Advanced Probability I, 2013 Fall, Homework #1 (due 10/3) [+4]

Q1 [+2] Presentation:

1) What is the definition of countable set?

 The proofs for Exercise 1.9 and 1.11 (Casella & Berger, Statistical inference) (within 40 minutes).

Q2 [+2] Let $\mathbf{B} = \sigma(\mathbf{B}_0)$ be the Borel σ -field on $\Omega = (0, 1]$.

- 1) $\{x\} \in \mathbf{B}$ for any $x \in \Omega$
- 2) $C \in \mathbf{B}$ for any countable subset $C \subset \Omega$
- 3) $G \in \mathbf{B}$ for any open interval G = (a, b) on (0, 1]
- 4) $F \in \mathbf{B}$ for any closed interval F = [a, b] on (0, 1]
- 5) $G \in \mathbf{B}$ for any open set G on (0, 1]
- 6) $F \in \mathbf{B}$ for any closed set F on (0, 1]
- 7) Find a set $H \subset \Omega$ that does not belong to **B**.

Advanced Probability I, Homework #1 博一 102285001 周仕鎧

- 1) Let $A_n = \left(x \frac{1}{n}, x\right] \in B_0$, for $n \in \mathbb{N}$, $x \in \Omega$. Then A_n is decreasing. Hence, the intersection of A_n , $\bigcap_n A_n = \{x\}$. Since $\bigcap_n A_n \in B$, $\{x\} \in B$.
- 2) Let $A_n = \bigcup_k (a_k \frac{1}{n}, a_k] \in B_0$, for $n, k \in \mathbb{N}$, $a_k \in \Omega$ for all k. Then A_n is decreasing. Hence, the intersection of A_n , $\bigcap_n A_n = \{a_1, a_2, ...\}$. Since $k \in \mathbb{N}$, $\{a_1, a_2, ...\}$ is a countably infinite and $\{a_1, a_2, ...\} \in B$.
- 3) Let $A_n = \left(a + \frac{1}{n}, b \frac{1}{n}\right] \in B_0$ for some $a, b \in \Omega$. Then A_n is increasing. Hence, let $G = \bigcup_n A_n = (a, b) \in B$.
- 4) Let $A_n = \left(a \frac{1}{n}, b\right] \in B_0$ for some $a, b \in \Omega$. Then A_n is decreasing. Hence, let $F = \bigcap_n A_n = [a, b] \in B$.
- 5) If G is open on (0, 1] and $x \in \Omega$. There exist rationals $a_x, b_x \in \Omega$. such that $x \in (a_x, b_x] \subset G$. Then $G = \bigcup_{x \in G} (a_x, b_x]$ and there only countably many intervals with rational endpoints. Thus, $G \in B$.
- 6) By 5), since G is an open set and $G \in B$, $C = G^c$ is a closed set. Thus, $F \in B$ by the definition of σ -field.
- Let x ∈ H be the element of H ⊂ Ω which is a set of the irrational numbers and x can be expressed as following :

$$x = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{\ddots}}}},$$

where a_k is any positive number for all $k \in \mathbb{N}$. In this case, H is not a Borel set and H \notin B.