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Exercise 7.2 [P355] 

Let X1,…,Xn be a random sample from a gamma(α , β) population. 

(a) Find the MLE of β, assuming α is known. 

(b) If α and β are both unknown, there is no explicit formula for the MLEs of 

α and β, but the maximum can be found numerically. The result in part (a) can be 

used to reduce the problem to the maximization of a univariate function. Find the 

MLEs for α and β for the data in Exercise 7.10(c). 

 

Sol :  

 

(a)The likelihood function is  

L(β|𝐱) =∏
1

Γ(𝛼)𝛽𝛼
𝑥𝑖
𝛼−1exp (−

𝑥𝑖
𝛽
)

𝑛

𝑖=1

 

            = (
1

Γ(𝛼)
)𝑛

1

𝛽𝑛𝛼
(∏ 𝑥𝑖

𝑛
𝑖=1 )𝛼−1exp (−

∑ 𝑥𝑖
𝑛
𝑖=1

𝛽
) 

logL(β|𝐱) = −𝑙𝑜𝑔Γ(𝛼)𝑛 − 𝑙𝑜𝑔𝛽𝑛𝛼 + (𝛼 − 1)𝑙𝑜𝑔∏𝑥𝑖 −
∑ 𝑥𝑖
𝑛
𝑖=1

𝛽

𝑛

𝑖=1

 

               = −𝑛𝑙𝑜𝑔Γ(𝛼) − 𝑛𝛼𝑙𝑜𝑔𝛽 + (𝛼 − 1)∑ 𝑙𝑜𝑔𝑥𝑖
𝑛
𝑖=1 −

∑ 𝑥𝑖
𝑛
𝑖=1

𝛽
 

𝜕𝑙𝑜𝑔𝐿(β|𝐱)

𝜕𝛽
= −

𝑛𝛼

𝛽
+
∑ 𝑥𝑖
𝑛
𝑖=1

𝛽2
= 0 ⇒ �̂� =

�̅�

𝛼
 

Setting the partial derivatives equal to 0 and solving the solution �̂� =
�̅�

𝛼
 . 

To check this is a maximum, 

𝜕2𝑙𝑜𝑔L(β|𝐱)

𝜕𝛽2
|
𝛽=�̂�

=
𝑛𝛼

𝛽2
−
2∑ 𝑥𝑖

𝑛
𝑖=1

𝛽3
|
𝛽=�̂�

=
𝑛𝛼

(
�̅�
𝛼)

2
−
2𝑛�̅�

(
�̅�
𝛼)

3 = −
𝑛𝛼3

�̅�2
< 0. 

Because 
�̅�

𝛼
 is the only extreme point and it is a global maximum. Therefore, 

X̅

𝛼
 is the 

MLE of β. 

 

 



(b) The likelihood function is  

L(α, β|𝐱) =∏
1

Γ(𝛼)𝛽𝛼
𝑥𝑖
𝛼−1exp (−

𝑥𝑖
𝛽
)

𝑛

𝑖=1

 

              = (
1

Γ(𝛼)
)𝑛

1

𝛽𝑛𝛼
(∏ 𝑥𝑖

𝑛
𝑖=1 )𝛼−1exp (−

∑ 𝑥𝑖
𝑛
𝑖=1

𝛽
) 

logL(α, β|𝐱) = −𝑙𝑜𝑔Γ(𝛼)𝑛 − 𝑙𝑜𝑔𝛽𝑛𝛼 + (𝛼 − 1)𝑙𝑜𝑔∏𝑥𝑖 −
∑ 𝑥𝑖
𝑛
𝑖=1

𝛽

𝑛

𝑖=1

 

                 = −𝑛𝑙𝑜𝑔Γ(𝛼) − 𝑛𝛼𝑙𝑜𝑔𝛽 + (𝛼 − 1)∑ 𝑙𝑜𝑔𝑥𝑖
𝑛
𝑖=1 −

∑ 𝑥𝑖
𝑛
𝑖=1

𝛽
 

𝜕𝑙𝑜𝑔𝐿(α, β|𝐱)

𝜕𝛽
= −

𝑛𝛼

𝛽
+
∑ 𝑥𝑖
𝑛
𝑖=1

𝛽2
= 0 ⇒ �̂� =

�̅�

𝛼
 

𝜕𝑙𝑜𝑔𝐿(α, β|𝐱)

𝜕𝛼
= −𝑛(

𝑑

𝑑𝛼
𝑙𝑜𝑔Γ(𝛼)) − 𝑛𝑙𝑜𝑔𝛽 +∑𝑙𝑜𝑔𝑥𝑖

𝑛

𝑖=1

 

Let ψ(α) =
𝑑

𝑑𝛼
𝑙𝑜𝑔Γ(𝛼) 𝑏𝑒 𝑡ℎ𝑒 𝑑𝑖𝑔𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 ψ′(α) 𝑏𝑒 𝑡ℎ𝑒 𝑡𝑟𝑖𝑔𝑎𝑚𝑚𝑎  

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛.   

𝜕𝑙𝑜𝑔𝐿(α, β|𝐱)

𝜕𝛼
= −𝑛ψ(α) − 𝑛𝑙𝑜𝑔𝛽 +∑𝑙𝑜𝑔𝑥𝑖

𝑛

𝑖=1

 

= ψ(α) + 𝑙𝑜𝑔𝛽 −
1

𝑛
∑𝑙𝑜𝑔𝑥𝑖

𝑛

𝑖=1

= 0 

𝑇𝑜 𝑓𝑜𝑢𝑛𝑑 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 𝑖𝑠 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑡𝑜 𝑎  

𝑜𝑛𝑒 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚, 𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔 𝑡ℎ𝑒 𝛼 𝑖𝑛𝑡𝑜 𝛽.    �̂� =
�̅�

𝛼
 ⇒ 𝛼 =

�̅�

�̂�
  

𝜕𝑙𝑜𝑔𝐿(α, β|𝐱)

𝜕𝛼
= ψ(

�̅�

𝛽
) + 𝑙𝑜𝑔𝛽 −

1

𝑛
∑𝑙𝑜𝑔𝑥𝑖

𝑛

𝑖=1

= 0 

In R, 

 



Exercise 7.6 [P355] 

Let X1,…,Xn be a random sample from the pdf 

𝑓(𝑥|𝜃) = 𝜃𝑥−2 , 0 < 𝜃 ≤ 𝑥 < ∞. 

(a) What is a sufficient statistic for 𝜃 ? Is complete ? 

(b) Find the MLE of θ. 

Draw a figure of the likelihood function to explain your answer.(with R) 

(c) Find the method of moments estimator of θ. 

 

Sol : 

 

(a) The joint pdf of the sample X is 

𝑓(𝐱|θ) =∏𝜃𝑥𝑖
−2

𝑛

𝑖=1

   , 0 < 𝜃 ≤ 𝑥 < ∞ 

Now < 𝜃 ≤ 𝑥 < ∞ , using the indicator function, we can see the inequality is  

0 < 𝜃 ≤ 𝑥(1) 

So we have 

𝑓(𝐱|θ) =∏𝜃𝑥𝑖
−2

𝑛

𝑖=1

𝐼(𝜃 ,∞ )(𝑥𝑖) 

= 𝜃𝑛(∏𝑥𝑖
−2

𝑛

𝑖=1

)𝐼(0 , 𝑥(1))(𝜃) 

Since 𝑓(𝑥|θ) = ℎ(𝑥)𝑔(𝑇(𝐗)|θ) , where ℎ(𝑥) = ∏ 𝑥𝑖
−2𝑛

𝑖=1 and 𝑔(𝑇(𝐗)|𝜃) = 

𝜃𝑛𝐼(0 ,𝑥(1) )(𝜃) , 𝑇(𝐗) = 𝑋(1) 

Therefore, by the Factorization Theorem, 𝑋(1) is a sufficient statistic for θ. 

 

Let T = 𝑋(1), the pdf 𝑓𝑇(𝑡) =
𝑛!

(𝑛−1)!
𝜃𝑡−2(

𝜃

𝑡
)𝑛−1 =

𝑛𝜃𝑛

𝑡𝑛+1
  , ∀ θ ≤ 𝑥(1) < ∞  

𝐸𝜃{𝑔(𝑇)} = 0 , ∀ θ ≤ 𝑥(1) < ∞ 

⟹∫ 𝑔(𝑡)
𝑛𝜃𝑛

𝑡𝑛+1
𝑑𝑡 = 0

∞

𝜃

 

⟹
𝑑

𝑑𝜃
∫ 𝑔(𝑡)

𝑛𝜃𝑛

𝑡𝑛+1
𝑑𝑡 =

𝑑

𝑑𝜃
0

∞

𝜃

 

⟹ 𝑔(𝜃)
𝑛𝜃𝑛

𝜃𝑛+1
=0 

⟹ 𝑔(𝜃) = 0 , ∀ θ ≤ 𝑥(1) < ∞ 

That T = 𝑋(1) is a complete statistic. 



(b) The likelihood function is 

L(θ|𝐱) =∏𝜃𝑥𝑖
−2

𝑛

𝑖=1

, 0 < 𝜃 ≤ 𝑥 < ∞ 

Using the indicator function, 

L(θ|𝐱) = 𝜃𝑛(∏𝑥𝑖
−2

𝑛

𝑖=1

)𝐼(0 , 𝑥(1))(𝜃) 

Because L(θ|𝐱) is an increasing function of θ in θ ∈ (0 ,  𝑥(1)), so we want to 

maximize L(θ|𝐱). But due to the indicator function L(θ|𝐱) = 0 , if θ >  𝑥(1). 

Therefore, 𝜃 =  𝑋(1). 

 

In R, 

 

 

Suppose that  𝑋(1) = 0.4 , we can see the figure that maximum is at 0.4 

Following the second and the third figures, we have the same conclusion. 

 

 

Suppose that  𝑋(1) = 0.8 , the figure that maximum is at 0.8 

 

 



 

 

Suppose that  𝑋(1) = 1.2 , the figure that maximum is at 1.2 

Therefore, 𝜃 =  𝑋(1) is the MLE of θ. 

 

(c) 

E(X) = ∫ 𝑥𝜃𝑥−2𝑑𝑥
∞

𝜃

= 𝜃∫ 𝑥−1𝑑𝑥
∞

𝜃

= θ log𝑥|
∞

𝜃
= ∞. 

Therefore, the method of moments estimator of θ does not exist. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Exercise 7.8 [P356] 

One observation, X , is taken from a n(0,𝜎2) population. 

(a) Find an unbiased estimator of 𝜎2. 

(b) Find the MLE of σ. 

(c) Discuss how the method of moments estimator of σ might be found. 

 

Sol :  

 

(a) E(X) = 0 , the 1th moment is independent of 𝜎2, we need to use 2nd moment. 

E(𝑋2) = Var(X) + (𝐸(𝑋))2 = 𝜎2 + 0 = 𝜎2 

Therefore, 𝑋2 is an unbiased estimator of 𝜎2. 

 

(b) The likelihood function is 

L(σ|x) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

𝑥2

2𝜎2
) = (2𝜋)−

1
2(𝜎)−1 𝑒𝑥𝑝 (−

𝑥2

2𝜎2
) 

log L(σ|x) = −
1

2
log(2𝜋) − 𝑙𝑜𝑔𝜎 −

𝑥2

2𝜎2
 

𝜕log L(σ|x)

𝜕𝜎
= −

1

𝜎
+
𝑥2

𝜎3
= 0 ⟹ �̂� = √X2 = |X| 

𝜕2log L(σ|x)

𝜕𝜎2
|
𝜎= �̂�

=
1

𝜎2
−
3𝑥2

𝜎4
=
1

𝑥2
−
3𝑥2

𝑥4
= −

2

𝑥2
< 0 

�̂� = |𝑋| is a local maximum, and that is the only zero of the first derivative. It is a 

global maximum, too. Therefore, �̂� = |𝑋| is the MLE of σ. 

 

(c) Because E(X) = 0 is known. E(𝑋2) = 𝜎2 =
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1  ⟹  �̂� = |𝑋| 

 

 

 

 

 

 

 

 

 

 

 

 



Exercise 7.9 [P356] 

Let X1,…,Xn be iid with pdf 

𝑓(𝑥|𝜃) =
1

𝜃
   , 0 ≤ 𝑥 ≤ 𝜃  , 𝜃 > 0. 

Estimate θ using both the method of moments and maximum likelihood. Calculate 

the means and variances of the two estimators. Which one should be preferred and 

why? 

 

Sol :  

 

MME : 

E(X) = �̅� =
𝜃

2
⟹ θ = 2�̅� 

The method of moments estimators is �̃� = 2�̅� 

Therefore, E(�̃�) = E(2�̅�) = 2
𝜃

2
= 𝜃 , 𝑉𝑎𝑟(�̃�) = 𝑉𝑎𝑟(2�̅�) = 4

1

𝑛

𝜃2

12
=

𝜃2

3𝑛
 

MLE : 

L(θ|𝐱) =∏
1

𝜃
 

𝑛

𝑖=1

 ,   0 ≤ 𝑥 ≤ 𝜃  , 𝜃 > 0 

Using the indicator function, 

L(θ|𝐱) =∏
1

𝜃
 

𝑛

𝑖=1

𝐼[0 ,𝜃](𝑥𝑖) =
1

𝜃𝑛
𝐼[𝑥(𝑛),∞)(𝜃) 

Because L(θ|𝐱) is an increasing function of θ in θ ∈ [𝑥(𝑛),∞). For θ ≥ 𝑥(𝑛), 

L(θ|𝐱) is maximized at 𝜃 = 𝑋(𝑛). Therefore, 𝜃 = 𝑋(𝑛) is the MLE of θ. 

Now we can see that 
𝑋(𝑛)

𝜃
~𝐵𝑒𝑡𝑎(𝑛, 1) 

The mean and variance, 

{
𝐸 (

𝑋(𝑛)

𝜃
) =

𝑛

𝑛+1

𝑉𝑎𝑟 (
𝑋(𝑛)

𝜃
) =

𝑛

(𝑛+1)2(𝑛+2)

  ⟹ {
𝐸(𝑋(𝑛)) = 𝐸(𝜃) =

𝑛

𝑛+1
𝜃

𝑉𝑎𝑟(𝑋(𝑛)) = 𝑉𝑎𝑟(𝜃) =
𝑛

(𝑛+1)2(𝑛+2)
𝜃2

  

To determine the better estimator, we should compare variances. �̃� is an unbiased 

estimator of θ, and 𝜃 is a biased estimator. We can easy to see that 

Var(𝜃) =
𝑛

(𝑛 + 1)2(𝑛 + 2)
𝜃2 <

𝜃2

3𝑛
= 𝑉𝑎𝑟(�̃�) 

If n is large, 𝜃 is probably preferable to �̃�. 

 



Quiz#2 

Q3 Let 𝑋1, … , 𝑋𝑛~𝑁(𝜇, 𝜎
2), where μ is restricted to 𝜇 ≤ 𝑎 or 𝜇 ≥ 𝑏 for some 

numbers 𝑎 < 𝑏. Assume that 𝜎2 is known. Hence, the parameter space is  

Θ = (−∞, a] ∪ [b,∞). Obtain the MLE �̂�.  

Draw figures to explain 4 cases under 𝑋1,…, 𝑋5~N(μ , 1) , 𝑎 = 0 , 𝑏 = 2. 

 

Sol :  

L(μ|x) = ∏
1

√2𝜋𝜎2
exp (−

(𝑥𝑖−𝜇)
2

2𝜎2
) = (2𝜋𝜎2)−

𝑛

2exp (−
1

2𝜎2
∑ (𝑥𝑖 − 𝜇)

2𝑛
𝑖=1 )𝑛

𝑖=1  

log L(μ|x) = (−
𝑛

2
) log(2π𝜎2) −

1

2𝜎2
∑ (𝑥𝑖 − 𝜇)

2𝑛
𝑖=1  

𝜕

𝜕𝜇
log L(μ|𝐱) = −

1

2𝜎2
∑(2(𝑥𝑖 − 𝜇)(−1))

𝑛

𝑖=1

= 0 ⟹∑𝑥𝑖 = 𝑛𝜇 ⟹ �̂� = �̅�

𝑛

𝑖=1

 

𝜕2

𝜕𝜇2
log L(μ|𝐱)|

𝜇=�̂�

= −
𝑛

2𝜎2
< 0 

Therefore, L(μ|x) has a peak. 

 

And we have 4 cases under 𝑋1,…, 𝑋5~N(μ , 1) , 𝑎 = 0 , 𝑏 = 2. 

Case 1 : �̂� = 𝑋 ̅,   𝑖𝑓 �̅� ≤ 𝑎 

 
 

Case 1 : �̂� = 𝑋 ̅,   𝑖𝑓 𝑏 ≤ �̅� 

 



Case 2 : �̂� = a,   𝑖𝑓  𝑎 < �̅� <
𝑎+𝑏

2
  

 

 

Case 3 : �̂� = b,   𝑖𝑓  
𝑎+𝑏

2
< �̅� < 𝑏 

 
 

Case 4 : �̂� = 𝑎 𝑜𝑟 𝑏,   𝑖𝑓  �̅� =
𝑎+𝑏

2
 

 

(This case happens with probability 0.) 



Q4 Let 𝑋1, … , 𝑋𝑛~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) as in HW#1. Let 𝜓(α) =
𝑑

𝑑𝛼
𝑙𝑜𝑔Γ(𝛼) be the 

digamma function and 𝜓′(α) be the trigamma function. 

(1) Write down the score functions using the sufficient statistic (𝑇1, 𝑇2). 

(2) Write down the Hessian matrix 𝐻(α, β). 

(3) Let (�̂�, �̂�) be the solution to 𝑆1(𝛼, 𝛽) = 𝑆2(𝛼, 𝛽) = 0. Write down 𝐻(�̂�, �̂�) in 

terms of (�̂�, �̂�). 

Sol :  

(1)  

𝑓(x|α, β) =
1

Γ(𝛼)𝛽𝛼
𝑥𝛼−1𝑒𝑥𝑝 (−

𝑥

𝛽
) 

L(α, β|𝐱) =∏
1

Γ(𝛼)𝛽𝛼
𝑥𝑖
𝛼−1exp (−

𝑥𝑖
𝛽
)

𝑛

𝑖=1

 

              = (
1

Γ(𝛼)
)𝑛

1

𝛽𝑛𝛼
(∏ 𝑥𝑖

𝑛
𝑖=1 )𝛼−1exp (−

∑ 𝑥𝑖
𝑛
𝑖=1

𝛽
) 

logL(α, β|𝐱) = −𝑙𝑜𝑔Γ(𝛼)𝑛 − 𝑙𝑜𝑔𝛽𝑛𝛼 + (𝛼 − 1)𝑙𝑜𝑔∏𝑥𝑖 −
∑ 𝑥𝑖
𝑛
𝑖=1

𝛽

𝑛

𝑖=1

 

                 = −𝑛𝑙𝑜𝑔Γ(𝛼) − 𝑛𝛼𝑙𝑜𝑔𝛽 + (𝛼 − 1)𝑙𝑜𝑔∏ 𝑥𝑖
𝑛
𝑖=1 −

∑ 𝑥𝑖
𝑛
𝑖=1

𝛽
 

𝜕𝑙𝑜𝑔𝐿(α, β|𝐱)

𝜕𝛼
= −𝑛(

𝑑

𝑑𝛼
𝑙𝑜𝑔Γ(𝛼)) − 𝑛𝑙𝑜𝑔𝛽 + 𝑙𝑜𝑔∏𝑥𝑖

𝑛

𝑖=1

 

= −𝑛 𝜓(α) − 𝑛𝑙𝑜𝑔𝛽 + 𝑙𝑜𝑔∏𝑥𝑖

𝑛

𝑖=1

 

𝜕𝑙𝑜𝑔𝐿(α, β|𝐱)

𝜕𝛽
= −

𝑛𝛼

𝛽
+
∑ 𝑥𝑖
𝑛
𝑖=1

𝛽2
 

Since 𝑓(𝑥|α, β) = ℎ(𝑥)𝑔(𝑇(𝐗)|α, β) , where ℎ(𝑥) = 1  and 𝑔(𝑇(𝐗)|α, β) =

(
1

Γ(𝛼)𝛽𝛼
)
𝑛
(∏ 𝑥𝑖

𝑛
𝑖=1 )𝛼−1exp(−

∑ 𝑥𝑖
𝑛
𝑖=1

𝛽
)  ,  𝑇1(𝐗) = ∏ X𝑖

𝑛
𝑖=1  , 𝑇2(𝐗) = ∑ X𝑖

𝑛
𝑖=1  

The score functions are 

{
 

 𝑆1(𝛼, 𝛽) =
𝜕𝑙𝑜𝑔𝐿(α, β|𝐱)

𝜕𝛼
= −𝑛 𝜓(α) − 𝑛𝑙𝑜𝑔𝛽 + 𝑙𝑜𝑔 𝑇1(X)

𝑆2(𝛼, 𝛽) =
𝜕𝑙𝑜𝑔𝐿(α, β|𝐱)

𝜕𝛽
= −

𝑛𝛼

𝛽
+
𝑇2(X)

𝛽2
                             

 

 



(2) 𝐻(α, β) = [
𝐻11 𝐻12
𝐻21 𝐻22

] = [

𝜕2𝑙𝑜𝑔𝐿(α,β|𝐱)

𝜕𝛼2
𝜕2𝑙𝑜𝑔𝐿(α,β|𝐱)

𝜕𝛼𝜕𝛽

𝜕2𝑙𝑜𝑔𝐿(α,β|𝐱)

𝜕𝛼𝜕𝛽

𝜕2𝑙𝑜𝑔𝐿(α,β|𝐱)

𝜕𝛽2

] 

=

[
 
 
 (−𝑛)𝜓′(α) −

𝑛

𝛽

−
𝑛

𝛽

𝑛𝛼

𝛽2
−
2𝑇2(𝑋)

𝛽3 ]
 
 
 
 

(3) Because 𝑆2(𝛼, 𝛽) = −
𝑛𝛼

𝛽
+
𝑇2(X)

𝛽2
= 0  ⇒ �̂� =

𝑇2(𝑋)

𝑛𝛼
  ⇒ 𝛼 =

𝑇2(𝑋)

𝑛�̂�
 

Therefore, 𝐻(�̂�, �̂�) = [
−𝑛𝜓′ (

𝑇2(𝑋)

𝑛�̂�
) −

𝑛

�̂�

−
𝑛

�̂�
−
𝑇2(X)

𝛽3

] 


