
HW#3 High-dimensional data analysis, Spring 2015.

102225014 Ai-Chun

1. Reproduce Table 3.3(p.63) for the LSE, Best subset and ridge (except Error). Add

the result of the compound univariate estimates to the table.

The data come from the book’s inference website:

http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data

And the last column of data is logical judgments of training data or testing data.

We captured the training data by function “subset” in R. We found there are

67n observations.

(i)

LS can calculate by yT1T X)XX(β

, where X is standardized such that

0, ix1 and pinii ,,1,, xx with ix be the column vector of X .

(ii)

Best subset approach first find the subset size k by cross-validation or AIC. Here,

we assume 2k . Then, we can use ysss

T1T X)XX(β

 where sX is the

sub-matrix only remain the significant columns of X (include lcavol and

lweight). Also, we can use the formula in HW#2. 22110
ˆˆˆ

 xxy ,

21

2121

21221

SSSSSS

SSSSSSSS
ˆ

xxxx

xxyxxyx

 ,

2121

12211

SSSSSS

SSSSSSSS
ˆ

22

xxxx

xyxxxyx

 to derive the

coefficient estimation.

(iii)

Ridge regression: yppp

T1TRidge X)IXX(β

, where pX is from eliminating

intercept of X and is chosen from 5)(
1

2

2

p

j j

j

d

d
df

 where id are

the singular values of pX . And 122.23 here by calculate the uniroot in R.

And the intercept estimation is yRidge

0̂ .

(iv)

Compound univariate estimates:

http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data

First, estimate intercept by y0̂ . Then, estimate other terms by univariate

estimates
jj

j

j
xx

yx

,

,
ˆ .

Table 3.3 Estimated coefficient

Term LS Best Subset Ridge Compound

univariate

Intercept 2.452 2.452 2.452 2.452

lcavol 0.711 0.774 0.432 0.878

lweight 0.290 0.349 0.251 0.581

age -0.141 -0.046 0.272

lbph 0.210 0.168 0.315

svi 0.307 0.234 0.667

lcp -0.286 0.003 0.586

gleason -0.020 0.041 0.410

pgg45 0.275 0.134 0.537

Comments:

 I use the training data, and the standardization procedure is same, too. Therefore, I

think the difference between this table and the book’s is acceptable.

 The compound univariate estimator is much easier to compute, but the magnitude

of coefficient estimate (without intercept term) is quite large according to other

method. The Best subset keep two variables, but ridge approach state that variable

“svi” may also important.

2. Reproduce Figure 3.8 (p.65)

Figure 3.8 Profiles of ridge coefficients for the prostate

cancer example, as parameter)(df from 0 to 8.

3. Appendix – R code

#High-dimensional data analysis

#HW3

data =

read.table("http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data",

h=T)

attach(data)

data_train = subset(data, train==TRUE) # capture the training data

n = dim(data_train)[1]

x = as.matrix(data_train[,1:8])

#standardization

x_std = sweep(x, 2, colMeans(x), FUN="-")

Xp = sweep(x_std, 2, sqrt((n-1)/n*apply(x, 2, var)), FUN="/")

X = cbind(1,Xp)

p = dim(Xp)[2]

y = as.vector(data_train[,9])

#LS

model = lm(y ~ X[,2]+X[,3]+X[,4]+X[,5]+X[,6]+X[,7]+X[,8]+X[,9])

beta_LS = solve(t(X)%*%X)%*%t(X)%*%y

summary(model)

#Best subset

X_s = X[,1:3]

beta_BS = solve(t(X_s)%*%X_s)%*%t(X_s)%*%y

#Use HW2

attach(data.frame(Xp))

SS1y=sum(t(lcavol)%*%y)-n*mean(lcavol)*mean(y)

SS12=sum(t(lcavol)%*%lweight)-n*mean(lcavol)*mean(lweight)

SS2y=sum(t(y)%*%lweight)-n*mean(y)*mean(lweight)

SS1= sum(lcavol^2)-n*mean(lcavol)^2

SS2= sum(lweight^2)-n*mean(lweight)^2

b1 = (SS1y*SS2-SS2y*SS12)/(SS1*SS2-SS12^2)

b2 = (SS1y*SS12-SS2y*SS1)/(SS12^2-SS1*SS2)

b0 = mean(y)-b1*mean(lcavol)-b2*mean(lweight)

#Ridge

d = svd(Xp)$d

df = 5

df_lam = function(lambda){

 s=0

 for(i in 1:p){

 s = s + d[i]^2/(d[i]^2+lambda)

 }

 return(s-df)

}

library(rootSolve)

lambda = uniroot.all(df_lam, interval=c(0,100))

beta_r = solve(t(Xp)%*%Xp+lambda*diag(x=1,p,p))%*%t(Xp)%*%y

b0 = mean(y)

#figure 3.8

#Ridge

d = svd(Xp)$d

xaxis = c(0.01, seq(0.5,8,by=0.5)) #x-axis in plot

coef = matrix(rep(0,p*length(xaxis)),p, length(xaxis)) #coefficients

lambda = numeric(length(xaxis))

 for(j in 1:length(xaxis)){

 WIL = function(lam){ #what is lambda function

 s=0

 for(i in 1:p){

 s = s + d[i]^2/(d[i]^2+lam)

 }

 return(s-xaxis[j])

 }

 lambda[j] = uniroot(WIL, interval=c(0,100^100))$root

 }

for(j in 1:length(xaxis)){

 coef[,j] = solve(t(Xp)%*%Xp+lambda[j]*diag(x=1,p,p))%*%t(Xp)%*%y

}

plot(xaxis, coef[1,], type="l", ylim = c(-0.35, 0.75), xlim=c(0, 9),

ylab="coefficient", xlab="df(lambda)")

lines(xaxis, coef[2,], type = "l")

lines(xaxis, coef[3,], type = "l")

lines(xaxis, coef[4,], type = "l")

lines(xaxis, coef[5,], type = "l")

lines(xaxis, coef[6,], type = "l")

lines(xaxis, coef[7,], type = "l")

lines(xaxis, coef[8,], type = "l")

coef[,11]

for(i in 1:p){ #draw points when lambda=0

 points(8, beta_LS[i+1], cex=1)

}

abline(a=0, b=0 , lty=2)

abline(v=5, lty=2)

text(8.6,beta_LS[2:(p+1)],names(data)[1:p],cex=0.8)

