Advanced Probability I, 2013 Fall, Homework \#1 (due 10/3) [+4]

Q1 [+2] Presentation:

1) What is the definition of countable set?
2) The proofs for Exercise 1.9 and 1.11 (Casella \& Berger, Statistical inference) (within 40 minutes).

Q2 [+2] Let $\mathbf{B}=\sigma\left(\mathbf{B}_{0}\right)$ be the Borel σ-field on $\Omega=(0,1]$.

1) $\{x\} \in \mathbf{B}$ for any $x \in \Omega$
2) $C \in \mathbf{B}$ for any countable subset $C \subset \Omega$
3) $G \in \mathbf{B}$ for any open interval $G=(a, b)$ on (0,1$]$
4) $F \in \mathbf{B}$ for any closed interval $F=[a, b]$ on $(0,1]$
5) $G \in \mathbf{B}$ for any open set G on $(0,1]$
6) $F \in \mathbf{B}$ for any closed set F on $(0,1]$
7) Find a set $H \subset \Omega$ that does not belong to \mathbf{B}.

1）Let $A_{n}=\left(x-\frac{1}{n}, x\right] \in B_{0}$ ，for $n \in \mathbb{N}, x \in \Omega$ ．Then A_{n} is decreasing． Hence，the intersection of $A_{n}, \bigcap_{n} A_{n}=\{x\}$ ．Since $\bigcap_{n} A_{n} \in B,\{x\} \in B$ ．

2）Let $A_{n}=U_{k}\left(a_{k}-\frac{1}{n}, a_{k}\right] \in B_{0}$ ，for $n, k \in \mathbb{N}, a_{k} \in \Omega$ for all k ．Then A_{n} is decreasing．Hence，the intersection of $A_{n}, \cap_{n} A_{n}=\left\{a_{1}, a_{2}, \ldots\right\}$ ．Since $k \in \mathbb{N}$ ， $\left\{a_{1}, a_{2}, \ldots\right\}$ is a countably infinite and $\left\{a_{1}, a_{2}, \ldots\right\} \in B$ ．

3）Let $A_{n}=\left(a+\frac{1}{n}, b-\frac{1}{n}\right] \in B_{0}$ for some $a, b \in \Omega$ ．Then A_{n} is increasing． Hence，let $G=U_{n} A_{n}=(a, b) \in B$ ．

4）Let $A_{n}=\left(a-\frac{1}{n}, b\right] \in B_{0}$ for some $a, b \in \Omega$ ．Then A_{n} is decreasing． Hence，let $F=\bigcap_{n} A_{n}=[a, b] \in B$ ．

5）If G is open on $(0,1]$ and $x \in \Omega$ ．There exist rationals $a_{x}, b_{x} \in \Omega$ ．such that $\mathrm{x} \in\left(\mathrm{a}_{\mathrm{x}}, \mathrm{b}_{\mathrm{x}}\right] \subset \mathrm{G}$ ．Then $\mathrm{G}=\mathrm{U}_{\mathrm{x} \in \mathrm{G}}\left(\mathrm{a}_{\mathrm{x}}, \mathrm{b}_{\mathrm{x}}\right]$ and there only countably many intervals with rational endpoints．Thus， $\mathrm{G} \in \mathrm{B}$ ．

6）By 5 ），since G is an open set and $G \in B, C=G^{c}$ is a closed set．Thus，$F \in B$ by the definition of σ－field．

7）Let $x \in H$ be the element of $H \subset \Omega$ which is a set of the irrational numbers and x can be expressed as following ：

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}}}}
$$

where a_{k} is any positive number for all $k \in \mathbb{N}$ ．In this case，H is not a Borel set and $H \notin B$ ．

