Advanced Probability I, 2013 Fall, Homework \#2

1. Presentation

1) About intersection/union of sigma-field (already finished)
2) Suppose X and Y are random variables. Show that $|X-Y|$ and $\max (X, Y)$ are also random variables (some details are necessary).

Give a sufficient condition that X / Y is random variable.
3) $T^{-1}\left(\bigcup_{n} A_{n}\right)=\bigcup_{n} T^{-1}\left(A_{n}\right)$ as mentioned in class.
2. Let $X:(\Omega, \mathbf{F}, P) \rightarrow\left(R^{1}, \mathfrak{R}^{1}\right)$ be a random variable, representing the failure time of an electric component.
(i) Suppose an engineer cannot observe the exact failure time X. Instead, he/she can observe the failure status of the electric component at a fix time $t>0$. That is, the engineer can identify whether the event $\{X \leq t\}=\{\omega: X(\omega) \leq t\}$ occurs or not. Show that $\{X \leq t\} \in \mathbf{F}$.
(ii) Find $\sigma(\{X \leq t\})$, a σ-field generated by the event $\{X \leq t\}$.
(iii) Suppose that an engineer can observe the failure status of the electric component at two different times $t_{1}<t_{2}$. Find $\sigma\left(\left\{X \leq t_{1}\right\},\left\{X \leq t_{2}\right\}\right)$.
(iv) Suppose that an engineer can observe the failure status of the electric component at $t_{1}<t_{2}<\cdots<t_{k}$. Explicitly write $\mathbf{F}_{k}=\sigma\left(\left[\left\{X \leq t_{j}\right\} ; j=1,2, \ldots, k\right]\right)$. How many elements are there? (\mathbf{F}_{j} represents all events that the engineer can observe before t_{k})
(v) Show that $\mathbf{F}_{i-1} \subset \mathbf{F}_{i}$ for $i=2, \ldots, k$.
(vi) Prove or disprove $\left\{X>t_{i}\right\} \in \mathbf{F}_{i},\left\{X>t_{i}\right\} \in \mathbf{F}_{i-1}$, and $\left\{X \geq t_{i}\right\} \in \mathbf{F}_{i-1}$.

NOTE: This is my simplified answers. You need to write more detailed calculations.

Answer 2

(ii) $\sigma(\{X \leq t\})=[\phi,\{X \leq t\},\{X>t\}, \Omega]$.
(iii) $\begin{aligned} & \sigma\left(\left\{X \leq t_{1}\right\},\left\{X \leq t_{2}\right\}\right) \\ = & {\left[\phi,\left\{X \leq t_{1}\right\},\left\{X \leq t_{2}\right\},\left\{X>t_{1}\right\},\left\{X>t_{2}\right\},\left\{t_{1}<X \leq t_{2}\right\},\left\{X \leq t_{1} \text { or } X>t_{2}\right\}, \Omega\right] }\end{aligned}$.

8 elements.
(iv) Let $t_{0}=-\infty$. Then,

$$
\begin{aligned}
\mathbf{F}_{k} & =\sigma\left(\left[\left\{X \leq t_{j}\right\} ; j=1,2, \ldots, k\right]\right) \\
& =\left\{\bigcup_{j=1}^{k+1} A_{j} \mid A_{j}=\left\{X \in\left(t_{j-1}, t_{j}\right]\right\} \text { or } \phi, j=1, \ldots, k ; \quad A_{k+1}=\left\{X>t_{k}\right\} \text { or } \phi\right\}
\end{aligned}
$$

Hence, the number of elements is 2^{k+1}. I check this number by a special case of $k=3$ as follows:

$$
\begin{aligned}
& \sigma\left(\left\{X \leq t_{1}\right\},\left\{X \leq t_{2}\right\},\left\{X \leq t_{3}\right\}\right)= \\
& {[\phi, \Omega,} \\
& \left\{X \leq t_{1}\right\},\left\{X \leq t_{2}\right\},\left\{X \leq t_{3}\right\}, \\
& \left\{X>t_{1}\right\},\left\{X>t_{2}\right\},\left\{X>t_{3}\right\} \\
& \left\{t_{1}<X \leq t_{2}\right\},\left\{t_{2}<X \leq t_{3}\right\},\left\{t_{2}<X \leq t_{3}\right\},\left\{t .<X \leq t_{3}\right\}, \\
& \left.\left\{t_{1}<X \leq t_{2}\right\}^{c},\left\{t_{2}<X \leq t_{3}\right\}^{c},\left\{t_{2}<X \leq t_{3}\right\}^{c},\left\{t .<X \leq t_{3}\right\}^{c}\right]
\end{aligned}
$$

Hence, we have $16=2^{3+1}$ elements.
(v) Omit [it follows from (A1)].
(vi) $\quad \operatorname{From}(\mathrm{A} 1),\left\{X>t_{i}\right\} \in \mathbf{F}_{i},\left\{X>t_{i}\right\} \notin \mathbf{F}_{i-1}$ and $\left\{X \geq t_{i}\right\}=\left\{X>t_{i-1}\right\} \in \mathbf{F}_{i-1}$.

