
HW#3 High-dimensional data analysis, Spring 2015. 

102225014 Ai-Chun  

1. Reproduce Table 3.3(p.63) for the LSE, Best subset and ridge (except Error). Add 

the result of the compound univariate estimates to the table. 

 

The data come from the book’s inference website: 

http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data 

And the last column of data is logical judgments of training data or testing data. 

We captured the training data by function “subset” in R. We found there are 

67n  observations. 

(i) 

LS can calculate by yT1T X)XX( β


, where X  is standardized such that 

0, ix1  and pinii ,,1,, xx  with ix  be the column vector of X . 

(ii) 

Best subset approach first find the subset size k  by cross-validation or AIC. Here, 

we assume 2k . Then, we can use ysss

T1T X)XX( β


 where sX  is the 

sub-matrix only remain the significant columns of X  ( include lcavol and 

lweight ). Also, we can use the formula in HW#2. 22110
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  to derive the 

coefficient estimation. 

(iii) 

Ridge regression: yppp

T1TRidge X)IXX(  β


, where pX is from eliminating 

intercept of X  and   is chosen from 5)(
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  where id  are 

the singular values of pX . And 122.23  here by calculate the uniroot in R. 

And the intercept estimation is yRidge

0̂ . 

(iv)  

Compound univariate estimates: 

http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data


First, estimate intercept by y0̂ . Then, estimate other terms by univariate 

estimates 
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Table 3.3 Estimated coefficient 

Term LS Best Subset Ridge Compound 

univariate 

Intercept 2.452 2.452 2.452 2.452 

lcavol 0.711 0.774 0.432 0.878 

lweight 0.290 0.349 0.251 0.581 

age -0.141  -0.046 0.272 

lbph 0.210  0.168 0.315 

svi 0.307  0.234 0.667 

lcp -0.286  0.003 0.586 

gleason -0.020  0.041 0.410 

pgg45 0.275  0.134 0.537 

 

Comments: 

  I use the training data, and the standardization procedure is same, too. Therefore, I 

think the difference between this table and the book’s is acceptable. 

  The compound univariate estimator is much easier to compute, but the magnitude 

of coefficient estimate (without intercept term) is quite large according to other 

method. The Best subset keep two variables, but ridge approach state that variable 

“svi” may also important. 



2. Reproduce Figure 3.8 (p.65) 

 

 

Figure 3.8 Profiles of ridge coefficients for the prostate  

cancer example, as parameter )(df  from 0 to 8. 

 

3. Appendix – R code 

 

#High-dimensional data analysis 

#HW3 

 

data = 

read.table("http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data", 

h=T) 

attach(data) 

data_train = subset(data, train==TRUE) # capture the training data 

n = dim(data_train)[1] 



x = as.matrix(data_train[,1:8]) 

#standardization 

x_std = sweep(x, 2, colMeans(x), FUN="-") 

Xp = sweep(x_std, 2, sqrt((n-1)/n*apply(x, 2, var)), FUN="/") 

X = cbind(1,Xp) 

p = dim(Xp)[2] 

y = as.vector(data_train[,9]) 

 

#LS 

model = lm(y ~ X[,2]+X[,3]+X[,4]+X[,5]+X[,6]+X[,7]+X[,8]+X[,9]) 

beta_LS = solve(t(X)%*%X)%*%t(X)%*%y 

summary(model) 

 

#Best subset 

X_s = X[,1:3] 

beta_BS = solve(t(X_s)%*%X_s)%*%t(X_s)%*%y 

#Use HW2 

attach(data.frame(Xp)) 

SS1y=sum(t(lcavol)%*%y)-n*mean(lcavol)*mean(y) 

SS12=sum(t(lcavol)%*%lweight)-n*mean(lcavol)*mean(lweight) 

SS2y=sum(t(y)%*%lweight)-n*mean(y)*mean(lweight) 

SS1= sum(lcavol^2)-n*mean(lcavol)^2 

SS2= sum(lweight^2)-n*mean(lweight)^2 

b1 = (SS1y*SS2-SS2y*SS12)/(SS1*SS2-SS12^2) 

b2 = (SS1y*SS12-SS2y*SS1)/(SS12^2-SS1*SS2) 

b0 = mean(y)-b1*mean(lcavol)-b2*mean(lweight) 

 

#Ridge 

d = svd(Xp)$d 

df = 5 

df_lam = function(lambda){ 

  s=0 

  for(i in 1:p){ 

   s = s + d[i]^2/(d[i]^2+lambda) 

  } 

  return(s-df) 

} 

library(rootSolve) 



lambda = uniroot.all(df_lam, interval=c(0,100)) 

beta_r = solve(t(Xp)%*%Xp+lambda*diag(x=1,p,p))%*%t(Xp)%*%y 

b0 = mean(y) 

 

#figure 3.8 

#Ridge 

d = svd(Xp)$d 

xaxis = c(0.01, seq(0.5,8,by=0.5))  #x-axis in plot 

coef = matrix(rep(0,p*length(xaxis)),p, length(xaxis))  #coefficients 

lambda = numeric(length(xaxis)) 

 for(j in 1:length(xaxis)){ 

   WIL = function(lam){ #what is lambda function 

    s=0 

    for(i in 1:p){ 

     s = s + d[i]^2/(d[i]^2+lam) 

    } 

    return(s-xaxis[j]) 

   } 

 

  lambda[j] = uniroot(WIL, interval=c(0,100^100))$root 

 } 

 

for( j  in 1:length(xaxis)){ 

    coef[,j] = solve(t(Xp)%*%Xp+lambda[j]*diag(x=1,p,p))%*%t(Xp)%*%y 

} 

 

plot( xaxis, coef[1,], type="l", ylim = c(-0.35, 0.75), xlim=c(0, 9), 

ylab="coefficient", xlab="df(lambda)" ) 

lines(xaxis, coef[2,], type = "l") 

lines(xaxis, coef[3,], type = "l") 

lines(xaxis, coef[4,], type = "l") 

lines(xaxis, coef[5,], type = "l") 

lines(xaxis, coef[6,], type = "l") 

lines(xaxis, coef[7,], type = "l") 

lines(xaxis, coef[8,], type = "l") 

coef[,11] 

for(i in 1:p){  #draw points when lambda=0 

 points(8, beta_LS[i+1], cex=1) 



} 

abline(a=0, b=0 , lty=2) 

abline(v=5, lty=2) 

text(8.6,beta_LS[2:(p+1)],names(data)[1:p],cex=0.8) 

 


