High-dimensional data analysis HW#5 102225014 Chen Ai-Chun Ex3.3

(a) Prove Gauss-Markov theorem: the least squares estimate of a parameter $a^{T}\beta$ has variance no bigger than that of any other linear unbiased estimate of $a^{T}\beta$ (Section 3.2.2).

Solution:

Let $\theta = a^{T}\beta$ be our target. The least square estimate is $\hat{\theta} = a^{T}\hat{\beta} = a^{T}(X^{T}X)^{-1}X^{T}y$.

And other unbiased estimate is presented as $\tilde{\theta} = a^{\mathrm{T}} \tilde{\beta} = C_0^{\mathrm{T}} y$.

We have $E(\tilde{\theta}) = C_0^T X \beta = a^T \beta \implies C_0^T X = a^T$. The variances of $\tilde{\theta}$ and $\hat{\theta}$ are $Var(\hat{\theta}) = Var(a^T (X^T X)^{-1} X^T y) = \sigma^2 a^T (X^T X)^{-1} X^T X (X^T X)^{-1} a$, and

 $\operatorname{Var}(\widetilde{\theta}) = \operatorname{Var}(C_0^{\mathrm{T}} y) = \sigma^2 C_0^{\mathrm{T}} C_0^{\mathrm{T}}.$

Therefore, consider

$$\operatorname{Var}(\widetilde{\theta}) - \operatorname{Var}(\widehat{\theta}) = \sigma^2 C_0^{\mathrm{T}} C_0 - \sigma^2 a^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} X^{\mathrm{T}} X (X^{\mathrm{T}} X)^{-1} a$$
$$= \sigma^2 C_0^{\mathrm{T}} C_0 - \sigma^2 C_0^{\mathrm{T}} X (X^{\mathrm{T}} X)^{-1} X^{\mathrm{T}} C_0$$
$$= \sigma^2 C_0^{\mathrm{T}} (I - X (X^{\mathrm{T}} X)^{-1} X^{\mathrm{T}}) C_0$$

Here, let $H = I - X(X^{T}X)^{-1}X^{T}$, eigenvalue equation of H is:

$$H\mathbf{x} = \lambda \mathbf{x}$$
.

 $\Rightarrow H^{2}\mathbf{x} = \lambda H\mathbf{x}$ $\Rightarrow H\mathbf{x} = \lambda^{2}\mathbf{x}$ $\Rightarrow \lambda \mathbf{x} = \lambda^{2}\mathbf{x}$ $\Rightarrow \lambda (1 - \lambda)\mathbf{x} = \mathbf{0}$ $\Rightarrow \lambda = 0, 1$

 \Rightarrow $H = I - X(X^{T}X)^{-1}X^{T}$ is positive semi-definite.

Thus, $\operatorname{Var}(\widetilde{\theta}) - \operatorname{Var}(\widehat{\theta}) = \sigma^2 C_0^T (I - X(X^T X)^{-1} X^T) C_0 = \sigma^2 C_0^T H C_0 \ge 0$.

(b) The matrix inequality $B \leq A$ holds if A-B is positive semi-definite. Show that if \hat{V} is the variance-covariance matrix of the least squares estimate of β and \tilde{V} is the variance-covariance matrix of any other linear unbiased estimate, then $\hat{V} \leq \tilde{V}$.

Solution:

Let other unbiased estimate of β be the form $\tilde{\beta} = Cy = \{ (X^T X)^{-1} X^T + D \} y$, where the forward term is the least square and plus $p \times n$ matrix D. Then, by definition of unbiase,

$$E(\tilde{\beta}) = \{ (X^{T}X)^{-1}X^{T} + D \}X\beta$$
$$= (X^{T}X)^{-1}X^{T}X\beta + D X\beta$$
$$= \beta + D X\beta$$
$$= \beta$$

We have $\tilde{\beta}$ is unbiased iff DX = 0.

Therefore, consider $\tilde{V} - \hat{V}$:

$$\begin{split} \widetilde{\mathbf{V}} &- \widehat{\mathbf{V}} \\ = \operatorname{Var}(\widehat{\beta}) - \operatorname{Var}(\widehat{\beta}) \\ &= \sigma^2 C C^{\mathrm{T}} - \sigma^2 (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \\ &= \sigma^2 \{ (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} + D \} \{ (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} + D \}^{\mathrm{T}} - \sigma^2 (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \\ &= \sigma^2 \{ (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} + (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} D^{\mathrm{T}} + D \mathbf{X} (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} + D D^{\mathrm{T}} \} - \sigma^2 (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \\ &= \sigma^2 D D^{\mathrm{T}} \end{split}$$

Because $\mathbf{x}^{\mathrm{T}} D D^{\mathrm{T}} \mathbf{x} = \|\mathbf{x}^{\mathrm{T}} D\|^{2} \ge 0$ for $\forall \mathbf{x} \in R^{p}$. Thus, $\widetilde{\mathbf{V}} - \widehat{\mathbf{V}}$ is positive semi-definite

and then $\hat{V} \preceq \tilde{V}$.