\＃4 Homework of Mathematical Statistics（Chapter 8）
Student name：Hsiang－An，Hsu（許象安）
Student ID： 106225024
Professor：Dr．Takeshi Emura（江村剛志）

Problem

Let $X_{1}, \ldots, X_{n} \underset{\sim}{\text { iid }} f(x \mid \theta)=\theta x^{-2} I(x \geq \theta)$ ，where $\theta>0$ ．Consider testing $H_{0}: \theta \leq \theta_{0}$ vs．$H_{1}: \theta>\theta_{0}$ for some know value θ_{0} ．
（a）Derive the LR test with size α ．
（b）Derive the power function．
（c）Using R，draw a figure of the power function under $\alpha=0.05$ with 3 different values of n ．（Combine 3 curves in one figure）．Explain how the changes under different values of n ．

Solution：

$X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} f(x \mid \theta)=\theta x^{-2} I(x \geq \theta) \theta>0$
To test $H_{0}: \theta \leq \theta_{0}$ v．s．$H_{1}: \theta>\theta_{0}$
$\oplus \rightarrow=\{\theta \mid 0<\theta<\infty\}$
${ }^{(1)}=\left\{\theta \mid 0<\theta \leq \theta_{0}\right\}$
（a）\＆（b）
$\mathrm{L}(\theta \mid \boldsymbol{x})=f(\boldsymbol{x} \mid \theta)=\prod_{i=1}^{n} \frac{\theta}{x_{i}^{2}} I\left(x_{i} \geq \theta\right)=\frac{\theta^{n}}{\prod_{i=1}^{n} x_{i}^{2}} I\left(x_{(1)} \geq \theta\right)$
$\because \mathrm{L}(\theta \mid \boldsymbol{x})$ is increasing in $\theta \in\left(0, x_{(1)}\right]$
$\therefore \hat{\theta}=x_{(1)}$ is the mle of θ ．
$\Rightarrow \sup _{\theta \in \mathbb{H}} \mathrm{L}(\theta \mid \boldsymbol{x})=\frac{\left[x_{(1)}\right]^{2}}{\prod_{i=1}^{n} x_{i}{ }^{2}}$
$\sup _{\theta \in(10)} \mathrm{L}(\theta \mid \boldsymbol{x})=\left\{\begin{array}{l}\frac{\left[x_{(1)}\right]^{2}}{\prod_{i=1}^{n} x_{i}{ }^{2}} \text { ，if } x_{(1)} \leq \theta_{0} \\ \frac{\left[\theta_{0}\right]^{2}}{\prod_{i=1}^{n} x_{i}{ }^{2}} \text { ，if } x_{(1)}>\theta_{0}\end{array}\right.$
$\therefore \lambda(\boldsymbol{x})=\frac{\sup _{\theta \in(H 0}{ }^{\mathrm{L}(\theta \mid x)}}{\sup _{\theta \in \mathbb{H})}^{\mathrm{L}(\theta \mid x)}}=\left\{\begin{array}{c}1, \text { if } x_{(1)} \leq \theta_{0} \\ \left(\frac{\theta_{0}}{x_{(1)}}\right)^{n}, \text { if } x_{(1)}>\theta_{0}\end{array}\right.$

We reject H_{0} if $\lambda(\boldsymbol{x})<c$, where c is a constant with $0 \leq c<1$
$\Leftrightarrow\left(\frac{\theta_{0}}{x_{(1)}}\right)^{n}<c$ if $x_{(1)}>\theta_{0} \Leftrightarrow x_{(1)}>\theta_{0} c^{\frac{-1}{n}}>\theta_{0}$
$\therefore \boldsymbol{R}=\left\{\boldsymbol{x}: x_{(1)}>\theta_{0} c^{\frac{-1}{n}}\right\}$ is the rejection region.
$\beta(\theta)=P_{\theta}\left(\right.$ reject $\left.H_{0}\right), \theta \in \mathbb{H}$
$=P_{\theta}\left(x_{(1)}>\theta_{0} c^{\frac{-1}{n}}\right)=\left[P_{\theta}\left(x_{1}>\theta_{0} c^{\frac{-1}{n}}\right)\right]^{n}$
$=\left(\int_{\theta_{0} c \frac{-1}{n}}^{\infty} \theta x^{-2} I(x \geq \theta) d x\right)^{n}$
$=\left\{\begin{array}{l}\left(\int_{\theta_{0} c^{\frac{-1}{n}}}^{\infty} \theta x^{-2} d x\right)^{n}, \text { if } \theta \leq \theta_{0} c^{\frac{-1}{n}} \\ \left(\int_{\theta}^{\infty} \theta x^{-2} d x\right)^{n}, \text { if } \theta>\theta_{0} c^{\frac{-1}{n}}\end{array}\right.$
$=\left\{\begin{array}{c}\left(\frac{\theta}{\theta_{0}}\right)^{n} c, \text { if } \theta \leq c^{\frac{-1}{n}} \theta_{0} \\ 1, \text { if } \theta>c^{\frac{-1}{n}} \theta_{0}\end{array}\right.$
$\Rightarrow \beta(\theta)=\left\{\begin{array}{c}\left(\frac{\theta}{\theta_{0}}\right)^{n} c, \text { if } \theta \leq c^{\frac{-1}{n}} \theta_{0} \\ 1, \text { if } \theta>c^{\frac{-1}{n}} \theta_{0}\end{array}\right.$ is the power function of θ.
$\therefore \alpha=\sup _{\theta \in \oplus(1)} \beta(\theta)=\sup _{0<\theta \leq \theta_{0}}\left(\frac{\theta}{\theta_{0}}\right)^{n} c=c$
Hence $\boldsymbol{R}=\left\{\boldsymbol{x}: x_{(1)}>\theta_{0} \alpha^{\frac{-1}{n}}\right\}$ is the LR-test with size α.
(c)
$\alpha=0.05=c$
We set $\theta_{0}=2 n=20,50,100$ respectively

Apparently, the power is faster to reach the climax=1.0 as n is larger. We could conclude that the power function is more powerful as n is larger.

