Advanced Probability I, 2013 Fall, Final exam

Name:

1. Consider the CUSUM process $S_{n}=\sum_{i=1}^{n}\left(X_{i}-m p\right)$ for the binomial random variables $X_{i}, \quad i=1,2, \ldots . n \stackrel{i i d}{\sim} \operatorname{Bin}(m, p)$. The process is out-of-control at time n if $\max _{1 \leq k \leq n}\left|S_{k}\right|>c \sqrt{m n p(1-p)}$ occurs. Choose c such that the probability of the out-of-control is less than α at all n.
2. Demonstrate with 2 examples that Fubini's theorem often simplifies the calculations of some integration.
1)
2)
3. Let $X_{i}, \quad i=1,2, \ldots . n \stackrel{i i d}{\sim} \operatorname{cdf} F$ defined on (Ω, \mathbf{F}, P). Let the ecdf be

$$
F_{n}(x, \omega)=\frac{1}{n} \sum_{i=1}^{n} I_{(-\infty, x]}\left(X_{i}(\omega)\right), \quad x \in R .
$$

1) State the Glivenko-Cantelli theorem
2) Define $x_{m, k}=F^{-1}(k / m), \quad m \in \mathrm{~N}, \quad 1 \leq k \leq m$, and

$$
D_{m, n}(\omega)=\max _{k}\left\{\left|F_{n}\left(x_{m, k}, \omega\right)-F\left(x_{m, k}\right)\right| \vee\left|F_{n}\left(x_{m, k}-, \omega\right)-F\left(x_{m, k}-\right)\right|\right\} .
$$

For fixed m, verify that $\lim _{n} D_{m, n}(\omega)=0$ with probability one.
3) If $x_{m, k-1} \leq x<x_{m, k}$, find the upper and lower bounds for $F_{n}(x, \omega)-F(x)$ in terms of $D_{m, n}(\omega)$ and m. [Hint: $\left.F\left(x_{m, k}-\right)-F\left(x_{m, k-1}\right) \leq 1 / m\right]$
4) Prove the Glivenko-Cantelli theorem.
4. Let $Y_{i}, i=1,2, \ldots \stackrel{i d}{\sim} \phi(y)$, where $\phi(y)$ is the pdf of standard normal distribution, and $\mathfrak{I}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$. Also, let $Y_{i}, \quad i=1,2, \ldots . \quad \stackrel{i i d}{\sim} \phi(y-\Delta)$ for some $\Delta \neq 0$.
i) Calculate the likelihood ratio $\left(X_{n}\right)$ which is martingale w.r.t. \mathfrak{I}_{n} under some probability measure.
ii) Prove that $\left(X_{n}, \mathfrak{J}_{n}\right)$ is martingale by using properties of the normal distribution. [e.g., use the mgf of $\mathrm{N}(0,1)$].
5. Let $X_{1}, \ldots, X_{n} \sim \mathrm{~N}\left(\mu_{X}, 1\right)$ and $Y_{1}, \ldots, Y_{n} \sim \mathrm{~N}\left(\mu_{Y}, 1\right)$, where $X_{i} \perp Y_{i}$ for $\forall i=1, \ldots, n$. Suppose that $\left(\mu_{X}, \mu_{Y}\right)$ are unknown. We wish to estimate an unknown parameter $\theta=P\left(X_{1} \leq Y_{1}\right)$.

1) Find a consistent estimator $\hat{\theta}$ of θ.
2) Prove the consistency of $\hat{\theta}$.
3) Derive the convergence in distribution of $\sqrt{n}(\hat{\theta}-\theta)$.
6. Let X_{n} and Y_{n} be sequences of random variables with $X_{n} \xrightarrow{P} x$ and $Y_{n} \xrightarrow{P} y$. Let $a \in R$ and $b \in R$ be constants (not necessary positive). Show that $a X_{n}+b Y_{n} \xrightarrow{P} \theta$ for some $\theta \in R$.

Answer 1:

By the maximal inequality (theorem 22.4),

$$
\begin{aligned}
& P\left[\max _{1 \leq k \leq n}\left|S_{k}\right|>c \sqrt{m n p(1-p)}\right] \\
& \leq \frac{1}{\{c \sqrt{m n p(1-p)}\}^{2}} \operatorname{var}\left(S_{n}\right)=\frac{1}{c^{2} m n p(1-p)} \operatorname{mnp}(1-p)=\frac{1}{c^{2}}
\end{aligned}
$$

Setting $1 / c^{2}=\alpha$, we have $c=1 / \sqrt{\alpha}$.

Answer 3:

1) $\sup _{x} \mid F_{n}(x, \omega)-F(x) \mapsto 0$ with probability one.
2) By the $\operatorname{SLLN}, \lim _{n} F_{n}\left(x_{m, k}, \omega\right)=F\left(x_{m, k}\right)$ with probability one for fixed $x_{m, k}$. By the continuous mapping theorem with $f(x, y)=x \vee y$, $\lim _{n}\left\{F_{n}\left(x_{m, k}, \omega\right)-F\left(x_{m, k}\right)|\vee| F_{n}\left(x_{m, k}-, \omega\right)-F\left(x_{m, k}-\right) \mid\right\}=0$ with probability one. Again by the continuous mapping theorem $f\left(x_{1}, \ldots, x_{m}\right)=\max _{k}\left(x_{k}\right)$, $\lim _{n} D_{m, n}(\omega)=0$.
3) Note that $F\left(x_{m, k}-\right)-F\left(x_{m, k-1}\right) \leq 1 / m$. If $x_{m, k-1} \leq x<x_{m, k}$,

$$
\begin{aligned}
& F_{n}(x, \omega) \leq F_{n}\left(x_{m, k}-, \omega\right)=F_{n}\left(x_{m, k}-, \omega\right)-F\left(x_{m, k}-\right)+F\left(x_{m, k}-\right) \\
& \leq D_{m, n}(\omega)+F\left(x_{m, k}-\right) \leq D_{m, n}(\omega)+1 / m+F\left(x_{m, k}-\right) \\
& \leq D_{m, n}(\omega)+1 / m+F(x)
\end{aligned}
$$

Similarly, $\quad F_{n}(x, \omega) \geq-D_{m, n}(\omega)-1 / m+F(x)$. Hence,
$-D_{m, n}(\omega)-1 / m \leq F_{n}(x, \omega)-F(x) \leq D_{m, n}(\omega)+1 / m$.
4) Take limit in the previous inequality (omit).

Answer 4:

$$
\begin{aligned}
& X_{n}=\prod_{i=1}^{n} \frac{\phi\left(y_{i}-\Delta\right)}{\phi\left(y_{i}\right)}=\exp \left\{-\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\Delta\right)^{2}+\frac{1}{2} \sum_{i=1}^{n} y_{i}^{2}\right\} \\
& =\exp \left\{\Delta \sum_{i=1}^{n}\left(y_{i}-\frac{\Delta}{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& E\left[X_{n+1} \mid \mathfrak{J}_{n}\right]=E\left[\left.\exp \left\{\Delta \sum_{i=1}^{n+1}\left(y_{i}-\frac{\Delta}{2}\right)\right\} \right\rvert\, \mathfrak{J}_{n}\right] \\
& =E\left[\left.\exp \left\{\Delta\left(y_{n}-\frac{\Delta}{2}\right)\right\} \exp \left\{\Delta \sum_{i=1}^{n}\left(y_{i}-\frac{\Delta}{2}\right)\right\} \right\rvert\, \mathfrak{I}_{n}\right]=\exp \left\{\Delta \sum_{i=1}^{n}\left(y_{i}-\frac{\Delta}{2}\right)\right\} E\left[\exp \left\{\Delta\left(y_{n}-\frac{\Delta}{2}\right)\right\}\right] \\
& =X_{n} \exp \left(-\frac{\Delta^{2}}{2}\right) E\left[\exp \left\{\Delta y_{n}\right\}\right]=X_{n} \exp \left(-\frac{\Delta^{2}}{2}\right) E\left[\exp \left\{\Delta y_{n}\right\}\right] \\
& =X_{n} \exp \left(-\frac{\Delta^{2}}{2}\right) \exp \left(\frac{\Delta^{2}}{2}\right) \quad(\operatorname{mgf} \text { of } \mathrm{N}(0,1)) \\
& =X_{n}
\end{aligned}
$$

Answer 5:

1) Since $X_{1}-Y_{1} \sim N\left(\mu_{X}-\mu_{Y}, 2\right), \quad \theta=P\left(X_{1}-Y_{1} \leq 0\right)=\Phi\left(\frac{\mu_{Y}-\mu_{X}}{\sqrt{2}}\right)$.

Let $\hat{\theta}=\Phi\left(\frac{\bar{Y}-\bar{X}}{\sqrt{2}}\right)$, where $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$.
2) Note that $\bar{X} \xrightarrow{P} \mu_{X}, \bar{Y} \xrightarrow{P} \mu_{Y}$. Slutsky's theorem is that
a) If $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} a$, then $X_{n} Y_{n} \xrightarrow{d} a X$
b) If $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} a$, then $X_{n}+Y_{n} \xrightarrow{d} a+X$.
c) If $X_{n} \xrightarrow{P} a$ and $Y_{n} \xrightarrow{P} b$, then, $X_{n}+Y_{n} \xrightarrow{P} a+b$.

By a) and c), $\frac{\bar{Y}-\bar{X}}{\sqrt{2}} \xrightarrow{P} \frac{\mu_{Y}-\mu_{X}}{\sqrt{2}}$.
By the continuous mapping theorem with $h(x)=\Phi(x)$,

$$
\Phi\left\{\frac{\bar{Y}-\bar{X}}{\sqrt{2}}\right\} \xrightarrow{P} \Phi\left\{\frac{\mu_{Y}-\mu_{X}}{\sqrt{2}}\right\} . \text { Hence, } \hat{\theta} \xrightarrow{P} \theta .
$$

3) By the CLT,

$$
\sqrt{n}\left(\frac{\bar{Y}-\bar{X}}{\sqrt{2}}-\frac{\mu_{Y}-\mu_{X}}{\sqrt{2}}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{Y_{i}-X_{i}-\left(\mu_{Y}-\mu_{X}\right)}{\sqrt{2}} \xrightarrow{d} N\left(0, \frac{\sigma_{X}^{2}+\sigma_{Y}^{2}}{2}\right) .
$$

We apply the delta method with $g^{\prime}(x)=\phi(x)$. Since

$$
\begin{gathered}
\phi\left(\frac{\mu_{Y}-\mu_{X}}{\sqrt{2}}\right)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{\left(\mu_{Y}-\mu_{X}\right)^{2}}{4}\right\} \\
\sqrt{n}\left(\Phi\left(\frac{\bar{Y}-\bar{X}}{\sqrt{2}}\right)-\Phi\left(\frac{\mu_{Y}-\mu_{X}}{\sqrt{2}}\right)\right) \xrightarrow{d} N\left(0, \frac{\sigma_{X}^{2}+\sigma_{Y}^{2}}{4 \pi^{2}} \exp \left\{-\frac{\left(\mu_{Y}-\mu_{X}\right)^{2}}{2}\right\}\right) .
\end{gathered}
$$

