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HW#3, Due on 10/13(Fri), Submit to TA during 10:00-10:30 

 Exercise 4.26 

Solution (a). 

Let X  and Y  be independent exponential random variables with probability density 

functions defined as 
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Under certain situations, one cannot obtain direct observations of X  and Y . Instead, one 

observes random variables Z  and W , where 
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This setting is known as “competing risks”. Now, we derive the joint distribution function of Z  

and W . By straightforward calculations, 
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In a similar fashion,  
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Solution (b). 

We first obtain the marginal distributions of Z  and W . By straightforward calculations, 
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Therefore, one obtains the identities 

)Pr()Pr(),Pr( jWzZjWzZ  ,   0z , 1,0j . 

Hence we have shown the independence of Z  and W . 
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 Exercise 7.14 

Following Exercise 4.26, now we assume that ),( ii WZ , ni ,,2,1   are independent and 

identical distributed random variables. We aim to find the MLEs of   and  .  

As we mentioned in Exercise 4.26, this question is based on competing risks. To make 

things clear, we briefly introduce some important concepts of competing risks model. In 

Exercise 4.26 (a), the two probabilities ),Pr( jWzZ  , 1,0j  are the so-called “sub-

distribution functions” and we define ),Pr(),(, jWzZjzF  , 1,0j . In addition, the 

so-called “sub-density functions” are defined as 
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To be specific, we have 
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The likelihood function (Lawless 2003, p.435) is 
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Thus, the log-likelihood function is 
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The MLEs can be obtained by solving 0/),(  n  and 0/),(  n  which are 

equivalent to  
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Clearly, the MLEs are 
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The MLEs attain the maximum of log-likelihood function is ensured by examining the Hessian 

matrix. Since the off-diagonal elements of the Hessian matrix are 0, it suffices to show 
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 Do the same exercise for the Weibull with the common shape parameter   for X and Y. 

Solution. 

Let X  and Y  be independent Weibull random variables which share the common shape 

parameter 0 . Their probability density functions are defined as 
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Similarly, we define the random variables Z  and W  as in Exercise 7.14. By straightforward 

calculations, one has 
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The marginal distributions of Z  and W  are  
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 )1,Pr()1Pr( WZW . 
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Therefore, one obtains the identities 

)Pr()Pr(),Pr( jWzZjWzZ  ,   0z , 1,0j . 

Hence we have shown the independence of Z  and W .  

The joint probability density is 
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Thus, the log-likelihood function is 
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The MLEs can be obtained by solving 0/),,(  n , 0/),,(  n  and 

0/),,(  n  which are equivalent to  
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With some further simplifications, we obtain 
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The expression for ̂  is obtained by plugging  
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Since the closed-form of the MLEs are not available, one has to perform some numerical 

methods to obtain the MLEs. Here, we suggest applying the fixed-point iteration method to 

obtain the MLE ̂ , then the MLEs ̂  and ̂  are obtained by using the above formulas. Now, 

we state the fixed-point iteration algorithm. 

 

 

 

Algorithm 1  Fixed-point iteration algorithm 

Step 1.  Set initial value )0( . 

Step 2.  Repeat the fixed-point iteration: 
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 If 5)()1( 10||   kk  , stop the algorithm and set the MLE as )1( k . 

 

 

 



5 

For illustration, we generate random samples ),( ii YX , 300,,2,1 i  from the Weibull 

distributions with true parameter )3,2,1(),,(  . Then, we obtain the competing risks 

data ),( ii WZ , 300,,2,1 i , where ),min( iii YXZ   and )( iii XZW  I . Based on the 

generated data, we apply Algorithm 1 with initial value 1)0(   and it converges in 27 

iterations. The result of estimation is 8751.2ˆ  , then we obtain 9714.0ˆ   and 0024.2ˆ  . 

Figure 1 reveals that the MLEs attain the maximum of the log-likelihood function. R codes are 

available in Appendix 1. 

 

 

 

Figure 1.  Log-likelihood functions under the Weibull competing risks model based on the 

generated data. The vertical lines are drawn at 9714.0ˆ  , 0024.2ˆ  , 8751.2ˆ   
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 Exercise 7.50 (a) Details including the calculation of E[S]=, (b) Details including the 

calculation of a, (c) Detailed formulas to apply the Factorization theorem and verify the 

completeness. 

Solution (a). 

Let nXX ,,1   be independent and identical distributed random variables from ),( 2N , 

0 . We define  
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We find that ncS  is also an unbiased estimator for  . Then, 
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Hence we have shown the desired result. 
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We have 
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Solution (c). 

The probability density function of ),( 2N  is defined as 
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Then, the joint probability density function is 
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To show the incompleteness, we have 0)(  nn cSXE  for all 0 . Thus, we 

have found a non-zero function nn cSX   with its expectation always equals to zero. Therefore, 

the sufficient statistics ),( 2

nn SX  is not complete. 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 Exercise 7.51 (a)-(d). Prove your answer by formulas (not just words). 

Solution (a). 

Consider a class of estimator  

})(:{ 21 nn cSaXaTT T , 

where we do not assume 121  aa . We aim to find the estimator TT  that minimize the 

mean square error })({ 2 TE , call it T . By straightforward calculations, since 
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Solution (b). 

The mean square error of T  is 
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Since the estimator in Exercise 7.50 (b) is unbiased, its mean square error is equal to its 

variance. We have 
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Thus, we have shown that the mean square error of T  is smaller than the estimator obtained 

in Exercise 7.50 (b) since 
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Solution (c). 

Since T  may be negative then it makes no sense to estimate the parameter 0  by a 

negative value. Thus, we define a new estimator ),0max(  


TT  which is a more reasonable 

estimator than T . The cumulative distribution of 
T  is  
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One may observe that for 0t , one has )0Pr()0Pr(   TT  which implies that 
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has non-zero probability at point 0. For 0t , one has )Pr()Pr( tTtT   . Therefore, 

T  is a random variable formed by a point mass and the positive part of T . 

Now, suppose the probability density of T  is T
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Solution (d). 

We define the probability density function for standard normal distribution ( )1,0(N ) as  

2

2

2

1
)(

x

ex





 . 

Thus, the probability density function for ),( 2N  can be written as 
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The parameter   is not a location parameter since it cannot be 0. In addition, the parameter   

is also not a scale parameter since for 1 , one has  
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Hence we have shown that   is neither location nor scale parameter. 

However, if one regards the standard probability density function as  
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Then, the parameter   can be classified as a scale parameter since 
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Appendix 1.  R codes for the Weilbull model with competing risks 

 

R codes 

### data generation ### 

 

n = 300 

 

Lambda.true = 1 

Mu.true     = 2 

Gamma.true  = 3 

 

set.seed(10) 

X = rweibull(n,Gamma.true,Lambda.true^(1/Gamma.true)) 

Y = rweibull(n,Gamma.true,Mu.true^(1/Gamma.true)) 

 

Z = pmin(X,Y) 

W = rep(1,n)*(X == Z) 

 

### Fixed-point iteration 

 

epsilon = 1e-5 

count = 0 

Gamma_old = 1 

repeat{ 

   

  Gamma_new = (sum(Z^Gamma_old*log(Z))/sum(Z^Gamma_old)-sum(log(Z))/n)^-1 

  count = count +1 

  cat("count = ",count,"Gamma = ",Gamma_new,"¥n") 

   

  if (abs(Gamma_new-Gamma_old) < epsilon) {break} 

   

  Gamma_old = Gamma_new 

   

} 

Lambda = (sum(W)/sum(Z^Gamma_new))^(-1/Gamma_new);Lambda 

Mu     = ((n-sum(W))/sum(Z^Gamma_new))^(-1/Gamma_new);Mu 

Gamma  = Gamma_new ;Gamma 

 


