HW#3, Due on 10/13(Fri), Submit to TA during 10:00-10:30

Exercise 4.26
Solution (a).
Let X and Y be independent exponential random variables with probability density

functions defined as

fﬂ(x):%ex’*, A>0, x>0, f(y)_#ey”’, u>0, y>0.

Under certain situations, one cannot obtain direct observations of X and Y . Instead, one

observes random variables Z and W, where

: 1 if z=X,
Z=min( X,Y), Wz{

0 if Z=Y.
This setting is known as “competing risks”. Now, we derive the joint distribution function of Z

and W . By straightforward calculations,
Pr(Z<z,W=0)=Pr(min( X,Y)<z,min( X,Y)=Y)=Pr(Y<z,Y<X)

i o (A+u)y
;[y y’{ "*dxdy = !ﬂexp{—T}dy

_ A 1-exp (A+u)z '
A+u Au
In a similar fashion,

Pr(Z<z,W =1)=Pr(min( X,Y)<z,min( X,Y)=X)=Pr(X <z, X<Y)

H (A+u)z
ﬁ+ﬂ[1 exp{ Au H

Solution (b).
We first obtain the marginal distributions of Z and W . By straightforward calculations,

Pr(W:O):Pr(ZSoo,W=O):%, PrW=1)=Prg<omW=1)=
+ 4t

i+,u
(A+u)z
Pr(Z<z)=Pr(Z<z,W=0)+Pr(Z<z,W=1)=1-exp ERTTERE

Therefore, one obtains the identities
Pr(Z<z,W=j)=Pr(Z<z)Pr(W=j), z>0, j=0,1.

Hence we have shown the independence of Z and W.



Exercise 7.14

Following Exercise 4.26, now we assume that (Z,,W,), i=12,---,n are independent and

identical distributed random variables. We aim to find the MLEs of A and .

As we mentioned in Exercise 4.26, this question is based on competing risks. To make
things clear, we briefly introduce some important concepts of competing risks model. In
Exercise 4.26 (a), the two probabilities Pr(Z<z,W=1j), j=0,1 are the so-called “sub-

distribution functions” and we define F, (z, j)=Pr(Z<z,W=7j), j=0,1. In addition, the
so-called “sub-density functions” are defined as

. 0 . .
flvﬂ(Z'J)zaFA,y(Z’J)’ J:O’]'

To be specific, we have

.0 . 1 (A+u)z .
fﬂ.,,u(zlJ)=§F}L,y(21])=ljlu1,j exp{_T}, j=0,l.

The likelihood function (Lawless 2003, p.435) is
L (A p)=]]f..(Z.1)"f,,(Z,0)™".
i=1

Thus, the log-likelihood function is

00( 2 ) =log L, (A ) =3 Wilog f, (2, 1)+ (1-W, )log f, ,(Z,.0)

i=1 i=1
=—Iog,u(n—znlwij—log}tznlwi —lznlzi —lznlzi.
i1 i1 A3 H iz

The MLEs can be obtained by solving o/ ,(A, #)/0A=0 and o¢,(A, )/ 0u=0 which are

equivalent to

—EZWi +%Zzi =0, _1 n—->W, +i222i =0.
AT AT i i=1
Clearly, the MLEs are
n n -1 n n -1 n
A:ZZ{ZWJ , ﬁ:ZZ{n—ZWij . D W =0 or n.
i=1 i=1 i=1 i=1 i=1
The MLEs attain the maximum of log-likelihood function is ensured by examining the Hessian
matrix. Since the off-diagonal elements of the Hessian matrix are 0, it suffices to show

AB]Ea) o G Ar-fw(Ea)

A=A

82
—0 (A,
YT (A, 1)

u=p



Do the same exercise for the Weibull with the common shape parameter y for X and Y.

Solution.
Let X and Y be independent Weibull random variables which share the common shape

parameter » >0. Their probability density functions are defined as
fﬂyy(x):%xy’le’xy”, A>0, x>0, fW(y):%y“ey””, u>0, y>0.

Similarly, we define the random variables Z and W as in Exercise 7.14. By straightforward

calculations, one has

(z,0)=Pr(Y<z,Y<X)= J'yy“ey""[]/xV1 e *dxdy

(7 y- Arp)y | Ay gl (ATu)7
!ﬂ { At }dy_ﬂw{l exp{ At H

(2,1)=Pr(Z<z,W =1)=Pr(X <z, X<Y)—/1+ {1 exp{ %H
M 1

/1/47

/1/17

The marginal distributions of Z and W are

Pr(W:O):Pr(ZSoo,W=O):%, PH(W =1) = Pr(Z <oo,W =1) =
+ 4t

i+,u

Pr(Z<z)=Pr(Z<z,W =0)+Pr(Z<z,W :1):1—exp{—(/1;—ﬂ)z}.
1

Therefore, one obtains the identities
Pr(Z<z,W=j)=Pr(Z<z)Pr(W=j), z>0, j=0,1.
Hence we have shown the independence of Z and W.

The joint probability density is

/1/17(2 J) i,uy( ’J) 7/271 Xp{_(l—hu)zy}v j:O,l.

/lJlJ

Thus, the log-likelihood function is

(A 1, 7) :ZWi log f/l,,u,;/(zi’l)—‘r_Z(l_Wi )og f, . (Z;,0)
i=1 i=1

= nlogy+(7/—1)znllog Z, —log AZn:Wi —Iogy(n—znlwij—%zn:Z{ —lzn:Z(.
i=L i=L i-1 i=1 Hia



The MLEs can be obtained by solving o¢ (A, u,y)/0A=0, o0, (A, 1, y)/ou=0 and

ol (A, i, )0y =0 which are equivalent to
18 1 1 4 1
- >YW. +=>272"=0, —-—=|n->W [+— ) Z/ =0,

EJrZIogZi —EZZK log Z, —EZZ{ logZ, =0.
VAR AT Hia

With some further simplifications, we obtain

n (o -1
A:ZZ(ZWJ in

n n -1
Zf(n - ZW' ] L]
=1 i=1
n n 18 -1
ﬁ:(ZZ? logZ, /> Z/ —HZIog Zij :
i=1 i=1 i=1

The expression for 7 is obtained by plugging

n n -1 n n -
i=3z(Sw] . w=Sz(n-3w)
= i1 i1 =
into o/ (A, , y)I0y=0.

Since the closed-form of the MLEs are not available, one has to perform some numerical

methods to obtain the MLEs. Here, we suggest applying the fixed-point iteration method to
obtain the MLE 7, thenthe MLEs 1 and /4 are obtained by using the above formulas. Now,

we state the fixed-point iteration algorithm.

Algorithm 1  Fixed-point iteration algorithm
Step 1. Set initial value »©.
Step 2. Repeat the fixed-point iteration:

n n n N
p D :(zZiym logZ, /zZiy( ) _lzlog Zi] .
i=1 i=1 Nz

o If |y® —»® <107, stop the algorithm and set the MLE as »®*™.



For illustration, we generate random samples ( X;,Y;), i=12,---,300 from the Weibull
distributions with true parameter (A, 1, 7)=(12,3). Then, we obtain the competing risks
data (Z;,W,), i=12,---,300, where Z,=min( X;,Y;) and W,=1(Z, =X, ). Based on the
generated data, we apply Algorithm 1 with initial value »© =1 and it converges in 27

iterations. The result of estimation is 7 = 2.8751, then we obtain 1=0.9714 and /1 =2.0024.

Figure 1 reveals that the MLEs attain the maximum of the log-likelihood function. R codes are
available in Appendix 1.
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Figure 1. Log-likelihood functions under the Weibull competing risks model based on the
generated data. The vertical lines are drawn at 4=0.9714, 4=2.0024, 7=2.8751



Exercise 7.50 (a) Details including the calculation of E[S]=, (b) Details including the
calculation of a, (c) Detailed formulas to apply the Factorization theorem and verify the
completeness.

Solution (a).

Let X,,---, X, be independent and identical distributed random variables from N(@,6°),

6 >0.We define
2 1 3

X; and  SP=—> (X~
n—-L15

Clearly, X isan unbiased estimator for €. We aim to find another unbiased estimator for 4.

n

One may define Y =(n-1)S2/6* hence Y ~ y5_.,=T((n-1)/2,2). Then one obtains

E(S,)=E{(S;)" E{(6%Y )"*}

}\/—

(n—l)/2—le—y/2dy

_ J‘e 1/2 1

_\/n—lo Y T (n-1)r2320 7Y
_A2r(n/2)
~JIn-1r{(n-1)/2}

This implies

Jn-1r{(n-1)/2}
J2r(n/2)

E(cS,)=6, c=

We find that cS, is also an unbiased estimator for &. Then,
E{aX, +(1-a)cS,}=aE( X, )+E(cS,)-aE(cS,)=ald+0-abd=0.

Hence we have shown the desired result.

Solution (b).
We have

var{aX, +(1-a)cS, }=a’var( X, )+(1-a)*var(cS,),
where var( X, )=6%*/n and var(cS,)=E(c’S>)—{E(cS,)}¥ =(c*—-1)68*. To minimize the
variance, one has to solve ovar{aX, +(1-a)cS, }/da=0 which is equivalent to
2avar( X, )—2(1-a)var(S,)=0.
Obviously, the solution is

B var(S,) _ (c-1)¢* n(c?-1)
Cvar( X, )+var(S,)  6*/n+(c?-1)8* n(c?-1)+1




Solution (c).

The probability density function of N( &, %) is defined as

%(X):;G%ZTSQ{_(iég)

Then, the joint probability density function is

SOR LACTE Pom IR EP-S SERoY
1 n/2 1
:(ZJ ot { 2922)( "o ZX "}

:ga{T1(X1""' n)!TZ(Xl"”’ n)}h(X1,~--, n),
where Tl(Xl"“'Xn)zzinzlxiz’ TZ(Xi’”"Xn):Zin:lXH

1 t ot 1\
t)=— S h(x,---, . -’z
ge(tl 2) en exp[ 202+0j (Xl Xn) (2”) e

}, —oo<X<oo, 0>0.

By the factorization theorem, (T, T,)=(Z,X,, 2, X?) isa sufficient statistics. Then,

(%500 23,2300 -,
is a function of (T, T,) hence it is also a sufficient statistics.
To show the incompleteness, we have E( X, —cS, )=0-0=0 for all >0. Thus, we
have found a non-zero function X, —cS with its expectation always equals to zero. Therefore,

the sufficient statistics ( X, S*) is not complete.

n?’ n



Exercise 7.51 (a)-(d). Prove your answer by formulas (not just words).

Solution (a).

Consider a class of estimator

7 ={T:T=aX,+3,(cS,)},
where we do not assume a, +a,=1. We aim to find the estimator T €7 that minimize the
mean square error E{(T-0)?}, call it T*. By straightforward calculations, since
a, X, +a,(cS,) may be biased, we obtain

E,[{aX,+a,(cS,)-0¥ 1=a’var( X, )+a’c’var(S,)+(a +a,-1)*?

2

8

Faz +aj(c*-1)0° +(a, +a,-1)*0*

To minimize the mean square error, one has to solve oE,[{a,X, +a,(cS,)-0¥ 1/0a, =0 and

OE,[{a X, +a,(cS,)—-0%¥ 1/0a,=0 which are equivalent to

2(”T”jal+2( a,~1)=0, 2ac®+2(a,-1)=0.
The solutions are

_n(c?-1) B 1
n(c2=1)+c?’ 2 n(c?-1)+c?’

Note that the Hessian matrix is positive definite

2[(nJrl)/n 1}>O.

1 c?
Thus, we obtain the estimator

., n(c’-1) - 1
T = 2 _ 7 X+ 2 _ 2
n(c —1)+c n(c —-1)+c

(cSh)

minimize the mean square error.
Solution (b).
The mean square error of T" is
\ n(c®-1)*6° ¢’ -1)6? ¢’ -1)?6?
Ee{(T _0)2}: (2_ ) 212 (2_ ) 212 (2_ ) 242
{n(c"=-1)+c°}y {n(c°-1)+c°} {n(c"-1)+c°}
(2 =1){n(c®-1)+c?}0?
{n(c*-1)+c?*¥
(2 -1)e?
n(c®-1)+c*’




Since the estimator in Exercise 7.50 (b) is unbiased, its mean square error is equal to its
variance. We have
var{aX_ +(1-a)(cS,)}=a’var( X, )+(1-a)*var(cS,)
_ n(c*-1)°¢* . (c*-1)&°
{n(c®-1)+1¥ {n(c®-1)+1¥
_(c?-1)&°
n(c?-1)+1

Thus, we have shown that the mean square error of T is smaller than the estimator obtained
in Exercise 7.50 (b) since

(c?-1)6° - (c?-1)6°
n(c®-1)+c®> n(c®-1)+1’

Solution (c).

Since T® may be negative then it makes no sense to estimate the parameter >0 by a

negative value. Thus, we define a new estimator T* =max( 0,T*) which is a more reasonable
estimator than T*. The cumulative distribution of T* s

Pr(T” <t)=Pr{max( 0, T")<t}=Pr(T"<t).
One may observe that for t=0, one has Pr(T* =0)=Pr(T*<0) which implies that T*
has non-zero probability at point 0. For t>0, one has Pr(T* <t)=Pr(T*<t). Therefore,

T* isarandom variable formed by a point mass and the positive part of T*.

Now, suppose the probability density of T" is f .. We show that the mean square error

of T* issmaller than the mean square error of T* as follows.

EA(T —0)*}=0°Pr(T" =0)+ [(t'=0)*f_.(t")dt"
0
— 6 Pr(T*sO)+J.(t*—0)2fT*(t* )dt®
0
0 ©
= Iesz*(t*)dt*+J‘(t*—9)2 f.(t")dt"
—o0 0
0 ©
< j(t*—e)z f.(t )dt*+j(t*—e)2 f.(t")dt"
—0 0

—E{(T"-0)'}.



Solution (d).
We define the probability density function for standard normal distribution (N(0,1)) as

I
o(Xx)= 2ﬂe .

Thus, the probability density function for N( 8, 6?) can be written as

1 _(x=0)" |1 (x-0
o= przenl- O 5d57)

The parameter & is not a location parameter since it cannot be 0. In addition, the parameter 4

is also not a scale parameter since for € =1, one has

fL(x)=g(x-1)#¢(x).
Hence we have shown that & is neither location nor scale parameter.

However, if one regards the standard probability density function as

1 e
p(x)= Ee ? :

Then, the parameter & can be classified as a scale parameter since

o el 252734

10



Appendix 1. R codes for the Weilbull model with competing risks

R codes

### data generation ###
n =300

Lambda.true = 1
Mu.true =2
Gamma.true =3

set.seed(10)
X = rweibull(n,Gamma.true,Lambda.true(1/Gamma.true))
Y = rweibull(n,Gamma.true,Mu.true(1/Gamma.true))

Z = pmin(X,Y)
W =rep(1,n)*(X == 2)

### Fixed-point iteration

epsilon = 1le-5

count=0

Gamma_old =1

repeat{
Gamma_new = (sum(Z*Gamma_old*log(Z))/sum(Z*Gamma_old)-sum(log(Z))/n)"-1
count = count +1
cat("count = ",count,"Gamma = ",Gamma_new,"¥n")

if (abs(Gamma_new-Gamma_old) < epsilon) {break}

Gamma_old = Gamma_new

}
Lambda = (sum(W)/sum(Z*Gamma_new))"(-1/Gamma_new);Lambda
Mu = ((n-sum(W))/sum(Z*Gamma_new))*(-1/Gamma_new);Mu

Gamma = Gamma_new ;Gamma
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