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ABSTRACT
This paper adopts a Bayesian strategy for generalized ridge estimation
for high-dimensional regression. We also consider significance testing
based on the proposed estimator, which is useful for selecting regres-
sors. Both theoretical and simulation studies show that the proposed
estimator can simultaneously outperform the ordinary ridge estimator
and the LSE in terms of the mean square error (MSE) criterion. The sim-
ulation study also demonstrates the competitive MSE performance of
our proposal with the Lasso under sparse models. We demonstrate the
methodusing the lung cancer data involvinghigh-dimensionalmicroar-
rays.

1. Introduction

When the number of regressors, p exceeds the sample size n (i.e., p > n), the least squares esti-
mator (LSE) is not suitable to estimate regression coefficients in a linear model. There exists a
large number of variable reduction methods to deal with the “high-dimensional” p > n set-
ting, including forward selection, Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), Dantzig
Selector (Candes and Tao, 2007), SIS (Fan and Lv, 2008), just to name a few. See also the book
of Hastie et al. (2009). As pointed out by Bühlmann (2013), the variable selection methods
rarely address the uncertainty of the regressors (i.e., P-value). Concretely, if a regressor vari-
able is selected, it is considered statistically significant without being quantified by P-values.
Alternatively, one can perform ridge regression for significance testing for each regression
coefficient. This method allows one to access P-values of all the p regressors (Bühlmann 2013;
Cule et al. 2011; Cule and De Lorio 2013). See also the method of Zhang and Zhang (2014).

Ridge regression is an effective method when the number of regressors is larger than the
sample size (p > n). Ridge regression was due to Hoerl and Kennard (1970) and was devel-
oped to reduce the multicollinearity problem for the linear regression model. Later, the ridge
estimator is theoretically shown to work even under the p > n case (Golub et al., 1979). Ridge
regression is a shrinkage type estimator that shrinks all regression coefficients toward zero
(Hastie et al., 2009), which is particularly suitable for modeling high-dimensional microar-
rays or single nucleotide polymorphism (SNP) data. For instance, Cule et al. (2011) applied
the ridge estimator on the high-dimensional SNP data and performed significance testing for
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selecting a subset of SNPs useful for prediction. There have been considerable recent applica-
tions of ridge regression to high-dimensional settings, includingWhittaker et al. (2000), Zhao
et al. (2011), and Cule and De Lorio (2013). In spite of these previous applications, theoreti-
cally solid understanding of significance testing under the ridge estimator is only given by a
recent work of Bühlmann (2013).

Generalization of the ridge regression has been considered bymany authors. The so-called
generalized ridge regression is derived by Hoerl and Kennard (1970). Unlike the ordinary
ridge regression that shrinks all regression coefficients uniformly, the generalized ridge regres-
sion allows different degrees of shrinkage under multiple shrinkage parameters. Interestingly,
this generalization actually simplifies the optimal choice of themultiple shrinkage parameters
and allows exact evaluation of mean square error (MSE) under estimated shrinkage parame-
ters (Hoerl and Kennard, 1970; Jimichi, 2008). As detailed in Section 4, the generalized ridge
estimator is a Bayes estimator thatminimizes the posterior risk. From a frequentist viewpoint,
the generalized ridge estimator performs better than the LSE in terms of the MSE under esti-
mated optimal choices of the multiple shrinkage parameters (Jimichi 2008). Loesgen (1990)
demonstrated that the multiple shrinkage parameters in the generalized ridge estimator arise
naturally by utilizing prior information about regression coefficients. All these statistical prop-
erties of the generalized ridge estimator are derived under the traditional p < n setting.

To the best of our knowledge, the generalized ridge regression has not been applied to
the case of p > n. If it would be directly applied to the p > n setting, the generalized ridge
regression would involve a large number of shrinkage parameters, which are considerably
difficult to be estimated.

In this paper, we propose a class of generalized ridge estimators that reduces the num-
ber of shrinkage parameters under a sparsity assumption. The proposed estimator is natu-
rally interpreted from a Bayesian point of view and has a desired performance in terms of
the MSE criterion. In addition, the proposed method provides a tool for significance testing
and regressor selection (gene selection), which is useful for high-dimensional data analysis.
We conduct simulations to study the performance of the proposed method under both p < n
and p ≥ n cases. Here, we compare our method with three existing methods (the LSE, the
ordinary ridge regression, and the Lasso). Finally, we analyze the lung cancer data involving
high-dimensional microarrays.

Section 2 provides the background. Section 3 introduces the proposed method, and Sec-
tion 4 examines its theoretical properties. Sections 5 and 6 describe simulations and real data
analysis, respectively. Section 7 concludes.

2. Background

2.1. Linear regressionmodel

Consider the linear regression model y = Xβ + ε, where

y =

⎡
⎢⎣
y1
...
yn

⎤
⎥⎦ , X =

⎡
⎢⎣
xT1
...
xTn

⎤
⎥⎦ = [x1, . . . , xp] =

⎡
⎢⎣
x11 · · · x1p
...

. . .
...

xn1 · · · xnp

⎤
⎥⎦ , β =

⎡
⎢⎣

β1
...

βp

⎤
⎥⎦ , ε =

⎡
⎢⎣

ε1
...
εn

⎤
⎥⎦ ;

X is a fixed (non-random) designmatrix,β ∈ Rp is an unknown vector of regression coeffi-
cients and ε followsNn(0, σ 2I), where σ 2 > 0 is unknown and I is the n × n identity matrix.
Here, xTi denotes the transpose of the p× 1 vector xi. We assume that the design matrix is
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standardized such that
∑n

i=1 xi j = 0 and
∑n

i=1 x
2
i j = c for j = 1, . . . , p, where c is a constant,

usually n or n − 1.
Provided XTX is invertible (non-singular), the least squares estimator (LSE) is

β̂ = (β̂1, . . . , β̂p)
T = (XTX )−1XTy.

The normality assumption on ε is not essential for statistical properties of the LSE and
the proposed estimator in Section 3. The essential assumptions are E[ε] = 0 andCov(ε) =
σ 2I. However, we will use the normality assumption to make connections to some Bayesian
interpretation in Section 4. Clearly, the LSE is not a suitable estimator under which XTX is
singular, especially when p > n.

2.2. Ridge regression and lasso

It is well-known that the LSE has the minimum mean square error (MSE) among all linear
unbiased estimators. However, by allowing biased estimators, there exists an even better esti-
mator which reduces the variance much and cost less bias.

Hoerl and Kennard (1970) defined the ridge regression estimator

β̂(λ) = (XTX + λI)−1XTy,

where λ > 0 is a shrinkage parameter that gives the degree of shrinking β̂(λ) toward the zero
vector. By introducing bias, the ridge regression reduces the variance part of the MSE. An
elegant result of Hoerl and Kennard (1970) is that there always exist some λ > 0 such that
the ridge estimator has strictly smaller MSE than that of the LSE. If the eigenvalues of XTX is
λ1 ≥ · · · ≥ λp > 0 (i.e, the case of p < n), there exists a value λ > 0 such that

MSE(β̂(λ)) = E{|| β̂(λ) − β ||2} < MSE(β̂) = σ 2
p∑

j=1

(1/λ j),

where || a ||2 = aTa is the L2-norm for a vector a. The details of the above results are referred
to the existence theorem (Theorem 4.3 of Hoerl and Kennard, 1970).

The ridge estimator is regarded as theminimizer of the L2-penalized residual sum square:

β̂(λ) = argmin
β

{|| y − Xβ||2 + λ|| β ||2}.

If the L2-norm in the penalty term is replaced by the L1-norm || β ||1 = |β1| + · · · + |βp|,
the resultant estimator is the Lasso (Tibshirani, 1996)

β̂
Lasso

(λ) = argmin
β

{|| y − Xβ||2 + λ|| β ||1}.

Some of the Lasso coefficients β̂Lasso
j s are exactly zero, making the Lasso different from

the ridge that yields all small but nonzero coefficients. This means that the Lasso induces a
variable selection tool that selects regressors with non-zero coefficients.

2.3. Estimation of optimal λ

In practice, the value of λ in the ridge estimator is chosen based on criteria, such as the Allen’s
PRESS (1974), the generalized cross-validation criterion (GCV) (Golub et al.,1979), the effec-
tive degree of freedom (Hastie et al., 2009), Mallows Cp (Mallows, 1973), and many others as
comprehensively listed in Wong and Chiu (2015) and Kibria and Banik (2016).
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We particularly introduce the GCV criterion whose asymptotic efficiency is theoretically

justified under the p ≥ n setup (the CGV theorem of Golub et al., 1979). Let β̂
(k)

(λ) be the
ridge estimate ofβ without the k th data point (yk, xTk ). If λ is chosen properly, then the k-th

component [Xβ̂
(k)

(λ)]k of Xβ̂
(k)

(λ) predicts yk well. The GCV is defined to be a weighted
average of predicted square errors

V (λ) = 1
n

n∑
k=1

([Xβ̂
(k)

(λ)]k − yk)
2
wk(λ)

where wk(λ) = {1 − akk(λ)}/{1 − Tr A(λ)/n}, and akk(λ) is the kth diagonal of A(λ) =
X (XTX + λI)XT. Golub et al. (1979) give a computationally efficient version

V (λ) = 1
n
|| {I − A(λ)}y ||2

/[
1
n
Tr{I − A(λ)}

]2

(1)

The function V (λ) is called the GCV function of the ridge. The GCV estimator of λ is
defined as

λ̂ = argmin
λ≥0

V (λ).

The GCV theorem (Golub et al. 1979) guarantees the asymptotic efficiency of the GCV
estimator under both p < n and p ≥ n setups.

The GCV criterion is not applicable to the Lasso. Alternatively, one can apply the 10-fold
cross-validation, which is implemented in R glmnet package (Friedman et al. 2015).

3. Proposedmethod

3.1. Proposed idea

In the ridge estimator, the matrix XTX is replaced by XTX + λI with a shrinkage parameter
λ > 0. Alternatively, the generalized ridge estimator considers XTX +W for a general diago-
nal matrixW = diag(w1, . . . , wp), where w j ≥ 0, j = 1, . . . , p, are shrinkage parameters.
Under the usual p < n setup, the weight matrixW is chosen so that the estimator optimizes
some criteria, such as the MSE (Hoerl and Kennard, 1970) and PRESS (Allen, 1974). How-
ever, in the high-dimensional case of p > n, such optimization schemes yield over-fitting.
This motivates us to propose a restricted class of W that reduces the number of shrinkage
parameters.

We consider a special classW = diag(w1, . . . , wp), where

w j =
{

λγ if β j �= 0,
λ if β j = 0, (2)

for j = 1, . . . , p and for some γ ∈ [0, 1].Whenβ j �= 0, it is reasonable to choose the smaller
weightw j since it results in the greater value of | β̂ j (W )|. The parameter λ > 0 represents the
global amount of shrinkage, and the parameter γ ∈ [0, 1] represents the ratio of shrinkage
between zero and non-zero coefficients. The weight in Equation (2) has an adequate Bayesian
interpretation and is justified from the MSE calculations as discussed in Section 4. If γ =
1, then Equation (2) results in the ordinary ridge estimator. If γ = 0, part of regressors do
not have any shrinkage, leading to a worse performance in terms of the MSE under high-
dimensionality. Hence, we suggest choosing an intermediate value γ = 1/2 that can also be
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suggested by theoretical analysis of Section 4.2. Note that the weight matrixW is unknown
since we do not know which components ofβ are nonzero. We even do not know how many
components are nonzero. In practice,W must be estimated from data.

3.2. Proposed estimator and computation

We estimateW using the initial estimate β̂
0 = (β̂0

1 , . . . , β̂0
p)

T, defined as

β̂0
j = xTj y

xTj x j
f or j = 1, . . . , p,

where x j, for j = 1, . . . , p, are the columns ofX . Note that β̂
0
is a compound of the univariate

LSEs, sometimes called “the compound covariate estimator” (Chen and Emura, 2016; Emura
et al., 2012). If | β̂0

j | is greater than some threshold, then the true value of β j is more likely to
be nonzero. Hence, we propose a special class of generalized ridge estimators

β̂(λ, �) = {XTX + λŴ (�)}−1XTy, � ≥ 0,

where Ŵ (�) = diag{ŵ1(�), . . . , ŵp(�)} and

ŵ j(�) =
{
1/2 if | β̂0

j |/SD(β̂
0
) ≥ �,

1 otherwise,

for j = 1, . . . , p, SD(β̂
0
) =

√∑p
j=1 (β̂0

j − β̄0)
2
/(p− 1), and β̄0 = ∑p

j=1 β̂0
j /p. We call �

“thresholding parameter.” Under the sparse model (β ≈ 0), the histogram of β̂0
j /SD(β̂

0
), j =

1, . . . , p, is well-approximated byN(0, 1). This implies that | β̂0
j |/SD(β̂

0
) falls in the range

[0, 3] with nearly 99.73%. Hence, we suggest a search range � ∈ [0, 3] which is free from
model parameters such as n and p.

3.3. Computation of (λ, �) by GCV

The optimal value of (λ, �) in the proposed estimator is estimated in a similar fashion as the
ordinary ridge estimator. We modify the GCV function in Equation (1) to

V (λ, �) = 1
n
|| {I − A(λ, �)}y ||2

/[
1
n
Tr{I − A(λ, �)}

]2

,

where A(λ, �) = X{XTX + λŴ (�)}−1XT. Then the estimators (λ̂, �̂) for the proposed
method is defined as the global minimizer ofV (λ, �),

(λ̂, �̂) = argmin
λ≥0, �≥0

V (λ, �).

Given �, the CGV function is continuous in λ, and hence it is easily minimized using
any optimization scheme, such as R optim routine, to get λ̂(�). Since V (λ̂(�), �)

is discontinuous in �, we propose a grid search. It suffices to search on the grid D =
{0, 3/100, . . . , 300/100}, thought some efficient algorithms might also be applicable (e.g.,
Araki and Hattori, 2013). Hence, the “feasible” version of the proposed estimator is

β̂(λ̂, �̂) = {XTX + λ̂Ŵ (�̂)}−1XTy.
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6088 S.-P. YANG AND T. EMURA

The estimator can be interpreted as the empirical Bayes estimator in which hyper param-
etersW are estimated by λ̂Ŵ (�̂) (Section 4.3).

3.4. Significance testing

One can test the significance of each regressor using the proposed method. Consider a null
hypothesis

H0 j : β j = 0 vs. H1 j : β j �= 0,

for j = 1, . . . , p. Let β̂ j(λ̂, �̂) be jth component of β̂(λ̂, �̂). Define the Wald statistics

Zj = β̂ j(λ̂, �̂)/se{β̂ j(λ̂, �̂)},
where se{β̂ j(λ̂, �̂)} is the standard error. Similar to Cule et al. (2011), we define se{β̂ j(λ̂, �̂)}
by the square root of the jth diagonal of the estimated covariance matrix,

Cov{β̂(λ̂, �̂)} = σ̂ 2{XTX + λ̂Ŵ (�̂)}−1XTX{XTX + λ̂Ŵ (�̂)}−1,

where

σ̂ 2 ≡ {y − Xβ̂(λ̂, �̂)}T{y − Xβ̂(λ̂, �̂)}/ν,
ν ≡ Tr {I − A(λ̂, �̂)}2 = n − Tr {2A(λ̂, �̂) − A(λ̂, �̂)2},

where A(λ̂, �̂) = X{XTX + λ̂Ŵ (�̂)}−1XT. Note that ν is the effective residual degree of
freedom, which reduces to n − p if p < n and λ̂ = 0. The P-value calculated from the usual
Wald test is useful for regressor selection. For instance, one can choose a subset of the regres-
sors whose P-values are less than some threshold.

4. Theoretical properties

This section gives some theoretical properties that support the proposed estimator under the
sparse model (β ≈ 0). Such properties give us systematic reasons why the proposed method
can outperform the existing methods. If readers are only interested in applying the statistical
methods to read data, it is possible to skip this section.

4.1. Bayesian interpretation

We give a Bayesian interpretation for the proposed class in Equation (2).While a few different
types of noninformative prior are commonly used, including the constant prior, the Jeffreys
prior and reference prior (see Fan, 2001), we focus on the zero-mean multivariate normal
prior. The zero-mean assumption in the prior implies the sparsity in the model, i.e., majority
of the regression coefficients are nearly equal to zero.

We first review a Bayesian derivation and interpretation of the generalized ridge estimator
along the line with Loesgen (1990). Consider the prior β ∼ Np(0, σ 2W−1), whereW−1 is
a p× p covariance matrix (hyperparameters). Also, y = Xβ + ε, where ε ∼ Nn(0, σ 2I), as
in Section 2. Assume that σ 2 is known. After some calculations, the posterior density of β
becomes

f (β|y, X, W )

∝ exp
[
− 1
2σ 2 {β − (XTX +W )−1XTy}T(XTX +W ){β − (XTX +W )−1XTy}

]
.
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We see that the posterior mean of β is exactly the generalized ridge estimator,

E(β|y, X, W ) = (XTX +W )−1XTy.

Although the paper of Loesgen (1990) did not consider the setting of p > n or the
sparse model, the same line of thought can be applied here to choose a good matrix W .
Note that, if β1, . . . , βp are independent in the prior, we haveW = diag(w1, . . . , wp), and
w1, . . . , wp ≥ 0. It follows that E[β j] = 0 andVar[β j] = σ 2w−1

j which expresses the uncer-
tainty of prior belief that β j is exactly zero. It means that w−1

j should be small if we believe
strongly that β j = 0, orw−1

j should be large if β j is considered far from zero. This gives a rule
that, if the truth is β j = 0, then w j should be large; if the truth is β j �= 0, then w j should be
small. Hence, we proposed the weight in Equation (2), where γ is the variance ratio.

Throughout these Bayesian arguments, we attempt to reduce the p-dimensional hyper
parameters (w1, . . . , wp) to the two-dimensional hyperparameters (λ, γ ). In Section 3.3,
we used the data to estimate the hyperparametersW = diag(w1, . . . , wp) by λ̂Ŵ (�̂). This
argument follows the empirical Bayes approach.

4.2. MSE comparison

We show that, with an appropriate choice of tuning parameters (λ, γ ) in Equation (2),
the proposed class improves upon the ordinary ridge estimator and the LSE simultaneously.
Our mathematical arguments follow the MSE matrix comparison originated from Theobald
(1974). His approach has been particularly useful for comparison of ridge-type estimators;
see the overview of the general theory for the MSE matrix comparison given by Trenkler and
Toutenburg (1990), and some practical assessment of the MSE matrix in Jang and Anderson-
Cook (2015). Note that the theory developed here is applicable even when p > n.

Let β̂ be any estimator of β. The MSE matrix is defined as a p× pmatrix

M(β̂) = E{(β̂−β )( β̂−β )T} = C + ddT,

where C = Cov(β̂) is the covariance matrix of β̂ and d = Bias(β̂) = E(β̂) − β is the bias
of β̂. The MSE of β̂ is the trace of M(β̂). Note that the diagonals of a nonnegative def-
inite (n.n.d.) matrix are nonnegative. This implies that, if M(β̂1) − M(β̂2) is n.n.d., then
MSE(β̂1) ≥ MSE(β̂2) for two estimators β̂1 and β̂2.

In our analysis of the generalized ridge estimator, we compare the performance between
the ordinary ridge estimator β̂(λ) with λ = 1 and the proposed class

β̂(λ, γ ) = {XTX +W (λ, γ )}−1XTy,

whereW (λ, γ ) is defined in Equation (2). We also compare the performance between the
LSE and the proposed class. Accordingly, we seek conditions under which both

M(β̂(1)) − M(β̂(λ, γ )), andM(β̂(0)) − M(β̂(λ, γ ))

are n.n.d. Trenkler (1985) established a useful lemma as follows:

Lemma 1: Suppose A is a symmetric p× p matrix, a is an p× 1 vector and η is a positive
real number. Then ηA − aaT is n.n.d. if and only if

i) A is n.n.d.,
ii) a = Av for some v ∈ Rp
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6090 S.-P. YANG AND T. EMURA

and
iii) aTA−a ≤ η.
where A− is the generalized inverse of A.

Lemma 1 with η = 1 is discussed in Trenkler and Toutenburg (1990). Similar to this paper,
we give simple sufficient conditions that M(β̂1) − M(β̂2) = (C1 + d1dT

1 ) −(C2 + d2dT
2 ) is

n.n.d., whereCi is the covariance and di is the bias for the ridge-type estimator β̂i = (XTX +
Wi)

−1XTy, i = 1, 2. As a version of Lemma 1, it is convenient to establish the following the-
orem.

Theorem 1: M(β̂1) − M(β̂2) is n.n.d. if all the three conditions hold:
i) (C1 −C2)/σ

2 is n.n.d.,
ii) d2 = (C1 −C2 + d1dT

1 )v f or some v ∈ Rp,

iii) dT
2 (C1 −C2 + d1dT

1 )
−1d2 ≤ 1.

Proof: We apply Lemma 1 with η = 1, A = C1 −C2 + d1dT
1 and a = d2. If (C1 −C2)/σ

2

is n.n.d., then xT(C1 −C2)x ≥ 0 for any x �= 0. Then, for x �= 0,

xT(C1 −C2 + d1dT
1 )x = xT(C1 −C2)x + xTd1dT

1x ≥ (dT
1x)

2 ≥ 0,

i.e., C1 −C2 + d1dT
1 is also n.n.d.. Hence, Condition i) of Lemma 1 is satisfied. In addition,

Conditions ii) and iii) in Lemma 1 are satisfied with η = 1. By Lemma 1, we have verified

(C1 −C2 + d1dT
1 ) − d2dT

2 = M(β̂1) − M(β̂2)

is n.n.d. �
Roughly speaking, only Condition iii) of Theorem 1 is essential for the MSE improvement

of β̂2 over β̂1. If the quantity in Condition iii) is strictly less than one, the MSE of β̂2 can
be less than the MSE of β̂1.

Example

Here is a simple example for illustrating Theorem 1. Let βT = (β1, 0T) ∈ Rp, where β1 �=
0. This is a simplified case of more general sparse models that will be discussed in Sec-
tion 5. Let XTX = (1 − ρ)I + ρ11T, where ρ is the correlation between columns of X and
1 = (1, . . . , 1)T. We start with the orthonormal case ρ=0, namely XTX = I, as in p.152 of
Loesgen (1990). This means p < n.

First, we compare between the ordinary ridge and the proposed class by lettingW1 = I =
diag(1, . . . , 1) andW2 = diag(λγ , λ, . . . , λ) for 0 < γ < 1 and λ > 0. Then,

d1 = (XTX +W1)
−1XTXβ − β = −β1

2

(
1
0

)
,

d2 = (XTX +W2)
−1XTXβ − β = −λγβ1

1 + λγ

(
1
0

)
,

1
σ 2 (C1 −C2) = diag

(
1
4

− 1
(1 + λγ )2

,
1
4

− 1
(1 + λ)2

, · · · ,
1
4

− 1
(1 + λ)2

)
,

C1−C2 + d1dT
1

= diag
(

σ 2{(1+λγ )2−4}+(1+λγ )2β2
1

4(1+λγ )2
,

σ 2(λ+3)(λ−1)
4(1+λ)2

, · · · ,
σ 2(λ+3)(λ−1)

4(1+λ)2

)
.
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Figure . Theplots ofdT
2 (C1 − C2 + d1d

T
1 )

−1d2 againstβ1 for comparingbetween theordinary ridge and the
proposed class. Under σ 2 = 1, λ = 2.5, and γ = 0.5, the left panel shows the orthonormal case ρ = 0; the
right panel shows the non-orthonormal case ρ = 0.9. The figures show that dT

2 (C1 − C2 + d1d
T
1 )

−1d2 ≤ 1
if β1 is near . For the orthonormal case, Equation () allows the expression.

dT
2 (C1 − C2 + d1d

T
1 )

−1d2 = 6.25β2
1

σ 2{ ( 1 + 1.25)2 − 4 } + ( 1 + 1.25 )2β2
1

= 6.25β2
1

1.0625σ 2 + 5.0625β2
1
.

Hence, the range of β1 is [−0.8947, 0.8947]. In this range, Theorem  verifies the relation MSE(β̂1) ≥
MSE(β̂2) [see also Yang () who numerically verified the relationMSE(β̂1) ≥ MSE(β̂2)].

Some simplification is possible as

dT
2 (C1 −C2 + d1dT

1 )
−1d2 = 4λ2γ 2β2

1

σ 2{ ( 1 + λγ )2 − 4 } + ( 1 + λγ )2β2
1
. (3)

We know that a diagonal matrix is n.n.d. if and only if its diagonals are all nonnegative. It
means that (C1 −C2)/σ

2 is n.n.d. if and only if:
1) (1 + λγ )2 ≥ 4 and 2) (1 + λ)2 ≥ 4.
Equivalently, λ ≥ 1 and γ ≥ 1/λ. For instance, if λ = 2.5, then γ ≥ 2/5. If we let

v1 = −4λγβ1(1 + λγ )

σ 2{(1 + λγ )2 − 4} + (1 + λγ )2β2
1

,

then d2 = (C1 −C2 + d1dT
1 )v for vT = (v1, 0T). That is, Conditions (i) and (ii) of Theorem 1

are satisfied when λ = 2.5 and γ ≥ 2/5. From Equation (3), dT
2 (C1 −C2 + d1dT

1 )
−1d2 goes to

zero as β1 → 0 (see also Fig. 1). Thus, if β1 is near 0, Condition iii) of Theorem 1 is verified.
Therefore,M(β̂1) − M(β̂2) is n.n.d., implyingMSE(β̂1) ≥ MSE(β̂2). While the choice γ =
2/5 is allowed, this does not strictly improve the MSE as Condition iii) yields the equality.
We suggest a slightly larger value, say γ = 1/2 > 2/5 so that dT

2 (C1 −C2 + d1dT
1 )

−1d2 can be
strictly less than one.

Second, we compare between the LSE and the proposed class by letting W1 =
diag(0, . . . , 0) andW2 = diag(λγ , λ, . . . , λ) for 0 < γ < 1 and λ > 0. Then,

d1 = 0, d2 = (XTX +W2)
−1XTXβ − β = −λγβ1

1 + λγ

(
1
0

)
,

1
σ 2 (C1 −C2) = diag

(
1 − 1

(1 + λγ )2
, 1 − 1

(1 + λ)2
, · · · , 1 − 1

(1 + λ)2

)
,
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dT
2 (C1 −C2 + d1dT

1 )
−1d2 = λ2γ 2β2

1

σ 2{ ( 1 + λγ )2 − 1 } .

Similar to the case for the ridge, Conditions i)-iii) hold when β1 is near 0 under λ = 2.5
and γ = 1/2 > 2/5.

Therefore, we have theoretically verified our choice γ = 1/2 in Equation (2) such that the
proposed estimator simultaneously improves upon both the ordinary ridge and the LSE when
β1 is near 0. This conclusionwould continue to hold even for non-orthonormal cases of ρ �= 0,
where the tractable formula of dT

2 (C1 −C2 + d1dT
1 )

−1d2 is no longer available. We compute
dT
2 (C1 −C2 + d1dT

1 )
−1d2 numerically with ρ = 0.9, and verify dT

2 (C1 −C2 + d1dT
1 )

−1d2 ≤ 1
if β1 is near 0 as shown in Fig. 1.

Remark I: An important implication from the above simple example is that the global
shrinkage parameter (λ = 2.5) in the proposed method must be larger than that of the
ridge (λ = 1). However, the amount of shrinkage corresponding to the nonzero coefficients
(λγ = 2.5 × 2/5 = 1) remains the same as the ridge. Hence, the proposed method improves
upon the ridge by imposing higher shrinking rate for the zero coefficients.

Although the above example considers the simple case of p < n, Conditions of Theorem
1 can be satisfied for more general X and β, including the case of p > n. Under high-
dimensionality, however, Conditions (i)–(iii) are difficult to be verified without relying on
computer programs.

We propose away to verify Conditions (i)–(iii) in Theorem1, under the case of p > n. Note
that if rank(C1 −C2 + d1dT

1 ) = rank([C1 −C2 + d1dT
1 |d2]), then d2 belongs to the column

space ofC1 −C2 + d1dT
1 . This implies d2 = (C1 −C2 + d1dT

1 )v for some v ∈ Rp. If so, Condi-
tion (ii) inTheorem1 is satisfied.One can useqr()$rank in R to obtain the rank of amatrix.
For instance, one can check Condition (ii) under p = 100, n = 50, λ = 2.5, γ = 1/2,σ = 1,
W1 = I100,

W2 = diag(
20︷ ︸︸ ︷

λγ , . . . , λγ ,

80︷ ︸︸ ︷
λ, . . . , λ), β = (

20︷ ︸︸ ︷
0.5, . . . , 0.5,

80︷ ︸︸ ︷
0, . . . , 0)T

First, we generate the design matrix as in the simulations (Section 5.1). Then we obtain

C1 −C2 + d1dT
1 =

⎡
⎢⎢⎢⎣

−0.0046 0.0059 · · · 0.0026
0.0059 0.0070 · · · 0.0086

...
...

. . .
...

0.0026 0.0086 · · · 0.0065

⎤
⎥⎥⎥⎦ ,

[C1 −C2 + d1dT
1 |d2] =

⎡
⎢⎢⎢⎣

−0.0046 0.0059 · · · 0.0026
0.0059 0.0070 · · · 0.0086

...
...

. . .
...

0.0026 0.0086 · · · 0.0065

∣∣∣∣∣∣∣∣∣
−0.0148
−0.0912

...
−0.0401

⎤
⎥⎥⎥⎦ .

Condition (ii) is verified as rank(C1 −C2 + d1dT
1 ) = rank([C1 −C2 + d1dT

1 |d2]) = 70.
Conditions (i) and (iii) can be checked more easily.
Remark II: The developed framework of evaluating the MSE matrix is applicable for esti-

mators having the expressions of both variance and bias. This is mainly the case of linear
estimators β̂ = Ly, where L is a deterministic matrix, including the LSE, ordinary ridge, and
the proposed class. It is typically not possible to evaluate nonlinear estimators, in particular
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the Lasso estimator. The Lasso estimator is often evaluated by the upper bound of the MSE
(Hansen, 2016).

5. Simulations

We conducted Monte Carlo simulations to study the performance for the proposed method.

5.1. Model design

We consider a sparse high-dimensional model, where the true β has (q + r) nonzero terms
and p− (q + r) zero terms such that

β = (

q︷ ︸︸ ︷
b/q, . . . , b/q,

r︷ ︸︸ ︷
d/r, . . . , d/r,

p−(q+r)︷ ︸︸ ︷
0, . . . , 0)T,

for b, d ∈ R. We set p ∈ {50, 100, 150, 200} and q = r = 10. We consider four cases: (I)
b = d = 5 (II) b = d = 10 (III) b = 5 and d = −5 (IV) b = 10 and d = −10. This type of
sparse high-dimensional models is adopted in many papers such as Emura et al. (2012) and
Bühlmann (2013). The sample size is fixed at n = 100 throughout the simulations.

The marginal distributions of p regressors follow N(0, 1). We introduce correlation
among columns of the design matrix X = (x1, . . . , xn)T by letting

xTi =
(
zi1 + ui√

2
, . . . ,

ziq + ui√
2

,
zi(q+1) + vi√

2
, . . . ,

zi(q+r) + vi√
2

, zi(q+r+1), . . . , zip
)

,

where zi1, . . . , zip and ui, vi all independently follow N(0, 1) for i = 1, . . . , n. This yields
the correlation

Corr(xi j, xi j′ ) =
⎧⎨
⎩
0.5 if j, j′ ∈ {1, . . . , q},
0.5 if j, j′ ∈ {q + 1, . . . , q + r},
0 otherwise.

The design matrix that has the same correlation structure is generated by X.pathway
routine in R compound.Cox package (Emura et al., 2017a).

After generating the designed matrix, we set y = Xβ + ε, where ε ∼ Nn(0, I). Based on
500 replications (on ε), the performances of the proposed estimator will be examined by the
MSE criterion (Section 5.2 and 5.3). We will also study the performance of the proposed sig-
nificance test (Section 5.4).

5.2. MSE comparison for fixed λ and�

We compare the performances of the proposed method and ridge regression in terms of the
MSE curve, which is the plot of the MSE

MSE(β̂(λ)) = E{(β̂(λ) − β)T(β̂(λ) − β)},
MSE(β̂(λ, �∗)) = E{(β̂(λ, �∗) − β)T(β̂(λ, �∗) − β)},

against λ. Here, �∗ = E(�̂) is given prior to the simulations. The MSE curve is often called
“infeasibleMSE” since the point estimates are not obtained unless the valuesλ are determined.
Nevertheless, the curve gives us some insight about potential gain of the MSE with varying
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6094 S.-P. YANG AND T. EMURA

Figure . TheMSE curves of the ridge andproposed estimators againstλwithb = d = 5. Thepoints denote
the minimum of each curve.

values of λ. The MSE of the LSE is calculated asMSE(β̂) = MSE(β̂(0)) only for the case of
p= 50.

Figures 2–5 depict the two MSE curves, MSE(β̂(λ)) and MSE(β̂(λ, �∗)). We see that
there always exists some λ > 0 such that the ordinary ridge estimator has strictly smaller
MSE than that of the LSE, i.e., MSE(β̂(λ)) < MSE(β̂(0)). This is the consequence of the
existence theorem as mentioned in Section 2.2. The proposed method gives a quite simi-
lar pattern of the MSE curve to that of the ordinary ridge. However, the minimum of the
MSE curves for the proposed method is smaller than that for the ordinary ridge in all cases.
Hence, if estimates (λ̂, �̂) are chosen properly, the MSE of the proposed estimator β̂(λ̂, �̂)

can be less than that of the ordinary ridge estimator β̂(λ̂). In addition, the superiority of

Figure . The MSE curves of the ridge and proposed estimators against λ with b = d = 10. The points
denote the minimum of each curve.
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Figure . The MSE curves of the ridge and proposed estimators against λ with b = 5 and d = −5. The
points denote the minimum of each curve.

the proposed method over the ordinary ridge tends to be greater when p is larger (p = 150
and 200). Hence, one can expect the greater benefit of the proposed estimator when p is
larger.

An important finding from Figures 2–5 is that the optimal λ for the proposed method is
always larger than that for the ordinary ridge. This result agrees with our theoretical analysis
of Section 4.2; the proposed method improves the MSE by choosing larger shrinkage param-
eter than the ridge does (i.e., λ ≥ 1). Hence, if λ is properly estimated by data, the proposed
method should give stronger shrinkage toward the zero vector.

Figure . The MSE curves of the ridge and proposed estimators against λ with b = 10 and d = −10. The
points denote the minimum of each curve.
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5.3. MSE comparison for estimated λ and�

Rather than fixing λ and � in Section 5.2, we consider the variability of estimating λ and �

for the ridge and proposed estimators. The performances are then evaluated by the “feasible”
MSE for the ridge and proposed estimator, respectively defined as

MSE(β̂(λ̂)) = E{(β̂(λ̂) − β)T(β̂(λ̂) − β)},
MSE(β̂(λ̂, �̂)) = E{(β̂(λ̂, �̂) − β)T(β̂(λ̂, �̂) − β)},

where λ̂ = argminλ≥0V (λ) and (λ̂, �̂) = argminλ≥0, �≥0V (λ, �) (see Sections 2.3 and
3.3, respectively. We also evaluate the MSE for the Lasso

MSE(β̂
Lasso

(λ̂Lasso)) = E{(β̂Lasso
(λ̂Lasso) − β)T(β̂

Lasso
(λ̂Lasso) − β)}.

where λ̂Lasso is first obtained from R cv.glmnet routine (10-fold cross validation), and then
β̂

Lasso
(λ̂Lasso) is obtained by R glmnet routine (Friedman et al. 2015).

Let β̂ = (β̂1, . . . , β̂p)
T be an estimator of β = (β1, . . . , βp)

T, which is either β̂(λ̂),

β̂(λ̂, �̂), or β̂
Lasso

(λ̂Lasso). We also examine two components of the MSE defined as

MSE(β̂ j) = E(β̂ j − β j)
2, f or j = 1 and p

Table 1 compares the MSE among the proposed method, the ordinary ridge estimator, and
the Lasso. We see that the performance of proposed estimator is always better than that of the
ridge in terms ofMSE(β̂). The advantage of the proposed method is more remarkable when
p is larger, as expected from the results in Section 5.2. For instance, when p = 200, the pro-
posedmethod reducesMSE(β̂) by half. The first column shows that the shrinkage parameter

Table . (a) Simulation results comparing three estimators (Ridge, Lasso and proposed estimator) based on
 replicates.

E(λ̂) E(�̂) MSE(β̂1) MSE(β̂p) MSE(β̂)

b = d = 5 p = 50 Ridge . – . . .
Lasso . – . . .

Proposed . . . . .
p = 100 Ridge . – . . .

Lasso . – . . .
Proposed . . . . .

p = 150 Ridge . – . . .
Lasso . – . . .

Proposed . . . . .
p = 200 Ridge . – . . .

Lasso . – . . .
Proposed . . . . .

b = d = 10 p = 50 Ridge . – . . .
Lasso . – . . .

Proposed . . . . .
p = 100 Ridge . – . . .

Lasso . – . . .
Proposed . . . . .

p = 150 Ridge . – . . .
Lasso . – . . .

Proposed . . . . .
p = 200 Ridge . – . . .

Lasso . – . . .
Proposed . . . . .

NOTE: We set the sample size n = 100.
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Table . (b) Simulation results comparing three estimators (Ridge, Lasso and proposed estimator) based on
 replicates.

E(λ̂) E(�̂) MSE(β̂1) MSE(β̂p) MSE(β̂)

b = 5, d = −5 p = 50 Ridge . – . . .
Lasso . – . . .

Proposed . . . . .
p = 100 Ridge . – . . .

Lasso . – . . .
Proposed . . . . .

p = 150 Ridge . – . . .
Lasso . – . . .

Proposed . . . . .
p = 200 Ridge . – . . .

Lasso . – . . .
Proposed . . . . .

b = 10, d = −10 p = 50 Ridge . – . . .
Lasso . – . . .

Proposed . . . . .
p = 100 Ridge . – . . .

Lasso . – . . .
Proposed . . . . .

p = 150 Ridge . – . . .
Lasso . – . . .

Proposed . . . . .
p = 200 Ridge . – . . .

Lasso . – . . .
Proposed . . . . .

NOTE: We set the sample size n = 100.

estimates λ̂ are larger in the proposed estimator than that in the ordinary ridge estimator. This
implies that the proposed estimator reduces theMSE by shrinking more toward zero than the
ridge estimator does. This finding is consistent with our theoretical calculations of the MSE
in Section 4.2.

It is interesting to point out that the proposedmethod sometimes produces largerMSE(β̂1)

than the ridge does (Table 1) for β1 �= 0. This implies that the proposedmethod does not nec-
essarily produce better estimates for non-zero regression coefficients. On the other hand, the
proposedmethod always produces smallerMSE(β̂p) than the ridge does for βp = 0. Since the
majority of regression coefficients are zero, the proposed methods has overall better perfor-
mance in terms ofMSE(β̂).

The MSE of the Lasso produces quite different pattern from the two ridge estimators
(Table 1). In general, the Lasso gives the smallest MSE(β̂) for the case of p = 200. On the
other hand, for the cases of p = 50 and p = 100, the proposed estimator performs better
than the Lasso. Some unstability in the performance of the Lasso is found, especially when
p = 100.

5.4. Performance of significance testing

We assess the performance of the proposed significance testing procedure defined in Sec-
tion 3.4. We set the problem of testing hypotheses

H0 : β1 = 0 v.s. H1 : β1 �= 0,
H0 : β50 = 0 v.s. H1 : β50 �= 0.
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Table . Simulation results for testing H0 : β50 = 0 using the proposed estimator (the LSE in parenthesis)
based on  replicates.

E(β̂50) sd(β̂50) E(Z50) sd(Z50) Type I error

β50 = 0, b = d = 5 p = 50 −.(.) .(.) −.(.) .(.) .(.)
p = 100 −. . −. . .
p = 150 −. . −. . .
p = 200 . . . . .

β50 = 0, b = d = 10 p = 50 −.(.) .(.) −.(.) .(.) .(.)
p = 100 −. . −. . .
p = 150 −. . −. . .
p = 200 . . . . .

β50 = 0, b = 5, d = −5 p = 50 −.(.) .(.) −.(.) .(.) .(.)
p = 100 −. . −. . .
p = 150 −. . −. . .
p = 200 −. . −. . .

β50 = 0, b = 10, d = −10 p = 50 −.(.) .(.) −.(.) .(.) .(.)
p = 100 −. . −. . .
p = 150 −. . −. . .
p = 200 −. . −. . .

NOTE: We set the sample size n = 100; thus the LSE is applicable only for p = 50.

Since β1 �= 0 and β50 = 0 by the simulation setting,H0 : β1 = 0 is false andH0 : β50 = 0 is
true. Based on 500 replicates, we evaluate the rejection rates

Re jection rate = 1
500

500∑
s=1

I(| Z(s) | > Zα/2),

where I(·) is the indicator function, and Z(s) is the Wald statistic at the s-th replication. The
rejection rate is “Type I error” under H0 : β50 = 0 or “power” under H0 : β1 = 0.

Tables 2 and 3 display the simulation results for the proposed testing procedure. The Type
I error rates for all cases, except only one case (p = 200, b = 5 and d = −5), are less than the
nominal level α = 0.05. Hence, the Type I error rates are generally kept below the nominal
level. Powers for most cases are exactly equal to or quite close to one. In summary, the pro-
posed test has conservative Type I error rate and high statistical power. This implies the test

Table . Simulation results for testing H0 : β1 = 0 using the proposed estimator (the LSE in parenthesis)
based on  replicates.

E(β̂1) sd(β̂1) E(Z1) sd(Z1) Power

β1 = 5/10 = 0.5, b = d = 5 p = 50 .(.) .(.) .(.) .(.) .(.)
p = 100 . . . . .
p = 150 . . . . 
p = 200 . . . . 

β1 = 10/10 = 1, b = d = 10 p = 50 .(.) .(.) .(.) .(.) ()
p = 100 . . . . .
p = 150 . . . . 
p = 200 . . . . 

β1 = 5/10 = 0.5, b = 5, d = −5 p = 50 .(.) .(.) .(.) .(.) .(.)
p = 100 . . . . .
p = 150 . . . . 
p = 200 . . . . 

β1 = 10/10 = 1, b = 10, d = −10 p = 50 .(.) .(.) .(.) .(.) ()
p = 100 . . . . .
p = 150 . . . . 
p = 200 . . . . 

NOTE: We set the sample size n = 100; thus the LSE is applicable only for p = 50.
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has a good ability to select regressors with nonzero coefficients with a small rate to select null
regressors.

Tables 2 and 3 also compare the proposed test with the test based on the LSE. Since we have
set n = 100 and p ∈ {50, 100, 150, 200} (Section 5.1), the LSE is applicable only for the case
of p = 50. In this case, we see that the LSE has unbiased estimates for regression coefficients
and Type I error rates close to the nominal level α = 0.05. However, in terms of power, the
proposed method is superior to the LSE.

6. Data analysis

6.1. Non-small cell lung cancer data

We investigated the lung cancer data, containing 131 patients with refractory non-small cell
lung cancer. There are 33297 gene signatures per patient. The data is available at a genomics
data repository http://www.ncbi.nlm.nih.gov/geo/ with accession number GSE33072.

The data record epidermal growth factor receptor (EGFR) that is the cell-surface receptor
for members of the epidermal growth factor family of extracellular protein ligands. A patient
with high EGFR index tends to have a cancer relapse or less probability of recovery (Dicker
and Rodeck, 2005). We treat the EGFR index as a response variable (yi) in our analyses.

Since the EGFR index is missing for 7 patients, we removed them and kept the remaining
124 patients for our analysis (n = 124). As commonly done, (e.g., Kim and Lee, 2007), we pre-
filtered the top 394 of gene signatures with a high coefficient of variation (CV > 0.2) to insure
the quality of regressors themselves, independently of the responses. After the pre-filtering,
we standardized the design matrix.

6.2. Numerical results

The performance of the ridge and proposed methods are compared by prediction error. First,
we divide 124 patients into 4 groups of equal size, denoted by �k, k = 1, 2, 3, 4 (Fig. 6).

Second, the estimator based on all the data not in �k is calculated and denoted by β̂
(−k)

.
Then the prediction error (PE) is defined as

PE = 1
124

4∑
k=1

∑
i∈�k

(yi − xTi β̂
(−k)

)2,

where β̂
(−k)

denotes either the ridge or proposed estimatewith p = 394 regressors. The values
of PE are evaluated over the 100 randomly chosen folds of �k, k = 1, 2, 3, 4.

Figure . The -fold cross-validation. The n = patients are randomly divided into  groups each contain-
ing 124/4 = 31 patients. For instance, patients in �3 are removed and the remaining patients in �1 ∪ �2 ∪
�4 are used for calculating regression coefficients β̂

(−3)
.
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Table . Comparison between the ridge regression and the proposed method over  random cross-
validations on the lung cancer data.

Shrinkage parameters Prediction Error (PE)
Threshold

No. of replicate λ̂Ridge λ̂Proposed �̂Proposed PE (Ridge) PE (Proposed)

 . . . . > .
 . . . . < .
 . . . . > .
 . . . . > .
 . . . . > .
 . . . . > .
 . . . . > .
 . . . . > .
 . . . . > .
 . . . . > .
≈ ≈ ≈ ≈ ≈ ≈
 . . . . > .
 . . . . > .
Average . . . . > .

NOTE: PE (Prediction Error) is defined as PE = 1
124

4∑
k=1

∑
i∈�k

(yi − xTi β̂
(−k)

)2 .

Table 4 compares the PE between the ordinary ridge and proposed estimators. First, we
see that the shrinkage parameter λ̂ of proposed method is always greater than that of that of
the ordinary ridge. This result is consistent with both the theoretical and simulation results.
The PE of the proposed method is almost always less than that of the ordinary ridge over the
100 random cross-validations. Hence, the proposed method performs better than the ridge
in terms of predicting the EGFR index.

Next, the performance on regressor selection is compared between the ordinary ridge and
the proposed method. We first separate the n = 124 samples into two parts; the 62 training
samples and the remaining 62 testing samples. The 62 training samples is used to estimate the
shrinkage parameters (λ̂, �̂) and regression coefficients β̂(λ̂, �̂). Figure 7 demonstrates
that the minimizers ofV (λ, �) are computed as λ̂= 220 and �̂= 1.53.

Table 5 compares the ordinary ridge and the proposed method in terms of the 20 selected
genes based on P-values (Section 3.4). We see that the selected genes are very similar between

Figure . The profile plots of the GCV function for estimating�(left graph) and λ(right graph). All plots are
based on  training samples. The left graph plots V {λ̂(δi), δi} against δi ∈ [0, 3]. The right graph plots
V (λ, �̂) against λ, where �̂ = 1.53 is given.
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Table . The  most strongly associated genes from the lung cancer data based on the ordinary ridge and
proposed methods.

Ordinary Ridge Proposed method

No. Gene symbol Coefficient P-value Gene symbol Coefficient P-value

 FGA −. .×10−7 FGA −. .×10−7

 AKRB −. .×10−7 AKRB −. .×10−6

 CPS −. .×10−5 CPS −. .×10−5

 KRTA −. .×10−5 FGG −. .×10−5

 MSMB −. . MSMB −. .
 FGG −. . KRTA −. .
 CYPBP . . CYPBP . .
 SERPINB −. . FGB −. .
 FGB −. . CYPB . .
 CYPB . . SERPINB −. .
 LOC −. . GPR . .
 SERPINB −. . LOC −. .
 GPR . . CRP −. .
 HSDB . . SERPINB −. .
 CRP −. . SLCA −. .
 DKK −. . HSDB . .
 SLCA . . DKK −. .
 MUC −. . MUC −. .
 CPN −. . CPN −. .
 SLCA −. . ∗ . .

PE=. PE=.

NOTE: The genes are ordered according to their P-values. The bottom row shows the prediction error (PE) of the linear
predictors based on the  genes. The gene symbol is a specified abbreviation of the information of the gene (Wain, et al.,
). For instance, AKRB is the abbreviation of “aldo-keto reductase family , member B”; MSMB is the abbreviation of
“microseminoprotein, beta-.”The missing gene symbol is indicated by “∗”where the ID_REF of the original data is used.

the two methods, but they have different ordering (Table 5). For instance, the gene FGG is
more strongly significant than the gene KRT6A for the proposed method, but their orders are
reversed for the ordinary ridge.

The 20 selected regressors (genes) by the training samples are used to predict the response
(the EGFR index) of the remaining 62 testing samples. Let β̂

Train
be either the ordinary ridge

Figure . The plots of the EGFR index yi against its predictor (xTesti )Tβ̂
Train

. The dash lines (red color)

denote the distance between the value yi and the predictor (xTesti )Tβ̂
Train

. The prediction error is PE =∑
i∈Test {yi − (xTesti )

T
β̂
Train}2/62.
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Table . The  most strongly associated genes from the lung cancer data based on the ordinary ridge and
proposed methods.

Ordinary Ridge Proposed method

No. Gene symbol Coefficient P-value Gene symbol Coefficient P-value

 FGA −. .×10−7 FGA −. .×10−7

 AKRB −. .×10−7 AKRB −. .×10−6

 CPS −. .×10−5 CPS −. .×10−5

 KRTA −. .×10−5 FGG −. .×10−5

 MSMB −. . MSMB −. .
 FGG −. . KRTA −. .
 CYPBP . . CYPBP . .
 SERPINB −. . FGB −. .
 FGB −. . CYPB . .
 CYPB . . SERPINB −. .
 LOC −. . GPR . .
 SERPINB −. . LOC −. .
 GPR . . CRP −. .
 HSDB . . SERPINB −. .
 CRP −. . SLCA −. .
 DKK −. . HSDB . .
 SLCA . . DKK −. .
 MUC −. . MUC −. .
 CPN −. . CPN −. .
 SLCA −. . ∗ . .
 ∗ . . CYPA −. .
 GPX −. . SLCA −. .
 CYPA −. . ∗ . .
 ∗ . . ∗ . .
 ∗ . . SLCA . .
 SA −. . AZGP . .
 AKRC −. . C −. .
 C −. . GPX −. .
 SLCA −. . 8151583∗ −. .
 SERPINB −. . BPIFA −. .
 VSIG . . MMP . .
 IGJ . . SERPINB −. .
 AKR1C1 −. . GYS . .
 FGL −. . FGL −. .
 AZGP . . MMP13 . .
 MMP −. . VSIG . .
 C4BPA . . GLYATL1 . .
 BPIFA −. . AKRC −. .
 APCS −. . SA −. .
 8128714∗ −. . MMP −. .
 PLG −. . PLG −. .
 MMP . . ZBBX −. .
 CBPB . . 7892787∗ −. .
 MFAP5 −. . CBPB . .
 GYS . . SPANXB2 −. .

PE=. PE = .

NOTE: The genes are ordered according to their P-values. The bottom row shows the prediction error (PE) of the linear
predictors based on the  genes. The gene symbol is a specified abbreviation of the information of the gene (Wain, et al.,
). For instance, AKRB is the abbreviation of “aldo-keto reductase family , member B”; MSMB is the abbreviation of
“microseminoprotein, beta-.”The missing gene symbol is indicated by “∗”where the ID_REF of the original data is used.

or proposed estimator of the 20 regression coefficients from the training sample (Table 5).
Also, let xTesti = (xi(1), . . . , xi(20))T be the corresponding 20 gene signatures in the testing

patients (i ∈ Test). Then we plot the EGFR index yi against its predictor (xTesti )Tβ̂
Train

for
all i ∈ Test (Fig. 8). Fig. 8 demonstrates that the predictors from both the ordinary ridge and
proposed methods are highly predictive of the EGFR index. We compare the performance of
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the two methods by the prediction error (PE) defined as

PE = 1
62

∑
i∈Test

{yi − (xTesti )
T
β̂

Train}2.

The predictive performance of the proposed estimator (PE = 0.6648) is better than that of
the ordinary ridge estimator (PE = 0.7069).

We also compare PE using the top 45 genes. The results are summarized in Table 6. The
prediction error of the proposed method (PE = 0.5420) is still less than that of the ridge
(PE = 0.5846). Thus, the proposed method gives a consistently better prediction for the
EGFR index than the ordinary ridge without influenced by the threshold number.

7. Conclusion

This paper proposed a special class of the generalized ridge estimators under high-
dimensionality. Unlike the ordinary ridge regression, the proposed method can utilize some
prior knowledge on regression coefficient; if one is sure that jth regression coefficient is
nonzero, one should give it less shrinkage. We showed that the proposed idea can be justified
from the Bayesian view and the theoretical MSE calculations. In particular, the theoretical
MSE calculations allow one to understand the mechanisms of the proposed class to improve
upon both the LSE and the ordinary ridge by shrinking strongly on the null coefficients while
shrinkingweakly on the nonzero coefficients. Such theoretical results give us plausible reasons
why the proposed method can outperform the existing procedures.

In simulations, we demonstrated the advantage of the proposed method under the sparse
models, especially for the reduction of the MSE over the ordinary ridge regression. In par-
ticular, when the number of regressors is larger, the advantage of proposed method is more
remarkable. Compared to the Lasso, the proposedmethod is superior for themoderately large
dimensions (p = 50 and 100 with n = 100) while it is inferior for large dimension (p = 200
with n = 100). However, we believe that the disadvantage does not exclude the usefulness of
the proposed method as it offers P-values for all the coefficients which are not directly pos-
sible by the Lasso. In addition, in many medical applications, the dimension p is reasonably
reduced by initial quality controls for the regressors themselves (see Section 6.1).

In addition to proposing a new regression estimator, we developed significance testing
for each regressor, namely H0 j : β j = 0, which is extremely useful for regressor selection.
This is important in applications to genetic (SNP or microarrays) data, in which biomedi-
cal researchers typically evaluate the significance of each gene in terms of P-values and select
small fraction of significant genes. Applying the proposedmethod to the lung cancermicroar-
ray data, we successfully chose a small subset of regressors (genes) that are highly predictive to
the response (the EGFR index).While our significance testing immediately follows the frame-
work of Cule et al. (2011), we fail to give a theoretical support for it. Instead, we have justified
its satisfactory control of the Type I error rate (a bit conservative) and power by simulations.
As pointed out by Bühlmann (2013), the ridge estimator only produces a biased estimator for
β j that is not identifiable under high-dimensionality. An alternative proposal of Bühlmann
(2013) is the test based on the bias-corrected ridge estimator, which gives mathematically
more rigorous control for the Type I error, or even control for multiple testing. See also a sim-
ilar bias-correction method of Zhang and Zhang (2014) to construct confidence intervals. So
far, these bias-correction approaches seem to be restricted to a linear estimator, including the
ordinary ridge and LSE. It is an interesting but challenging topic to follow this approach under
the proposed non-linear estimator.
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6104 S.-P. YANG AND T. EMURA

An important prerequisite to apply the proposed approach is a good initial estimate based
on the univariate LSE (Section 3.2). While many time-to-event data analyses tend to use uni-
variate estimates or univariate selection (Beer et al., 2002; Chen et al., 2007; Emura and Chen,
2014; Emura and Chen, 2016; Emura et al., 2017a,b; Jenssen, et al., 2002; Matsui, 2006) as a
successful initial screening process for microarrays, there seems little theoretical support for
it. In our simulations (not shown), we also observe that the univariate LSE has high sensitivity
to separate the nonzero coefficients from the null coefficients, and hence it successfully serves
as an initial screening process.We are currently trying to findmore theoretical and numerical
justifications for the univariate LSE under high-dimensionality.
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