Advanced Probability I, 2013 Fall, Midterm Exam Name:

1. Prove or disprove the following.

- (i) If X and Y are random variable on a measurable space (Ω, \mathbf{F}) , then aX + bY is a random variable for $a, b \in \mathbb{R}$.
- (ii) If X_n , n = 1, 2,... are sequence of random variables a measurable space (Ω, \mathbf{F}) , then $\sup_n X_n$ is a random variable.

2. Let (R^i, \mathfrak{R}^i) and (R^k, \mathfrak{R}^k) be Borel measurable spaces on *i* and *k* dimensional Euclid spaces, respectively. Prove the following:

If $f : \mathbb{R}^i \to \mathbb{R}^k$ is continuous, then $f : (\mathbb{R}^i, \mathfrak{R}^i) \to (\mathbb{R}^k, \mathfrak{R}^k)$ is measureable.

3. Let X_n , n = 1, 2,... be a sequence of random variables, and a_n , n = 1, 2,...be a sequence of constants. Suppose $\sum_n P\{|X_n \ge a_n\} < \infty$.

(i) Derive $P(\Xi)$, where $\Xi = \bigcup_{n} \bigcap_{k=n}^{\infty} \{ |X_k| \le a_k \}.$

(ii) Derive
$$P\left(\sum_{n} |X_{n}| < \infty\right)$$
 if $\sum_{n=1}^{\infty} a_{n} < \infty$.

4. State and prove the second Borel-Cantelli lemma

5. Let (Ω, \mathbf{F}, P) be a probability space. Prove the following:

(i) Let $X: \Omega \to R$ be a random variable. Then, $\sigma(X) = \{X^{-1}(B); B \in \mathfrak{R}\}$ is a sigma-field.

(ii) Let $(X,Y): \Omega \to R^2$ be a random vector.

Then, $\sigma(X,Y) = \{ (X,Y)^{-1}(B); B \in \mathbb{R}^2 \}$ is a sigma-field and $\sigma(X) \subset \sigma(X,Y)$.

6. Let $(\Omega, \mathbf{F}, \mu)$ be a measure space. The μ -completion of \mathbf{F} is the collection of all $E \subset \Omega$ for which there exists $A, B \in \mathbf{F}$ with $A \subset E \subset B$ and $\mu(B-A) = 0$. That is, the μ -completion of \mathbf{F} is

 $\mathbf{F}^* = \{ E \subset \Omega; \quad A \subset E \subset B, \quad \mu(B - A) = 0 \text{ for some } A, B \in \mathbf{F} \}.$ Show that \mathbf{F}^* is a σ -field. 7. Let $\Omega = \{-N, ..., -2, -1, 0, 1, 2, ..., N\}$, $\mathbf{F} = 2^{\Omega}$, and ν be the counting measure $[\nu(A) = \#A, \forall A \in \mathbf{F}]$ on \mathbf{F} . Let $f(\omega) = \sum_{k=-N}^{N} k I_{\{k\}}(\omega)$.

- 1) Calculate $\int f dv$.
- 2) Calculate $\int |f| dv$.

8. (i) State and prove Fatou's Lemma.

(ii) Give an example that the interchange of integral and limit cannot change but Fatou's Lemma is still valid.

NOTE: This is my simplified answers. You need to write more detailed calculations.

Answer 2.

Let $B \in \mathfrak{R}^k$. Since the Borel sigma-field is generated by the open sets, there exist a collection of open sets $\{O_\alpha, \alpha \in A\}$ such that $B = \bigcup_{\alpha \in A} O_\alpha$. By the continuity of $f : \mathbb{R}^i \to \mathbb{R}^k$, $f^{-1}(O_\alpha) \in \mathfrak{R}^i$ for $\alpha \in A$. It follows that $f^{-1}(B) = f^{-1}(\bigcup_{\alpha} O_\alpha) = \bigcup_{\alpha} f^{-1}(O_\alpha) \in \mathfrak{R}^i$. Therefore, f is Borel measurable.

Answer 3.

(i) By the first Borel-Cantelli's Lemma, if $\sum_{n} P(A_n) < \infty$, then $P(\limsup A_n) = 0.$ Thus, $P(\Xi) = P(\liminf\{|X_n| \le a_n\}) = 1 - P(\limsup\{|X_n| > a_n\}) = 1.$

(ii)
$$P\left(\sum_{n} |X_{n}| < \infty\right) = 1$$
 since

$$1 = P\left(\bigcup_{n} \bigcap_{k=n}^{\infty} \{ |X_{k}| \le a_{k} \} \right)$$

= { $\exists n \in \mathbf{N}, \forall k \ge n, |X_{k}| \le a_{k} \} \subset \{ \exists n \in \mathbf{N}, \sum_{k\ge n} |X_{k}| \le \sum_{k\ge n} a_{k} < \infty \} \subset \{ \sum_{n} |X_{n}| < \infty \}$

Answer 6.

(i) Let
$$E = \Omega$$
 and $A = B = \Omega$.

- (ii) If $E \in \mathbf{F}^*$, there exist $A, B \in \mathbf{F}$ with $A \subset E \subset B$ and $\mu(B-A) = 0$. Then, $A^c \supset E \supset B^c$ with $\mu(A^c - B^c) = \mu(A^c \cap B) = \mu(B-A) = 0$ and $A^c, B^c \in \mathbf{F}$.
- (iii) if $E_i \in \mathbf{F}^*$, the there exist $A_i, B_i \in \mathbf{F}$ with $A_i \subset E_i \subset B_i$ and $\mu(B_i - A_i) = 0$. Then, $\bigcup_i A_i \subset \bigcup_i E_i \subset \bigcup_i B_i$ and $\mu\left(\bigcup_i B_i - \bigcup_i A_i\right) = \mu\left(\bigcup_i (B_i - A_i)\right) \leq \sum_i \mu(B_i - A_i) = 0$.

Answer 7.

$$\int f dv = \sum_{k=-N}^{N} \int k I_{\{k\}}(\omega) dv(\omega) = -\sum_{k=1}^{N} k + \sum_{k=1}^{N} k = 0.$$

$$\int |f| dv = \sum_{k=-N}^{N} \int |k| I_{\{k\}}(\omega) dv(\omega) = \sum_{k=1}^{N} k + \sum_{k=1}^{N} k = N(N+1).$$