Advanced Probability I, 2013 Fall, Homework #2

- 1. Presentation
 - 1) About intersection/union of sigma-field (already finished)
 - 2) Suppose X and Y are random variables. Show that |X-Y| and max(X, Y) are also random variables (some details are necessary).Give a sufficient condition that X/Y is random variable.
 - 3) $T^{-1}(\bigcup_{n} A_{n}) = \bigcup_{n} T^{-1}(A_{n})$ as mentioned in class.

2. Let $X: (\Omega, \mathbf{F}, P) \to (\mathbb{R}^1, \mathbb{R}^1)$ be a random variable, representing the failure time of an electric component.

- (i) Suppose an engineer *cannot* observe the exact failure time X. Instead, he/she can observe the failure status of the electric component at a fix time t>0. That is, the engineer can identify whether the event $\{X \le t\} = \{\omega : X(\omega) \le t\}$ occurs or not. Show that $\{X \le t\} \in \mathbf{F}$.
- (ii) Find $\sigma(\{X \le t\})$, a σ -field generated by the event $\{X \le t\}$.
- (iii) Suppose that an engineer can observe the failure status of the electric component at two different times $t_1 < t_2$. Find $\sigma(\{X \le t_1\}, \{X \le t_2\})$.
- (iv) Suppose that an engineer can observe the failure status of the electric component at $t_1 < t_2 < \cdots < t_k$. Explicitly write

 $\mathbf{F}_k = \sigma(\{X \le t_j\}; j = 1, 2, ..., k\})$. How many elements are there?

(\mathbf{F}_i represents all events that the engineer can observe before t_k)

- (v) Show that $\mathbf{F}_{i-1} \subset \mathbf{F}_i$ for i = 2, ..., k.
- (vi) Prove or disprove $\{X > t_i\} \in \mathbf{F}_i, \{X > t_i\} \in \mathbf{F}_{i-1}, \text{ and } \{X \ge t_i\} \in \mathbf{F}_{i-1}.$

NOTE: This is my simplified answers. You need to write more detailed calculations.

Answer 2

- (ii) $\sigma(\{X \le t\}) = [\phi, \{X \le t\}, \{X > t\}, \Omega].$
- (iii) $\begin{aligned} &\sigma(\{X \leq t_1\}, \{X \leq t_2\}) \\ &= [\phi, \{X \leq t_1\}, \{X \leq t_2\}, \{X > t_1\}, \{X > t_2\}, \{t_1 < X \leq t_2\}, \{X \leq t_1 \text{ or } X > t_2\}, \Omega]. \end{aligned}$

8 elements.

(iv) Let
$$t_0 = -\infty$$
. Then,
 $\mathbf{F}_k = \sigma([\{X \le t_j\}; j = 1, 2, ..., k])$
 $= \left\{ \bigcup_{j=1}^{k+1} A_j \middle| A_j = \{X \in (t_{j-1}, t_j]\} \text{ or } \phi, j = 1, ..., k; A_{k+1} = \{X > t_k\} \text{ or } \phi \right\}$

Hence, the number of elements is 2^{k+1} . I check this number by a special case of k=3 as follows:

$$\begin{split} &\sigma(\{X \le t_1\}, \{X \le t_2\}, \{X \le t_3\}) = \\ &[\phi, \Omega, \\ &\{X \le t_1\}, \{X \le t_2\}, \{X \le t_3\}, \\ &\{X > t_1\}, \{X > t_2\}, \{X > t_3\}, \\ &\{t_1 < X \le t_2\}, \{t_2 < X \le t_3\}, \{t_2 < X \le t_3\}, \{t_1 < X \le t_3\}, \\ &\{t_1 < X \le t_2\}^c, \{t_2 < X \le t_3\}^c, \{t_2 < X \le t_3\}^c, \{t_1 < X \le t_3\}^c \end{bmatrix}$$

Hence, we have $16=2^{3+1}$ elements.

- (v) Omit [it follows from (A1)].
- (vi) From (A1), $\{X > t_i\} \in \mathbf{F}_i$, $\{X > t_i\} \notin \mathbf{F}_{i-1}$ and $\{X \ge t_i\} = \{X > t_{i-1}\} \in \mathbf{F}_{i-1}$.