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Dependent competing risks often arise in industrial life tests, where multiple types of 

failure determine the total lifespan of a unit. To make inference on multiple failure time 

distributions, two different models have been developed in reliability theory: copula 

models and frailty models. The objective of this paper is to propose a frailty-copula 

model for reliability theory, which is a hybrid model including both a frailty term (for 

heterogeneity) and a copula function (for dependence). We derive properties of the 

models that are useful to assess the reliability of units. We develop likelihood-based 

inference methods based on competing risks data. We also develop a model-diagnostic 

procedure based on the nonparametric estimation of the sub-distribution functions. We 

conduct simulations to examine the performance of the proposed methods. 
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1.   Introduction 

Dependent competing risks often arise in industrial life tests, biomedical follow-

up studies, and animal experiments, where multiple types of failure determine 

the total lifespan of a unit. To make inference on multiple failure time 

distributions, copula-based dependent failure time models (Zheng and Klein 

1995; Escarela and Carriere 2003; Lo and Wilke 2010; Shih and Emura 2018; 

Hsu et al. 2017; Emura and Chen 2016; Emura and Michimae 2017; Zhou et al. 

2018; Zhang et al. 2018; Shih et al. 2018; Emura et al. 2019) have been 

considered in recent studies. The idea of copula models is to make inference on 

marginal failure time distributions by imposing a copula structure among 

different failure types. 
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In the literature of reliability and competing risks theory, copula models are 

getting more popular than those traditional bivariate parametric models, such as 

a bivariate Weibull model (Moeschberger 1974; David and Moeschberger 1978; 

Fan et al. 2019), a bivariate normal model (Nádas 1971; Moeschberger 1974; 

Basu and Ghosh 1978) and an independent Lindley model (Mazucheli and 

Achcar 2011). An important advantage of copula models is that the copula 

parameters are separately interpretable from the marginal models. Recently, Hsu 

et al. (2017) and Zhou et al. (2018) proposed copula-based approaches for 

marginal regression models for reliability theory. 

Another strategy to analysis of dependent competing risks is based on a 

shared frailty model (Liu 2012) or mixed model (Lo et al. 2017). The frailty 

model considers an unobserved frailty value, which specifies frail units via a 

large value (easy to fail) or robust units via a small value (difficult to fail). Liu 

(2012) proposed a gamma frailty model for reliability theory, where the 

conditional failure times follow a log-location-scale model. The mixed model is 

essentially the same as the frailty model. It should be emphasized that the frailty 

or mixed model considers a conditional model (given a frailty term), which is 

different from the copula models that consider marginal (unconditional) models. 

Thus, the interpretation of the copula and frailty models is essentially different. 

A one-to-one relationship between a frailty distribution and an Archimedean 

copula does not imply the equivalence between the frailty model and copula 

model. For instance, a frailty model with the conditional piecewise constant 

hazard of Lo et al. (2017) no longer has piecewise constant hazards in their 

marginal. Hence, their model is not equivalent to a copula model with marginal 

piecewise constant hazards of Emura and Michimae (2017), even though the two 

models can have the same copula. Consequently, one cannot directly compare 

the frailty model and the copula model since their parametrizations are different 

(Section 3.3.4 of Duchateau and Janssen 2008).  

A key in distinguishing between the frailty model and the copula model are 

the parameter interpretation. In the frailty model, the variance parameter 

(Duchateau and Janssen 2008) is interpreted as the degree of unobserved 

“heterogeneity” among units. Hence, the variance parameter in the frailty 

distribution is not purely representative of “dependence” among units, as it also 

influences the marginal distributions. In general, the copula model is suitable for 

purpose of studying dependence among units while the frailty model is suitable 

for purpose of studying heterogeneity among units.   

The objective of this paper is to propose a frailty-copula model for reliability 

theory, which is a model including both a frailty term (for heterogeneity) and a 

copula function (for dependence). An important advantage of this hybrid model 

is that it allows to compare the frailty model and copula model in a systematic 



manner. In the literature, frailty and copula models have been separately studied. 

Only Rotolo et al. (2013) and Emura et al. (2017) considered survival models 

having both frailty and copula for “clustered” competing risks data. Our 

proposed model is motivated by the joint frailty-copula model of Emura et al. 

(2017). The purpose and setting of their paper are largely different from our 

objective. We suitably modify their model for purpose of reliability theory.  

This paper is organized as follows. Section 2 presents our proposed method. 

Section 3 provides simulations to check the performance of the proposed method.  

 

2.   Proposed method 

2.1.   Competing risks data 

Let 
ijT  be continuous failure time of a unit {1, , }i n  due to type {1, 2}j  

failure mode. Also, let 
iC  random censoring time or the length of testing 

duration. Under competing risks, one can observe the first occurring event time 

1 2min( , , )i i i iT T T C  and one of the three event types (Event 1, Event 2, and 

Censoring). We define two event indicators 
1( )i i iT T  I  and *

2( )i i iT T  I . 

What we observe are *{ ( , , ) : 1, , }i i iT i n   . 

2.2. Proposed model 

We assume that the individual units under an experiment are heterogeneous in 

the sense that some units are fragile (easy to fail) and some are robust (difficult 

to fail). Fragile items may have short failure times for Event 1 and Event 2, 

while robust items may have long failure times for them. Hence, this 

heterogeneity usually yields positive correlation between 
1iT  and 

2iT  (Duchateau 

and Janssen 2008). 

To model the heterogeneity, we consider an unobserved frailty term 
iZ  that 

is a positive random variable with mean=1 and variance= . We specifically 

consider a gamma frailty model 
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The term 
iZ  represents a factor that influences the two failure types: 1iZ  

specifies fragile units, 1iZ  specifies robust units, and 1iZ   specifies normal 

units. The variance   represents the degree of heterogeneity. 

We assume that the conditional survival function of ijT  given iZ  follows a 



Weibull distribution 
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where j  is a location parameter and j  is a scale parameter. 

In the frailty model of Liu (2012), it is assumed that the pairs  21, ii TT  are 

conditionally independent, i.e. 
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Emura et al. (2017) proposed a joint frailty-copula model by relaxing the 

conditional independence assumption (1). Emura et al. (2017) considered the 

Clayton copula for dependence and the semiparametric Cox models for the 

marginal regression under clustered competing risks data. To modify the idea of 

the frailty-copula model to be adaptive to the Weibull parametric competing 

risks model in reliability theory (also to a non-clustered model), we restrict our 

attention to the Gumbel copula instead of the Clayton copula. 

Accordingly, we propose a frailty-copula model by specifying the 

conditional bivariate survival function with the Gumbel copula:  

   

1 2

1

1 2

1

1 2

, | 1 2 1 1 2 2

1
1 1

| 1 | 2

1
1 1

1 2

1 2

( , | ) ( , | )

exp log ( | ) log ( | )

exp ,              
exp( ) exp( )

i i i

i i i i

T T Z i i

T Z T Z

S t t z P T t T t z

S t z S t z

t t
z





 

 

 

 





 

 

  

 
                  

 
                 
   

 

(2)

 

where 0  is a parameter of the Gumbel copula. If 0  , the proposed 

model reduces to the model of Liu (2012) in Equation )1( . Hence, the proposed 

model is a generalization of the model of Liu (2012) with an additional 

parameter  . 

 

2.3 Properties of the proposed model 

We derive several useful quantities in reliability theory, such as the quantiles 

under the proposed model (2). Although our model is a variant of the joint 



frailty-copula model of Emura et al. (2017), such derivations have not been 

considered.  

We rewrite the proposed model (2) as exp( )zA  where 
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The unconditional survival function of  21, ii TT  can be explicitly written as 
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The marginal survival function and the p-th quantile function follow the three-

parameter Burr XII model (Burr 1942): 
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for j  1 and 2. The model is often used in reliability theory due to its flexibility 

and good mathematical properties (Watkins 1999; Belaghi and Asl 2016). 

2.4 Likelihood-based inference 

To estimate parameters of the proposed model (2), we propose a likelihood-

based method. The sub-density function ),( jtf  for the j-th failure type is 
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Therefore, the likelihood function can be derived as 
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The log-likelihood function can be re-expressed as 
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1
  and  


n

i
im

1

**  . Some restrictions on   and   will be 

imposed to avoid the non-identifiability (Tsiatis 1975). What we use is the most 

common one, the known value of   (Zheng and Klein 1995). Then, the 

maximum likelihood estimator (MLE) is obtained numerically, for instance by 

using “nlm( )” or “optim( )” in R. 

 

2.5 Goodness-of-fit 

We propose a method to examine the goodness-of-fit of the proposed model (2) 

to data. Our method consists of three steps: (i) parametric estimation of the sub-

distribution function, (ii) nonparametric estimation of the sub-distribution 

function, (iii) comparison of the parametric and nonparametric estimators. If the 

two estimators are close, we conclude that there is no evidence against the model.  

 (i) Parametric estimation of sub-distribution functions 

Under the proposed model (2) and by the formula of ),( jtf , the parametric 

estimator of the sub-distribution function (for Event j) is derived as 
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(ii) Nonparametric estimation of sub-distribution functions 

For nonparametric estimation, we let      kTTT  21  be distinct uncensored 

times. Then, the nonparametric estimators of sub-distribution functions (Escarela 

and Carriere 2003) are 

 
 :

ˆˆ , ( ) , 1, 2
i

ij

i T t i

d
F t j S t j

n

   

where    


n

j iji TTn
1
I ,     


n

j iji TTd
1
I ,     


n

j ijii TTd
11 I , 

   


n

j ijii TTd
1

*
2 I ,   and   

 :

ˆ( ) (1 / )
i

i ii T t
S t d n


  . 

 

(iii) The Cramér-von Mises type statistic 
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A large value of CvM  means the lack of fit for the model (2). In practice, a 

graphical diagnostic for the value of CvM  is helpful. We suggest plotting 

 ˆ ,F t j


 and  ˆ ,F t j  on the same graph for each j . We shall demonstrate this 

graphical model diagnostic through the simulations below. 

3.   Simulations 

We examine the performance of the proposed likelihood method by simulations. 

We generated data of size n=100 or 200 from the model (2) under some specific 

parameters (Table 1). We also generated independent censoring times from a 

uniform distribution that gives 20% censoring percentage. Under competing 

risks, we only use the first occurring event time 
1 2min( , , )i i i iT T T C  and two 

event indicators 
1( )i i iT T  I  and *

2( )i i iT T  I . Based on the observed 

data 
*{ ( , , ) : 1, , }i i iT i n   , the MLE is obtained by “optim()”. Our 

simulations are based on 500 repetitions. 

Table 1 shows the simulation results. It shows that all the parameters are 

almost unbiasedly estimated except for  . The standard deviation (SD) of the 

estimates decrease as the sample size increases from n=100 to 200. The SE is 

close the SD, except for  . This implies some difficulty of estimating   in 

small samples, but the bias and SD decrease as the sample size increases. The 

coverage probability (CP) of the 95% CI are mostly close to 0.95.  

Figure 1 shows one simulation run for estimating the sub-distribution 

function by the parametric and nonparametric methods. Since the data were 

simulated from the correct model, the two estimators of the sub-distribution 

functions are close to each other. This implies that the two estimators 

consistently estimate the true sub-distribution function. However, if the model 

assumptions were not correct, the parametric estimator would be inconsistent. 



Table 1. Simulation results under 6  based on 500 repetitions. 

 n  Parameter True Mean SD SE CP% 

20%T2

60%T1

20%CEN







 

100 
1  1 0.9991 0.0266 0.0247 0.9239 

2  1.5 1.5235 0.1981 0.1902 0.9506 

1  0.1 0.0974 0.0208 0.0189 0.9259 

2  0.5 0.5093 0.1050 0.1059 0.9506 

  0.5 0.5914 0.5677 0.4090 0.9362 

200 
1  1 0.9993 0.0182 0.0173 0.9346 

2  1.5 1.5046 0.1336 0.1265 0.9366 

1  0.1 0.0981 0.0128 0.0132 0.9366 

2  0.5 0.4987 0.0756 0.0723 0.9448 

  0.5 0.5443 0.2510 0.2490 0.9489 

T1=the percentage that failure with Event 1. T2=the percentage that failure with Event 2. CEN=the 

percentage that lifetime is censored. SD=the sample standard deviation of the estimates. SE=the 

average of the standard error. CP%=the coverage ratio for the 95% confidence intervals.  

 

 

 
Figure 1 Estimates for the sub-distribution function under =(1, 1.5, 0,1, 

0.5, 0.5, 6) with 20% censoring. 
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