Homework\#4, Mathematical Statistics I, 2013 Fall

1. Revise the midterm exam
2. Use two different ways (using mgf and integration) to answer Question 7.
3. Use R to simulate a large number of binomial data using the answer to Question 6. Compare the frequency probabilities of $0,1,2,3$ with their theoretical values.
4. Use R to compute the simulated value of $E\left(S^{2}-\sigma^{2}\right)^{2}$. Compare the simulated values with the answer to Question 4. You can choose selected values of n, μ and σ^{2}.

HW4
 for(i in 1:n) \{ $+U=\operatorname{runif}(1,0,1)$ $+\mathrm{Y}[\mathrm{i}]=0$ + \}else\{

+ if $(1 / 27<=\mathrm{U} \& \mathrm{U}<7 / 27)\{$
$+\mathrm{Y}[\mathrm{i}]=1$
+ \}else\{
+ if $(7 / 27<=\mathrm{U} \& \mathrm{U}<19 / 27)\{$
$+\mathrm{Y}[\mathrm{i}]=2$
+ \}else\{Y[i]=3\}
$+\}\}\}$
$>\mathrm{m}=$ tabulate(Y) + \}else\{
+ if $(1 / 27<=\mathrm{U} \& \mathrm{U}<7 / 27)\{$
$+\mathrm{Y}[\mathrm{i}]=1$
+ \}else\{
+ if $(7 / 27<=\mathrm{U} \& \mathrm{U}<19 / 27)\{$
$+\mathrm{Y}[\mathrm{i}]=2$
+ \}else\{Y[i]=3\}
$+\}\}\}$
$>\mathrm{m}=$ tabulate(Y) + \}else\{
+ if $(1 / 27<=\mathrm{U} \& \mathrm{U}<7 / 27)\{$
$+\mathrm{Y}[\mathrm{i}]=1$
+ \}else\{
+ if $(7 / 27<=\mathrm{U} \& \mathrm{U}<19 / 27)\{$
$+\mathrm{Y}[\mathrm{i}]=2$
+ \}else\{Y[i]=3\}
$+\}\}\}$
$>\mathrm{m}=$ tabulate(Y) + \}else\{
+ if $(1 / 27<=\mathrm{U} \& \mathrm{U}<7 / 27)\{$
$+\mathrm{Y}[\mathrm{i}]=1$
+ \}else\{
+ if $(7 / 27<=\mathrm{U} \& \mathrm{U}<19 / 27)\{$
$+\mathrm{Y}[\mathrm{i}]=2$
+ \}else\{Y[i]=3\}
$+\}\}\}$
$>\mathrm{m}=$ tabulate(Y)
 $>y_{-} 3=m[3] / n$ $>y_{-} 0$ ò N
N
ت
ت [1] 0.434
 $>1 / 27$ > y $0=(n-m[1]-m[2]-m[3]) / n$
\#4 $>n=1000$
$>\mathrm{m}=1000$
$>m u=0$
$>$ for(i in 1:m)
$+x=\operatorname{rnorm}(n, m u, \operatorname{sig} 2)$
$+s 2[i]=(\operatorname{var}(x)-\operatorname{sig} 2)^{\wedge} 2$

+
+

[1] 0.002159744 [1] 0.002002002

Q4 ,

$x^{\sim} \sim \operatorname{norm}(0,1)$

$\mathrm{n}=1000$
$\operatorname{sig} 2=1$ $E\left(s^{2}-\sigma^{2}\right)^{2}$ $=\operatorname{Var}\left(s^{2}\right)$ $=\frac{2 n-2}{\sigma^{4}(n-1)^{2}}$
$=\frac{}{\sigma^{4}(n-1)^{2}}$ $=\frac{998}{(999)^{2}}$ $=0.002002002$ (true value) $\cong 0.002159744$ (simulated value)

