HW\#5

Q2 [+5] Let $X_{1}, \ldots, X_{n} \stackrel{\text { id }}{\sim} f(x \mid \eta)=-\eta \exp (\eta x), \eta<0, x>0$.
(1) [+1] Derive the MLE $\hat{\eta}$ of η.

Solution 1).

The likelihood and log-likelihood functions are

$$
L(\eta)=\prod_{i=1}^{n} f\left(X_{i} \mid \eta\right)=(-\eta)^{n} \exp \left(\eta \sum_{i=1}^{n} X_{i}\right) \quad \text { and } \quad \ell(\eta)=\log L(\eta)=n \log (-\eta)^{n}+\eta \sum_{i=1}^{n} X_{i} .
$$

Thus, the MLE of η is the solution of the score function $\partial \ell(\eta) / \partial \eta=0$ which is $\hat{\eta}=-n / \sum_{i=1}^{n} X_{i}$. The MLE attains the maximum of the log-likelihood value since $\partial^{2} \ell(\eta) /\left.\partial \eta^{2}\right|_{\eta=\hat{\eta}}=-n / \hat{\eta}^{2}<0$.
(2) $[+2]$ Calculate the bias $E_{\eta}[\hat{\eta}]-\eta$.

Solution (2).

Since $X_{i} \sim f(x \mid \eta)=-\eta \exp (\eta x), i=1,2, \ldots, n$, we have

$$
\sum_{i=1}^{n} X_{i} \equiv T \sim f(t \mid \eta)=\frac{(-\eta)^{n}}{\Gamma(n)} t^{n-1} \exp (\eta t), \quad \eta<0, t>0
$$

Therefore,

$$
E(\hat{\eta})=-n E\left(T^{-1}\right)=\int_{0}^{\infty} t^{-1} \frac{(-\eta)^{n}}{\Gamma(n)} t^{n-1} \exp (\eta t) d t=\frac{n \eta}{n-1} .
$$

Then the bias is

$$
E(\hat{\eta})-\eta=\frac{\eta}{n-1} .
$$

(3) $[+1]$ Show that $\frac{X_{n}}{X_{1}+\cdots+X_{n}}$ is an ancillary statistic for η.

Solution (3).

We have $X_{n} / \Sigma_{i=1}^{n} X_{i}=\left(-\eta X_{n}\right) /\left(-\eta \sum_{i=1}^{n} X_{i}\right)$. Since $-\eta X_{n} \sim \operatorname{Exp}(1)$ and $-\eta \Sigma_{i=1}^{n} X_{i} \sim \Gamma(n, 1)$, the distribution of $X_{n} / \sum_{i=1}^{n} X_{i}$ does not depend on parameter η. Then we have shown that $X_{n} / \sum_{i=1}^{n} X_{i}$ is an ancillary statistic for η.
(4) $[+1]$ Calculate $E_{\eta}\left[\frac{X_{n}}{X_{1}+\cdots+X_{n}}\right] \quad$ (need proofs).

Solution (4).

We have

$$
f\left(x_{1}, \ldots, x_{n} \mid \eta\right)=\prod_{i=1}^{n} f\left(x_{i} \mid \eta\right)=(-\eta)^{n} \exp \left(\eta \sum_{i=1}^{n} x_{i}\right)=\exp \left(\eta \sum_{i=1}^{n} x_{i}+n \log (-\eta)\right) .
$$

Thus, the canonical form of this one-dimensional exponential family is

$$
f\left(x_{1}, \ldots, x_{n} \mid \eta\right)=\exp \left\{\eta T\left(x_{1}, \ldots, x_{n}\right)-A(\eta)\right\} h\left(x_{1}, \ldots, x_{n}\right),
$$

where $T\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}, A(\eta)=-n \log (-\eta)$, and $h\left(x_{1}, \ldots, x_{n}\right)=1$. Since the natural parameter space $\Theta=\{\eta \mid \eta<0\}$ contains an one-dimensional rectangle (e.g., ($-2,-1$), we obtain that $T\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}$ is complete.

Now, by Basu's Theorem, $\sum_{i=1}^{n} x_{i}$ (complete sufficient statistic) and $X_{n} / \sum_{i=1}^{n} X_{i}$ (ancillary statistic) are independent. Therefore, we have

$$
E_{\eta}\left(X_{n}\right)=E_{\eta}\left(\frac{X_{n}}{\sum_{i=1}^{n} X_{i}} \cdot \sum_{i=1}^{n} X_{i}\right)=E_{\eta}\left(\frac{X_{n}}{\sum_{i=1}^{n} X_{i}}\right) E_{\eta}\left(\sum_{i=1}^{n} X_{i}\right) .
$$

This implies

$$
E_{\eta}\left(\frac{X_{n}}{\sum_{i=1}^{n} X_{i}}\right)=\frac{E_{\eta}\left(X_{n}\right)}{E_{\eta}\left(\sum_{i=1}^{n} X_{i}\right)}=\frac{-1 / \eta}{-n / \eta}=\frac{1}{n} .
$$

NOTE: One may also apply the change of variables to show that $X_{n} / \sum_{i=1}^{n} X_{i}$ follows a Beta distribution which does not depend on η and then compute its expectation.

Q4 [+5] Let $X_{1}, \ldots, X_{n} \sim \underset{i d}{\sim}(x \mid \theta)=2 \theta^{2} x^{-3} I(x \geq \theta), \theta>0$.
(1) $[+2]$ Derive a size- α LR test for testing $H_{0}: \theta \leq \theta_{0}$ vs. $H_{1}: \theta>\theta_{0}$.

Solution (1).

The likelihood function is

$$
L(\theta)=\prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)=2^{n} \theta^{2 n} \prod_{i=1}^{n} X_{i}^{-3} I\left(X_{(1)} \geq \theta\right)
$$

where $X_{(1)}=\min \left(X_{1}, \ldots, X_{n}\right)$. Clearly, the likelihood function $L(\theta)$ is increasing in θ.
If $X_{(1)} \leq \theta_{0}$, we have the likelihood ratio (LR) test statistic $\lambda=1$ which implies that we always accept the null hypothesis. This is a natural result since $\theta \leq X_{(1)} \leq \theta_{0}$. If $X_{(1)}>\theta_{0}$, the LR test statistic is

$$
\lambda=\frac{\sup _{\theta \in \Theta_{0}} L(\theta)}{\sup _{\theta \in \Theta} L(\theta)}=\frac{2^{n} \theta_{0}^{2 n} \prod_{i=1}^{n} X_{i}^{-3} I\left(X_{(1)} \geq \theta_{0}\right)}{2^{n} X_{(1)}^{2 n} \prod_{i=1}^{n} X_{i}^{-3} I\left(X_{(1)} \geq X_{(1)}\right)}=\left(\frac{\theta_{0}}{X_{(1)}}\right)^{2 n},
$$

where $\Theta_{0}=\left\{\theta \mid \theta \leq \theta_{0}\right\}$ and $\Theta_{1}=\left\{\theta \mid \theta>\theta_{0}\right\}$, and $\Theta=\Theta_{0} \cup \Theta_{1}=\{\theta \mid \theta \in R\}$.
Since $\left(\theta_{0} / X_{(1)}\right)^{2 n}<c$ for some c is equivalent to $X_{(1)}>k$ for some k. Now, we consider

$$
\phi(x)= \begin{cases}1 & \text { if } x_{(1)}>k \\ 0 & \text { otherwise }\end{cases}
$$

where $\alpha=E_{\theta_{0}}\{\phi(X)\}=\operatorname{Pr}\left(X_{(1)}>k\right)=\left(\theta_{0} / k\right)^{2 n}$. This implies $k=\theta_{0} \alpha^{-1 / 2 n}$. Thus, the desired LR test with size α is

$$
\phi(x)= \begin{cases}1 & \text { if } x_{(1)}>\theta_{0} \alpha^{-1 / 2 n} \\ 0 & \text { otherwise }\end{cases}
$$

(2) $[+1]$ Derive the power function.

Solution (2).
The power function is defined as

$$
\beta(\theta)=E_{\theta}\{\phi(X)\}=\operatorname{Pr}\left(X_{(1)}>\theta_{0} \alpha^{-1 / 2 n}\right), \quad \theta>0 .
$$

If $\theta_{0} \alpha^{-1 / 2 n} \leq \theta$, one has $\beta(\theta)=1$; if $\theta_{0} \alpha^{-1 / 2 n}>\theta$, one has $\beta(\theta)=\left(\theta / \theta_{0}\right)^{2 n} \alpha$. Therefore, the power function of the LR test in (1) is

$$
\beta(\theta)= \begin{cases}\left(\theta / \theta_{0}\right)^{2 n} \alpha & \text { if } \theta_{0} \alpha^{-1 / 2 n}>\theta \\ 1 & \text { if } \theta_{0} \alpha^{-1 / 2 n} \leq \theta\end{cases}
$$

(3) $[+1]$ Draw figures of the power function under $\theta_{0}=1, \alpha=0.5, n=1,2$ (details).

Solution (3).
Figure 1 plots the power function under $\theta_{0}=1, \alpha=0.5, n=1,2$.

Figure 1. Power functions with sample size $n=1,2$ under $\theta_{0}=1, \alpha=0.5$.
(4) [+1] Derive a $(1-\alpha)$ one-sided CI by inverting a test $H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta>\theta_{0}$.

Solution (4).

Similarly, one only needs to consider the case $X_{(1)}>\theta_{0}$. The LR test statistic is

$$
\lambda=\frac{\sup _{\theta \in \Theta_{0}} L(\theta)}{\sup _{\theta \in \Theta} L(\theta)}=\frac{2^{n} \theta_{0}^{2 n} \prod_{i=1}^{n} X_{i}^{-3} I\left(X_{(1)} \geq \theta_{0}\right)}{2^{n} X_{(1)}^{2 n} \prod_{i=1}^{n} X_{i}^{-3} I\left(X_{(1)} \geq X_{(1)}\right)}=\left(\frac{\theta_{0}}{X_{(1)}}\right)^{2 n},
$$

where $\Theta_{0}=\left\{\theta_{0}\right\}$ and $\Theta_{1}=\left\{\theta \mid \theta>\theta_{0}\right\}$, and $\Theta=\Theta_{0} \cup \Theta_{1}=\left\{\theta \mid \theta \geq \theta_{0}\right\}$. Then the test is exactly the same as in (1), that is

$$
\phi(x)= \begin{cases}1 & \text { if } \quad x_{(1)}>\theta_{0} \alpha^{-1 / 2 n}, \\ 0 & \text { if } \quad x_{(1)} \leq \theta_{0} \alpha^{-1 / 2 n} .\end{cases}
$$

By inverting its acceptance region, we obtain a $(1-\alpha)$ confidence $\left[\alpha^{1 / 2 n} x_{(1)}, \infty\right)$.

Exercise 9.54

Solution (a).

We have $X \sim N\left(\mu, \sigma^{2}\right)$ and $\nu S^{2} / \sigma^{2} \sim \chi_{\mathrm{df}=v}^{2}$ are independent. The interval estimator is $C(x)=[x-c s, x+c s]$ and the loss function is $L\left\{\left(\mu, \sigma^{2}\right), C\right\}=b \operatorname{Length}(C) / \sigma-I_{C}(\mu)$. Thus, the risk function is

$$
\begin{aligned}
R\left\{\left(\mu, \sigma^{2}\right), C\right\} & =E\left[L\left\{\left(\mu, \sigma^{2}\right), C\right\}\right]=b E\{\text { Length }(C)\} / \sigma-\operatorname{Pr}(\mu \in C) \\
& =2 b c E(S / \sigma)-\operatorname{Pr}(X-c S \leq \mu \leq X+c S) \\
& =2 b c E(S / \sigma)-\operatorname{Pr}\left(\left|\frac{X-\mu}{S}\right| \leq c\right) \\
& =2 b c E(S / \sigma)-2 \operatorname{Pr}\left(\frac{X-\mu}{S} \leq c\right)+1 .
\end{aligned}
$$

Recall

$$
M \equiv E(S / \sigma)=\frac{\sqrt{2} \Gamma((v+1) / 2)}{\sqrt{v} \Gamma(v / 2)} \quad \text { and } \quad T \equiv \frac{X-\mu}{S}=\frac{(X-\mu) / \sigma}{\sqrt{S^{2} / \sigma^{2}}} \sim t_{\mathrm{df}=v} .
$$

Thus, we obtain

$$
R\left\{\left(\mu, \sigma^{2}\right), C\right\}=2 b c M-2 \operatorname{Pr}(T \leq c)+1,
$$

Solution (b).

The first derivative of the risk function with respect to c is

$$
\frac{\partial}{\partial c} R\left\{\left(\mu, \sigma^{2}\right), C\right\}=2 b M-2 f_{T}(c),
$$

where $f_{T}(t)$ is the density function of $t_{\mathrm{df}=v}$. Set the equation equals to zero and it becomes

$$
\frac{2 \sqrt{2} \Gamma((v+1) / 2)}{\sqrt{v} \Gamma(v / 2)} b-\frac{2 \Gamma((v+1) / 2)}{\sqrt{v \pi} \Gamma(v / 2)}\left(1+\frac{c^{2}}{v}\right)^{-(v+1) / 2}=0 .
$$

The above equality may hold if $b \leq 1 / \sqrt{2 \pi}$. With some further simplification, we have that c minimize the risk function satisfies

$$
b=\frac{1}{\sqrt{2 \pi}}\left(\frac{v}{v+c^{2}}\right)^{(v+1) / 2} .
$$

Solution (c).

Let $v \rightarrow \infty$, we have

$$
\begin{aligned}
b & =\lim _{v \rightarrow \infty} \frac{1}{\sqrt{2 \pi}}\left(\frac{v}{v+c^{2}}\right)^{(v+1) / 2}=\frac{1}{\sqrt{2 \pi}} \lim _{v \rightarrow \infty}\left(1+\frac{-c^{2}}{v+c^{2}}\right)^{(v+1) / 2} \\
& =\frac{1}{\sqrt{2 \pi}} \lim _{v \rightarrow \infty}\left(1+\frac{-c^{2} / 2}{\left(v+c^{2}\right) / 2}\right)^{(v+1) / 2}=\frac{1}{\sqrt{2 \pi}} e^{-c^{2} / 2} .
\end{aligned}
$$

Then,

$$
c=\sqrt{-2 \log (\sqrt{2 \pi} b)} .
$$

Hence we have shown that as $v \rightarrow \infty$, the solution will converge to the known case.

Exercise 9.55

Solution.

We have

$$
\begin{aligned}
R\left\{\left(\mu, \sigma^{2}\right), C\right\} & =E\left[L\left\{\left(\mu, \sigma^{2}\right), C\right\}\right] \\
& =E\left[L\left\{\left(\mu, \sigma^{2}\right), C\right\} \mid S<K\right] \operatorname{Pr}(S<K)+E\left[L\left\{\left(\mu, \sigma^{2}\right), C\right\} \mid S>K\right] \operatorname{Pr}(S>K) \\
& =R\left\{\left(\mu, \sigma^{2}\right), C^{\prime}\right\}+E\left[L\left\{\left(\mu, \sigma^{2}\right), C\right\} \mid S>K\right] \operatorname{Pr}(S>K) .
\end{aligned}
$$

The last equality holds since $C^{\prime}=\phi$ if $S>K$. Thus, it suffices to find when

$$
E\left[L\left\{\left(\mu, \sigma^{2}\right), C\right\} \mid S>K\right]>0
$$

By straightforward calculations,

$$
\begin{aligned}
E\left[L\left\{\left(\mu, \sigma^{2}\right), C\right\} \mid S>K\right] & =E\left\{b \operatorname{Length}(C)-I_{C}(\mu) \mid S>K\right\} \\
& =E\left\{2 b c S-I_{C}(\mu) \mid S>K\right\} \\
& =E\{2 b c K-1 \mid S>K\} \\
& =2 b c K-1 .
\end{aligned}
$$

Therefore, if $K>1 / 2 b c$ then C^{\prime} dominates C.

