Advanced Probability I, 2013 Fall, Midterm Exam

Name:

1. Prove or disprove the following.
(i) If X and Y are random variable on a measurable space (Ω, \mathbf{F}), then $a X+b Y$ is a random variable for $a, b \in R$.
(ii) If $X_{n}, n=1,2, \ldots$ are sequence of random variables a measurable space (Ω, F), then $\sup X_{n}$ is a random variable.
2. Let $\left(R^{i}, \mathfrak{R}^{i}\right)$ and $\left(R^{k}, \mathfrak{R}^{k}\right)$ be Borel measurable spaces on i and k dimensional Euclid spaces, respectively. Prove the following:
If $f: R^{i} \rightarrow R^{k}$ is continuous, then $f:\left(R^{i}, \mathfrak{R}^{i}\right) \rightarrow\left(R^{k}, \mathfrak{R}^{k}\right)$ is measureable.
3. Let $X_{n}, \quad n=1,2, \ldots$ be a sequence of random variables, and $a_{n}, n=1,2, \ldots$ be a sequence of constants. Suppose $\sum_{n} P\left\{\left|X_{n}\right|>a_{n}\right\}<\infty$.
(i) Derive $P(\Xi)$, where $\Xi=\bigcup_{n} \bigcap_{k=n}^{\infty}\left\{\left|X_{k}\right| \leq a_{k}\right\}$.
(ii) Derive $P\left(\sum_{n}\left|X_{n}\right|<\infty\right)$ if $\sum_{n=1}^{\infty} a_{n}<\infty$.
4. State and prove the second Borel-Cantelli lemma
5. Let (Ω, \mathbf{F}, P) be a probability space. Prove the following:
(i) Let $X: \Omega \rightarrow R$ be a random variable. Then, $\sigma(X)=\left\{X^{-1}(B) ; B \in \mathfrak{R}\right\}$ is a sigma-field.
(ii) Let $(X, Y): \Omega \rightarrow R^{2}$ be a random vector.

Then, $\sigma(X, Y)=\left\{(X, Y)^{-1}(B) ; B \in \mathfrak{R}^{2}\right\}$ is a sigma-field and $\sigma(X) \subset \sigma(X, Y)$.
6. Let $(\Omega, \mathbf{F}, \mu)$ be a measure space. The μ-completion of \mathbf{F} is the collection of all $E \subset \Omega$ for which there exists $A, B \in \mathbf{F}$ with $A \subset E \subset B$ and $\mu(B-A)=0$. That is, the μ-completion of \mathbf{F} is

$$
\mathbf{F}^{*}=\{E \subset \Omega ; \quad A \subset E \subset B, \quad \mu(B-A)=0 \text { for some } A, B \in \mathbf{F}\} .
$$

Show that \mathbf{F}^{*} is a σ-field.
7. Let $\Omega=\{-N, . .,-2,-1,0,1,2, \ldots, N\}, \mathbf{F}=2^{\Omega}$, and v be the counting measure $[v(A)=\# A, \quad \forall A \in \mathbf{F}]$ on \mathbf{F}. Let $f(\omega)=\sum_{k=-N}^{N} k I_{\{k\}}(\omega)$.

1) Calculate $\int f d v$.
2) Calculate $\int|f| d v$.
8. (i) State and prove Fatou's Lemma.
(ii) Give an example that the interchange of integral and limit cannot change but Fatou's Lemma is still valid.

NOTE: This is my simplified answers. You need to write more detailed calculations.

Answer 2.

Let $B \in \mathfrak{R}^{k}$. Since the Borel sigma-field is generated by the open sets, there exist a collection of open sets $\left\{O_{\alpha}, \alpha \in \mathrm{A}\right\}$ such that $B=\bigcup_{\alpha \in \mathrm{A}} O_{\alpha}$. By the continuity of $f: R^{i} \rightarrow R^{k} \quad, \quad f^{-1}\left(O_{\alpha}\right) \in \mathfrak{R}^{i} \quad$ for $\quad \alpha \in \mathrm{A} . \quad$ It follows that $f^{-1}(B)=f^{-1}\left(\bigcup_{\alpha} O_{\alpha}\right)=\bigcup_{\alpha} f^{-1}\left(O_{\alpha}\right) \in \mathfrak{R}^{i}$. Therefore, f is Borel measurable.

Answer 3.

(i) By the first Borel-Cantelli's Lemma, if $\sum_{n} P\left(A_{n}\right)<\infty$, then $P\left(\limsup A_{n}\right)=0$.

Thus, $P(\Xi)=P\left(\liminf \left\{\left|X_{n}\right| \leq a_{n}\right\}\right)=1-P\left(\limsup \left\{\left|X_{n}\right|>a_{n}\right\}\right)=1$.
(ii) $\quad P\left(\sum_{n}\left|X_{n}\right|<\infty\right)=1$ since
$1=P\left(\bigcup_{n} \bigcap_{k=n}^{\infty}\left\{\left|X_{k}\right| \leq a_{k}\right\}\right)$
$=\left\{\exists n \in \mathbf{N}, \forall k \geq n, \quad\left|X_{k}\right| \leq a_{k}\right\} \subset\left\{\exists n \in \mathbf{N}, \sum_{k \geq n}\left|X_{k}\right| \leq \sum_{k \geq n} a_{k}<\infty\right\} \subset\left\{\sum_{n}\left|X_{n}\right|<\infty\right\}$

Answer 6.

(i) Let $E=\Omega$ and $A=B=\Omega$.
(ii) If $E \in \mathbf{F}^{*}$, there exist $A, B \in \mathbf{F}$ with $A \subset E \subset B$ and $\mu(B-A)=0$. Then, $A^{c} \supset E \supset B^{c}$ with $\mu\left(A^{c}-B^{c}\right)=\mu\left(A^{c} \cap B\right)=\mu(B-A)=0$ and $A^{c}, B^{c} \in \mathbf{F}$.
(iii) if $E_{i} \in \mathbf{F}^{*}$, the there exist $A_{i}, B_{i} \in \mathbf{F}$ with $A_{i} \subset E_{i} \subset B_{i}$ and $\mu\left(B_{i}-A_{i}\right)=0 \quad$. Then, $\quad \bigcup_{i} A_{i} \subset \bigcup_{i} E_{i} \subset \bigcup_{i} B_{i} \quad$ and $\mu\left(\bigcup_{i} B_{i}-\bigcup_{i} A_{i}\right)=\mu\left(\bigcup_{i}\left(B_{i}-A_{i}\right)\right) \leq \sum_{i} \mu\left(B_{i}-A_{i}\right)=0$.

Answer 7.

$\int f d v=\sum_{k=-N}^{N} \int k I_{[k]}(\omega) d v(\omega)=-\sum_{k=1}^{N} k+\sum_{k=1}^{N} k=0$.
$\int|f| d \nu=\sum_{k=-N}^{N} \int|k| I_{\{k\}}(\omega) d v(\omega)=\sum_{k=1}^{N} k+\sum_{k=1}^{N} k=N(N+1)$.

