Advanced Probability I, 2013 Fall, Final exam Name:

1. Consider the CUSUM process $S_n = \sum_{i=1}^n (X_i - mp)$ for the binomial random variables X_i , $i = 1, 2, ..., n \stackrel{iid}{\sim} Bin(m,p)$. The process is out-of-control at time n if $\max_{1 \le k \le n} |S_k| > c\sqrt{mnp(1-p)}$ occurs. Choose c such that the probability of the out-of-control is less than α at all n.

- 2. Demonstrate with 2 examples that Fubini's theorem often simplifies the calculations of some integration.
- 1)

2)

3. Let X_i , $i = 1, 2, ..., n \sim \text{cdf } F$ defined on (Ω, \mathbf{F}, P) . Let the ecdf be

$$F_n(x,\omega) = \frac{1}{n} \sum_{i=1}^n I_{(-\infty,x]}(X_i(\omega)), \quad x \in \mathbb{R}.$$

- 1) State the Glivenko-Cantelli theorem
- 2) Define $x_{m,k} = F^{-1}(k/m), m \in \mathbb{N}, 1 \le k \le m$, and

$$D_{m,n}(\omega) = \max_{k} \{ |F_n(x_{m,k}, \omega) - F(x_{m,k})| \lor |F_n(x_{m,k}, -, \omega) - F(x_{m,k}, -)| \}.$$

For fixed *m*, verify that $\lim_{n} D_{m,n}(\omega) = 0$ with probability one.

3) If $x_{m,k-1} \le x < x_{m,k}$, find the upper and lower bounds for $F_n(x,\omega) - F(x)$ in terms of $D_{m,n}(\omega)$ and *m*. [Hint: $F(x_{m,k}-) - F(x_{m,k-1}) \le 1/m$]

4) Prove the Glivenko-Cantelli theorem.

4. Let Y_i , $i = 1, 2, \dots$ $\overset{iid}{\sim} \phi(y)$, where $\phi(y)$ is the pdf of standard normal distribution, and $\mathfrak{T}_n = \sigma(Y_1, \dots, Y_n)$. Also, let Y_i , $i = 1, 2, \dots$ $\overset{iid}{\sim} \phi(y - \Delta)$ for some $\Delta \neq 0$.

i) Calculate the likelihood ratio (X_n) which is martingale w.r.t. \mathfrak{I}_n under some probability measure.

ii) Prove that (X_n, \mathfrak{T}_n) is martingale by using properties of the normal distribution. [e.g., use the mgf of N(0, 1)].

- 5. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu_X, 1)$ and $Y_1, \ldots, Y_n \stackrel{iid}{\sim} N(\mu_Y, 1)$, where $X_i \perp Y_i$ for $\forall i = 1, \ldots, n$. Suppose that (μ_X, μ_Y) are unknown. We wish to estimate an unknown parameter $\theta = P(X_1 \leq Y_1)$.
 - 1) Find a consistent estimator $\hat{\theta}$ of θ .
 - 2) Prove the consistency of $\hat{\theta}$.
 - 3) Derive the convergence in distribution of $\sqrt{n}(\hat{\theta} \theta)$.

6. Let X_n and Y_n be sequences of random variables with $X_n \xrightarrow{P} x$ and $Y_n \xrightarrow{P} y$. Let $a \in R$ and $b \in R$ be constants (not necessary positive). Show that $aX_n + bY_n \xrightarrow{P} \theta$ for some $\theta \in R$.

Answer 1:

By the maximal inequality (theorem 22.4),

$$P[\max_{1 \le k \le n} |S_k| > c\sqrt{mnp(1-p)}]$$

$$\leq \frac{1}{\{c\sqrt{mnp(1-p)}\}^2} \operatorname{var}(S_n) = \frac{1}{c^2 mnp(1-p)} mnp(1-p) = \frac{1}{c^2}$$

Setting $1/c^2 = \alpha$, we have $c = 1/\sqrt{\alpha}$.

Answer 3:

- 1) $\sup_{x} |F_n(x,\omega) F(x)| \to 0$ with probability one.
- 2) By the SLLN, $\lim_{n} F_n(x_{m,k}, \omega) = F(x_{m,k})$ with probability one for fixed $x_{m,k}$.

By the continuous mapping theorem with $f(x, y) = x \lor y$, $\lim_{n} \{F_n(x_{m,k}, \omega) - F(x_{m,k}) | \lor | F_n(x_{m,k} -, \omega) - F(x_{m,k} -) |\} = 0 \text{ with probability one.}$ Again by the continuous mapping theorem $f(x_1, ..., x_m) = \max_k (x_k)$, $\lim_{n} D_{m,n}(\omega) = 0.$

3) Note that $F(x_{m,k}-) - F(x_{m,k-1}) \le 1/m$. If $x_{m,k-1} \le x < x_{m,k}$,

$$\begin{split} F_n(x,\omega) &\leq F_n(x_{m,k} -, \omega) = F_n(x_{m,k} -, \omega) - F(x_{m,k} -) + F(x_{m,k} -) \\ &\leq D_{m,n}(\omega) + F(x_{m,k} -) \leq D_{m,n}(\omega) + 1/m + F(x_{m,k} -) \\ &\leq D_{m,n}(\omega) + 1/m + F(x) \end{split}$$

Similarly, $F_n(x,\omega) \ge -D_{m,n}(\omega) - 1/m + F(x)$. Hence,

 $-D_{m,n}(\omega)-1/m \le F_n(x,\omega)-F(x) \le D_{m,n}(\omega)+1/m.$

4) Take limit in the previous inequality (omit).

Answer 4:

$$X_{n} = \prod_{i=1}^{n} \frac{\phi(y_{i} - \Delta)}{\phi(y_{i})} = \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} (y_{i} - \Delta)^{2} + \frac{1}{2} \sum_{i=1}^{n} y_{i}^{2}\right\}$$
$$= \exp\left\{\Delta \sum_{i=1}^{n} \left(y_{i} - \frac{\Delta}{2}\right)\right\}$$

$$\begin{split} E[X_{n+1} \mid \mathfrak{I}_n] &= E\left[\exp\left\{\Delta \sum_{i=1}^{n+1} \left(y_i - \frac{\Delta}{2}\right)\right\} \middle| \mathfrak{I}_n\right] \\ &= E\left[\exp\left\{\Delta \left(y_n - \frac{\Delta}{2}\right)\right\} \exp\left\{\Delta \sum_{i=1}^n \left(y_i - \frac{\Delta}{2}\right)\right\} \middle| \mathfrak{I}_n\right] = \exp\left\{\Delta \sum_{i=1}^n \left(y_i - \frac{\Delta}{2}\right)\right\} E\left[\exp\left\{\Delta \left(y_n - \frac{\Delta}{2}\right)\right\}\right] \\ &= X_n \exp\left(-\frac{\Delta^2}{2}\right) E\left[\exp\left\{\Delta y_n\right\}\right] = X_n \exp\left(-\frac{\Delta^2}{2}\right) E\left[\exp\left\{\Delta y_n\right\}\right] \\ &= X_n \exp\left(-\frac{\Delta^2}{2}\right) \exp\left(\frac{\Delta^2}{2}\right) \qquad (\text{ mgf of N (0,1) }) \\ &= X_n \end{split}$$

Answer 5:

1) Since
$$X_1 - Y_1 \sim N(\mu_X - \mu_Y, 2)$$
, $\theta = P(X_1 - Y_1 \le 0) = \Phi\left(\frac{\mu_Y - \mu_X}{\sqrt{2}}\right)$.
Let $\hat{\theta} = \Phi\left(\frac{\overline{Y} - \overline{X}}{\sqrt{2}}\right)$, where $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $\overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$.

2) Note that $\overline{X} \xrightarrow{P} \mu_X$, $\overline{Y} \xrightarrow{P} \mu_Y$. Slutsky's theorem is that

- a) If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} a$, then $X_n Y_n \xrightarrow{d} aX$
- b) If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} a$, then $X_n + Y_n \xrightarrow{d} a + X$.
- c) If $X_n \xrightarrow{P} a$ and $Y_n \xrightarrow{P} b$, then, $X_n + Y_n \xrightarrow{P} a + b$.

By a) and c),
$$\frac{\overline{Y} - \overline{X}}{\sqrt{2}} \xrightarrow{P} \frac{\mu_Y - \mu_X}{\sqrt{2}}$$
.

By the continuous mapping theorem with $h(x) = \Phi(x)$,

$$\Phi\left\{\frac{\overline{Y}-\overline{X}}{\sqrt{2}}\right\} \longrightarrow \Phi\left\{\frac{\mu_{Y}-\mu_{X}}{\sqrt{2}}\right\}. \text{ Hence, } \hat{\theta} \longrightarrow \theta.$$

3) By the CLT,

$$\sqrt{n}\left(\frac{\overline{Y}-\overline{X}}{\sqrt{2}}-\frac{\mu_Y-\mu_X}{\sqrt{2}}\right) = \frac{1}{\sqrt{n}}\sum_{i=1}^n \frac{Y_i-X_i-(\mu_Y-\mu_X)}{\sqrt{2}} \xrightarrow{d} N(0,\frac{\sigma_X^2+\sigma_Y^2}{2})$$

We apply the delta method with $g'(x) = \phi(x)$. Since

$$\phi \left(\frac{\mu_Y - \mu_X}{\sqrt{2}}\right) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{(\mu_Y - \mu_X)^2}{4}\right\},$$

$$\sqrt{n} \left(\Phi \left(\frac{\overline{Y} - \overline{X}}{\sqrt{2}}\right) - \Phi \left(\frac{\mu_Y - \mu_X}{\sqrt{2}}\right)\right) \xrightarrow{d} N \left(0, \frac{\sigma_X^2 + \sigma_Y^2}{4\pi^2} \exp\left\{-\frac{(\mu_Y - \mu_X)^2}{2}\right\}\right).$$