretely, we perform: 

Algorithm 2  Parametric bootstrap variance (textbook) 

Let B  be a large integer. 

Step 1.  Generate samples )()(

1 ,, b

n

b XX   from )820.4,713.2( 2  nn SXN  for Bb ,,1  . 

Step 2.  Based on the bootstrap samples, compute  
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Step 3.  Estimate )var( 2

nS  by 








B

i

b

n

b

nnB SS
B

S
1

2)(2)(22 )(
1

1
)(var , 

where BSS b

n

B

b

b

n /)(2

1

)(2

 . 

By using Algorithm 2 with 1000B , we obtain 764.5)(var 2 nB S . On the other hand, 

based on the normal assumption, we have 2

1df

22 ~/)1(  nnSn  . Therefore, we obtain 

)1/(2)var( 42  nSn  . The textbook suggests to estimate it by utilizing the MLE. However, 

the textbook mistakenly estimates 2  by the sample variance. The MLE should be 



590.4)19/()ˆ(2 22  , where 285.4/)(ˆ 2

1

2   nXX ni

n

i . In addition, according to the 

textbook, the true variance of 2

nS  is 4. Thus, our results violate the textbook. The MLE gives a 

better approximation to the true variance.  

Algorithm 2 can be improved by estimating normal parameters based on MLEs 713.2ˆ   

and 285.4ˆ 2  . To be specific, we perform: 

Algorithm 3  Parametric bootstrap variance (MLE) 

Let B  be a large integer. 

Step 1.  Generate samples )()(

1 ,, b

n

b XX   from )285.4ˆ,713.2ˆ( 2  N  for Bb ,,1  . 

Step 2.  Based on the bootstrap samples, compute  
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Step 3.  Estimate )var( 2

nS  by 
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By using Algorithm 3 with 1000B , we obtain 554.4)(var 2 nB S  which is more close 

to the true value and agree with the MLE. We summarize all the results in Table 2. R codes that 

reproduce Table 2 are available in Appendix 2. 

 

Table 2.  The parametric bootstrap variance and the MLE. 

Method Bootstrap (Algorithm 2) Bootstrap (Algorithm 3) MLE True 

Variance 5.764 4.554 4.590 4.000 

 



Appendix 1  R codes for Example 10.1.21 

B = 1000 

n = 24 

p.hat = 1/4 

### bootstrap method ### 

var.boot = rep(0,B) 

set.seed(816) 

data = c(rep(1,n*p.hat),rep(0,n*(1-p.hat))); mean(data) 

for (b in 1:B) { 

   

  data.boot = sample(data,n,replace = TRUE) 

  p.boot = mean(data.boot) 

  var.boot[b] = p.boot*(1-p.boot) 

   

} 

round(var(var.boot),6) 

 

### delta method ### 

if (p.hat != 1/2) { 

   

  round(p.hat*(1-p.hat)*(1-2*p.hat)^2/n,6) 

   

} else { 

   

  round(p.hat^2*(p.hat-1)^2/n^2*2,6) 

   

} 

 

### true ### 

p = p.hat 

EY  = n*p 

EY2 = n*p*(1-p+n*p) 

EY3 = n*p*(1-3*p+3*n*p+2*p^2-3*n*p^2+n^2*p^2) 

EY4 = n*p*(1-7*p+7*n*p+12*p^2-18*n*p^2+6*n^2*p^2-6*p^3+11*n*p^3-6*n^2*p^3+n^3*p^3) 

round((EY2-EY^2)/n^2+(EY4-EY2^2)/n^4-2*(EY3-EY*EY2)/n^3,6) 

 

 



Appendix 2  R codes for Example 10.1.22 

x = c(-1.81,0.63,2.22,2.41,2.95,4.16,4.24,4.53,5.09) 

B = 1000 

n = length(x); n 

mu = mean(x); mu 

s2.sample = var(x); s2.sample 

s2.MLE = sum((x-mean(x))^2)/n; s2.MLE 

s2.boot = rep(0,B) 

set.seed(816) 

for (b in 1:B) { 

   

  x.boot = rnorm(n,mean = mu,sd = sqrt(s2.sample)) # Algorithm 2 

  #x.boot = rnorm(n,mean = mu,sd = sqrt(s2.MLE)) # Algorithm 3 

  s2.boot[b] = var(x.boot) 

 

} 

var(s2.boot) 

2*s2.MLE^2/(n-1) 

 


