High-dimensional data analysis HW\#1
102225014 Ai-Chun Chen

1. In one-way ANOVA:

$$
y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j}, i=1,2,3 ; j=1, \ldots, n \text { where } \alpha_{1}+\alpha_{2}+\alpha_{3}=0 .
$$

Matrix form: $\mathbf{y}=\left[\begin{array}{c}y_{11} \\ \vdots \\ y_{1 n} \\ y_{21} \\ \vdots \\ y_{2 n} \\ y_{31} \\ \vdots \\ y_{3 n}\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & 1\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{c}\mu \\ \alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right], \quad \boldsymbol{\varepsilon}=\left[\begin{array}{c}\varepsilon_{11} \\ \vdots \\ \varepsilon_{1 n} \\ \varepsilon_{21} \\ \vdots \\ \varepsilon_{2 n} \\ \varepsilon_{31} \\ \vdots \\ \varepsilon_{3 n}\end{array}\right]$.
Compute $\operatorname{rank}(\mathbf{X}), \mathbf{X}^{\mathrm{T}} \mathbf{y}, \mathbf{X}^{\mathrm{T}} \mathbf{X}$ and find a LSE $\hat{\boldsymbol{\beta}}$.
Solution:
(1)
$\operatorname{rank}(\mathbf{X})=3\left(x_{0}=x_{1}+x_{2}+x_{3}\right)$
(2)

$$
\mathbf{X}^{\mathrm{T}} \mathbf{y}=\left[\begin{array}{l}
y_{2} \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

(3)

$$
\mathbf{X}^{\mathrm{T}} \mathbf{X}=n\left[\begin{array}{llll}
3 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

(4)

LSE \Rightarrow satisfy $\mathbf{X}^{\mathrm{T}} \mathbf{y}=\mathbf{X}^{\mathrm{T}} \mathbf{X} \hat{\boldsymbol{\beta}}$
Consider the estimator of $\boldsymbol{\beta}$ by method of moments:
$y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j}, i=1,2,3 ; j=1, \ldots, n$
$\Rightarrow \sum_{i=1}^{3} \sum_{j=1}^{n} y_{i j}=\sum_{i=1}^{3} \sum_{j=1}^{n}\left(\mu+\alpha_{i}+\varepsilon_{i j}\right)$
$\Rightarrow y_{. .}=3 n \mu+0+\sum_{i=1}^{3} \sum_{j=1}^{n} \varepsilon_{i j} \quad\left(\because \sum_{i=1}^{3} \alpha_{i}=0\right)$
$\Rightarrow E\left(y_{. .}\right)=3 n \mu$
$\Rightarrow E\left(\bar{y}_{. .}\right)=\mu$
$\Rightarrow \hat{\mu}=\bar{y}_{\text {. }}$
Similarly, $\quad y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j}, i=1,2,3 ; j=1, \ldots, n$
$\Rightarrow \sum_{j=1}^{n} y_{i j}=\sum_{j=1}^{n}\left(\mu+\alpha_{i}+\varepsilon_{i j}\right)$
$\Rightarrow y_{i}=n \mu+n \alpha_{i}+\sum_{j=1}^{n} \varepsilon_{i j}$
$\Rightarrow y_{i .}=n \mu+n \alpha_{i}+\sum_{j=1}^{n} \varepsilon_{i j}$
$\Rightarrow E\left(\bar{y}_{i .}\right)=\mu+\alpha_{i}$
$\Rightarrow \hat{\alpha}=\bar{y}_{i .}-\hat{\mu}=\bar{y}_{i .}-\bar{y}_{.}$

which satisfy the equal $\mathbf{X}^{\mathrm{T}} \mathbf{y}=\mathbf{X}^{\mathrm{T}} \mathbf{X} \hat{\boldsymbol{\beta}}$.
2. Show that the F statistic (3.13) for dropping a single coefficient from a model is equal to the square of the corresponding z-score (3.12).
Solution:
Assume that RSS_{1} is from full model and RSS_{j} is from model dropping β_{j}.

Our goal is to show that $\mathrm{F}=\frac{\left(\operatorname{RSS}_{j}-\operatorname{RSS}_{1}\right) /\left(p-p_{j}\right)}{\operatorname{RSS}_{1} /(N-p-1)}$ and $z_{j}^{2}=\frac{\hat{\beta}_{j}^{2}}{\hat{\sigma}^{2} v_{j}}$ have same distribution.

The numerator of F is $\chi_{d f=1}^{2}$ because $p-p_{j}=1$ in our setting. The denominator of F is $\frac{\chi_{d f=N-p-1}^{2}}{N-p-1}$.

The component $z_{j}=\frac{\hat{\beta}_{j}}{\hat{\sigma} \sqrt{v_{j}}}$ can be written as
$\frac{\hat{\beta}_{j}-\beta_{j}}{\sigma \sqrt{v_{j}}} / \sqrt{\frac{\hat{\sigma}^{2}(N-p-1)}{\sigma^{2}} /(N-p-1)}$ where the numerator is standard normal and the denominator is $\sqrt{\frac{\chi_{d f=N-p-1}^{2}}{N-p-1}}$. Thus, $z_{j}^{2} \sim \frac{\chi_{d f=1}^{2}}{\chi_{d f=N-p-1}^{2}}$ where is the same as F.

