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hood estimator for the common mean vector. With the aid of novel KEYWORDS
mathem.atlcal‘ldentltle's forthe I':GM copula, wgderlve the expression Asymprtotic theory; copula;
of the Fisher information matrix. We also derive an approximation Fisher information;
formula for the Fisher information matrix, which is accurate and easy maximum likelihood

to compute. Based on the theory of independent but not identically estimation; multivariate
distributed (i.n.i.d.) samples, we examine the asymptotic properties analysis; Stein’s identity
of the estimator. Simulation studies are given to demonstrate the

performance of the proposed method, and a real data analysis is

provided to illustrate the method.

1. Introduction

Multivariate meta-analysis has been widely applied to scientific areas such as education and
medicine, where multiple outcomes are measured across different studies. A well-known
example in educational research is a meta-analysis of bivariate test scores (on verbal and
mathematics) collected from different studies [1,2]. Section 7 shall introduce our original
data on bivariate entrance examination scores (on mathematics and statistics) obtained
across 5 different academic years (from 2013 to 2017).

If one performs separate univariate meta-analyses on multivariate outcomes, any pos-
sible dependence is ignored. Riley [2] has shown that ignoring dependence between
outcomes increases the mean-square error for estimating parameters. In the example of
the bivariate test scores, positive dependence arises due to students’ intellectual ability. In
medical research, positive dependence between two survival outcomes is a key to validate
surrogacy [3,4] and to predict overall survival [5,6].

One should consider multivariate meta-analysis to perform simultaneous analyses with-
out ignoring dependence between outcomes. Multivariate analyses would increase the
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efficiency of parameter estimation and allow one to study dependence patterns among
outcomes, provided that the form of the dependence pattern is specified correctly. Unfor-
tunately, the developments of multivariate meta-analysis are limited to the multivariate
normal model [2,7,8]. This motivates us to explore an alternative model giving a different
dependence pattern from the multivariate (bivariate) normal distribution model.

The Farlie-Gumbel-Morgenstern (FGM) model provides the classical way to consider a
dependence pattern between two random variables, in a different manner from the bivari-
ate normal model. The FGM model was first introduced by Morgenstern [9], which can
even be traced back to Eyraud [10]. It was later studied by Farlie [11] and Gumbel [12].
The FGM distribution is naturally derived as a linear combination of products of the dis-
tribution of order statistics [13]. More general constructions based on order statistics were
studied by various authors [14-16].

The FGM copula is a copula derived from the FGM models. Due to its simple form,
the FGM models have been used to demonstrate both theoretical and practical aspects of
copulas. Genest and Favre [17] adopted the FGM copula as an example to demonstrate
modelling strategies, rank-based inference procedures, and goodness-of-fit tests on copu-
las. These demonstrations may not be possible under the normal copula, a copula derived
from the bivariate normal distribution. In applications to the medical study, Kim et al.
[18] analysed the directional dependence of genes by using the FGM type copulas. Mar-
tinez and Achcar [19] applied the FGM copula with the cure fraction model to analyse two
real data from the cervical cancer study and the diabetic retinopathy study by Bayesian
approaches.

This paper aims to consider the problem of estimating a common mean by fitting the
FGM copula model for dependence between two normally distributed variates. While the
FGM copula has been extensively studied in the literature, its real applications are relatively
scarce, compared to more common copulas such as the Clayton copula and the normal
copula. Throughout this paper, however, we shall stress that the FGM copula has several
mathematically important features that make it suitable for the problem of estimating a
common mean in a fixed-effects meta-analysis.

In this paper, we adopt maximum likelihood estimation for the common mean vector.
We derive new mathematical identities unique to the FGM model to obtain the expres-
sion of the Fisher information matrix. We also derive a linear approximation to the Fisher
information matrix, which is accurate and easy to compute. We examine the asymp-
totic properties of the estimator based on the theory of independent but not identically
distributed (i.n.i.d.) samples.

This paper is organized as follows. Section 2 reviews the common mean bivariate nor-
mal model. Section 3 proposes the model, identities, and estimator. Section 4 derives the
Fisher information matrix. Section 5 develops the asymptotic theory. Section 6 conducts
simulations. Section 7 performs data analysis. Section 8 summarizes the paper and gives
discussions for future works.

2. Common mean bivariate normal model

We introduce a common mean model for bivariate meta-analysis which is discussed by
various authors (e.g., [7,8]). For each study i, consider a random vector Y; = (Y1, Yi)T
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following a bivariate normal distribution.

Yi — l'l ~ BVN n= at! 5 Ci = .O-.ll ' plallzolz , 1= ].,2, A (B
Y; 12%) Pi0i1072 Oi

(1)
where p; € (—1,1) is the within-study correlation for study i. We call B ‘common mean
vector’ since it is common across i = 1,2, ..., n ([20]; Example 2.2.1, [21]).

Meta-analysis is a method to combine the known results from several independent stud-
ies and to make inference for a population. The common mean model is suitable for a
fixed-effects meta-analysis, where the ith study contains estimate Y; of the target parame-
ter b with its covariance matrix C;. In meta-analyses, C;’s are assumed known. Hence, Y;’s
are independent but not identically distributed (i.n.i.d.) acrossi = 1,2,--- ,n.

The problem of estimating the common mean in model (1) has been separately studied
between a decision-theoretic framework and a meta-analytic framework. In the decision
theory, C;’s are assumed unknown [20]. In meta-analyses, C;’s are often known from pub-
lished data or summary data [8]. In both frameworks, the bivariate normal distribution is
exclusively applied for analysis.

Note that the common mean bivariate normal model (1) is represented as

1 — M1 Y2 — U2
Pr(Yin <y, Yo < y2) = @, (y - ,y o= )
i1 i

_ CNormal <(D ()’1 - /’Ll) ® ()’2 - /’L2>>
pi oi1 of?)

where ®,(:,-) is the bivariate cumulative distribution function (c.d.f.) of the bivariate
standard normal distribution with correlation p, ®(-) is the c.d.f. of N(0, 1), and

C[Iformal(u’ V) = q)p{(b—l(u),q)—l(v)}, 0<uv=L

The function C/Iformal : [0,1]% = [0,1] is called ‘normal copula’. By replacing Cgormal
with any other copula, one can create a non-bivariate normal distribution [17,22].

3. Proposed methods

This section introduces the proposed model, some mathematical identities, and estimation
method.

3.1. The bivariate FGM model

As an alternative to the normal copula, we consider the FGM copula defined as

CEMu,v) = w1 +6(1 — w1 —v)}, 0<uv<l,
where 6 € [—1, 1] is the dependence parameter. The form of CEGM is simpler than the form
of Cyormal. Under the FGM copula with the uniform margins on the unit interval [0, 1],
the relationship between 6 and the correlation p is 8 = 3p [23]. This relationship implies
that the correlation is restricted to p € [—1/3,1/3] for the FGM copula.
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u u
Figure 2. The difference C_TI 15 1 — chermal with correlation p = 2/3 or —2/3.

Figure 1 shows that the difference CEEM - Cyormal is nonzero even when the two cop-
ulas has the same correlation p = 1/3 or p = —1/3. Under p = 1/3, we observe that
ng’M(u, u) > C/Iformal(u, u) for u ~ 0.5 and that ngM(u, u) < Cglormal(u, u) for u ~ 0.1
and u ~ 0.9. A similar pattern can be found under p = —1/3.

The FGM copula cannot yield a strong positive correlation (1/3 < p < 1) or strong
negative correlation (—1 < p < —1/3). To compare the FGM and normal copulas, we
reparametrize the FGM copula as C;?Ill\fll) max{—1,3p)] SO that —1 < min[1, max{—1,3p}] <
1 for —1 < p < 1. This is a boundary correction similar to Genest and Neslehova [22].

Figure 2 again shows that the difference Cfn ?Ill\fll max(—1,3p)] Cyormal is nonzero when

p =2/3or p =—2/3. We observe that CfnGhll\Ell max(—1.3p)] < Cyormal under p = 2/3 and
FGM N 1 —

that Conin[Lmax{—1,3p)] = Cp oM ynder p = —2/3.
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Applying the FGM copula to the normal margins, we define the bivariate FGM model

Pr(Yy <ynLYn <y) = <y1 _ “1) @ ()’2 - Mz)

Oil 02

Prap-e(g ) ooz o

where the marginal distributions are Y;; ~ N(u1, aizl) and Y, ~ N(ua, aizz). Equation (2)
is a valid distribution function [22] whose joint density is

O = n1)? 02— n2)?
2T 0101 201-21 201-22

fi,lL (Y) == } Qi(y; ”')) y € Rz’ (3)

wherey = (y1,2)T, b = (11, 2) T, and

Qi(y;u)=1+9i{1—2d><y1_—’“)}{1—2c1><y2_“2)}, 6; € [—1,1].

Oi1 0i2

3.2. Identities

We have the following identities, which are useful for subsequent discussions.

Lemma 3.1: For integrable functions g, and g,

E {gl(Yil)gZ(YiZ)
" Qi(Yi; )
Ep{g1(Yi)g(Yi)} = Eu {1 (Yi) } Epy {g2(Yia) }

+0E,, [glmo {1 _ 20 (u) ”
0i1
x Ey, |:g2(Y,-2) {1 20 (M) ” .
(0Fy)

Lemma 3.1 is proven by calculating the left-hand sides using the formula of f; , .

A striking feature of Lemma 3.1 is that a cross-moment for Y;; and Yj, reduces to the
marginal moments of Y;; ~ N(u1, crizl) and Y ~ N(uz, aizz), respectively. This is a unique
mathematical property of the FGM copula, which is not applicable to other copulas.

Lemma 3.1 leads to the following identities related to the derivatives of Q;(y; p).

} = E, {s1(Yi)}E,{g2(Yin)},

Lemma 3.2: Fori(=1,2,---,n)andj=1,2,

E :(Yil—,ul)(Yiz—Mz)}_E { 1 32Q1(Yi;lk)}_ 0;
" o o3 "lQiYsw) apmidps n0i107
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E |:Yij — I { 1 0Qi(Yiw) }:| _ 0;
w 2 -

o Qi(Yis )  dp3—;

200.(Y.-
B 1” an(l;z,u) _o,
Qi(Yis ) a,uj

op10mr 0i101 o1l (of7)

Qi) _ 26 ()’j —M;) {1 o (%—j —Ms—j)}’

I 0ij O Ti(3-))

Qi) 46; p (yl — Ml) " (;Vz — Mz)

32Qi(y; ) _ 20i(y; — Mj)¢ ()’j - Mj)
8,uj2 05

x |1 PP (y—H - “3—f'>},
Ti(3—j)

Tij

where ¢ (-) denotes the density of N(0, 1).

These identities shall be useful for deriving the Fisher information matrix. All of them
are derived by first applying Lemma 3.1 with some g; and g and then calculating the
marginal moments of Y;; and Yj,. The detailed derivation is available in Supplementary
Material.

The FGM model has been widely discussed in the literature, partly due to its ele-
gant mathematical properties. It provides closed-form expressions for various dependence
measures. For example, Kendall’s tau and Spearman’s rho are

1 1

20
% = 4/ / CEM (4, 0)dCEM (1, v) — 1 = >
0 0

11

%

0s 12f/C£GM(u,v)dudv —3= 3
0 0

They are measures of dependence free from the marginal distributions (Examples 5.2 and
5.7, [24]). In addition, the Pearson correlation has closed-form expressions under several
well-known marginal distributions. For instance, the Pearson correlation under the normal
and exponential margins are 6 /7 and 6 /4, respectively [23]. One may directly obtain the
case of normal margins by applying the first identity in Lemma 3.2.

3.3. Maximum likelihood estimation

This section proposes a maximum likelihood estimator for the common mean vector under
the FGM model in Equation (2). Suppose Y; = (Yj1, Yo)T,i=1,2,--- ,nare independent
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samples with the joint density defined in Equation (3). Then, the log-likelihood is

~ (Y — )
£,(n) =logL,(n) = constant — Z 11—2,U«1
i—1 207

n 2 n
(Yi — p2)
32 LY log QiYis ).
i 20n i—1

The MLE of w is defined as ﬁ%LE = argmaxy cof, (L), where ® C R? is a parameter
space. It is obtained by solving 9¢,,(w)/dj = 0 for j = 1,2 which are equivalent to

n -1 n
(1 v 1 aasw)
Hi= <Z 02) Z( 2+Qi(Yi§|L) i >’ J=12

i=1 " ij i—1 \%ij O

It is clear that 6; = 0 implies Q;(y; ») = 1 and 9Q;(y; )/ = dQ;i(y; w)/dpu2 = 0.

Therefore, if ; = 0 fori = 1,2, - - , n, one can obtain the univariate estimators
n 1 -1 n Y
0 _ - v .
i=1 i i=1 i

This is the usual estimator of a single common mean (Example 2.2.2, [21]). Since Q;(y; k)
depends nonlinearly on p for 8; # 0, the closed-form expression for ﬁ%LE is not available.
Thus, we suggest applying the Newton-Raphson (NR) algorithm to obtain the MLE. A
concrete algorithm (Algorithm S1) is given in Supplementary Material.

4, Fisher information matrix

This section studies the Fisher information matrix. It contains all necessary information

about the asymptotic distributions of ﬁ%LE, and is useful to compute the standard error

and confidence region. The derivatives of the log-density are

dlogfin(y) _ yji— M 1 9Qi(y;n) i=12
I o Qi(ysm) ;- T
’logfin(y) _ 1 9Qpw) { 1 0Qiypw) }2 i,
o Qi(ysw)  au; Qi(ysn) O o’ T
0*logfin(y) _ 1 2°Qimw) 1 9Qi(y;) 0Qily; )
A9 Qi) dm1dpua  Qi(ysw)* 9 Ao
We define the 2 x 2 Fisher information matrix I;(i) fori (= 1,2,--- ,n) as
0logf;u (Y;) 0logf; . (Y;
L) = Ey { 0gfin (V) 3 log fip (Y1) } k=12
Gy 0k
Lemma 4.1: Foreachi(=1,2,---,n),
E, {8logﬁ,u(Y,-) 0 log fin (Y) } _ 5, {_a2logf,-)u(Y,-) } k=12
I ek O ujo i
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If fi (-) were a member of the exponential family, Lemma 4.1 would be trivial. In our
setting, f; . (-) does not belong to the exponential family unless 6; = 0. The proof of Lemma
4.1 relies on Lemma 3.2, and is available in Supplementary Material. Lemma 4.1 implies

B 3% log fin (Y)) B 9% log fi (Y7)

o ou’ dpu1op,
Li(n) = Ey B 9% log fi (Y7) _ 92 log fin (Y [ w
10 5

The following theorem derives the form of the Fisher information matrix I;(i).

Theorem 4.1: The Fisher information matrix for i (= 1,2, --- ,n) does not depend on W.
In addition, it can be decomposed into the sum of the Fisher information matrix for the
independent model and the additional information for the dependence parameter 6;,

1 46? 467 0;
— 0 > Ei Fi—
I = o} n o1 0i1012 01012
0 L 467 6i 467
2 F; — —Ei
) 0i10i2 Oi10i2 o)

. ]O 7 Pwll - 20w Pew)
;= udv,
1+ 0{1 — 20 w)}{1 — 20(v)]
. foo ]quZ(u){l — 20} = 200)
;= udv.
1+ 6,1 — 20w} {1 — 20 (v))

Proof of Theorem 4.1: By Lemma 4.1, the element I; ;5 (p0) can be computed as

v {_azlogfi,u(Yi)}:_E { 1 aZQi(Yi;u)}
* 1o "lQiYsw) duidps
E { 1 0Qi(Yis ) 3Qi(Yz’;lL)}
1

Qi(Ysn)?* 9 2
0; 1 0Qi(Yis ) 0Qi(Yis )
T0i1072 Qi(Yisw) It dfL2

where the last equality follows from Lemma 3.2. By straightforward calculations,

: { 1 0Qi(Yis ) 0Qi(Yis ) }
W ) . 2
Qi(Yis ) dfe1 2

oo o0

ff 1 0Qi(y; ) 0Qi(ys ) 1
Qi(y;)* Iy 0i10p

—00 —0O0
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X ¢ (u) ¢ <y2 - Mz) Qi(y; w)dy1dy>

Oi1 )

dudv.

g ]of¢2(u){1—2<1><u)}¢2<v){1—2d>(v>}
010D 14+6,{1 —22w)}{1 — 2P (v)}

—00 —00

Thus, we obtain

£ 92 log fi . (Y;)
" o102

4? ]Ofoo<z>2<u>{1—2d><u>}¢2<v>{1—2<1><v>}d b
= onon 1+ 61— 20wl —20)] " monon

—00 =00

46? 0;
= F; — .
0i10i2 o107

The elements I;;; (i) and I;5>(p) are derived in a similar fashion. After obtaining all
elements of I;(p), the decomposition is obvious. [

Theorem 4.1 helps us to interpret the role of the dependence parameter 6; on the Fisher
information matrix. The decomposition in Theorem 4.1 is a natural result since the FGM
copula can be written as the sum of the independent copula and a function of 6;, namely

CgiGM(u, v) = uv + G;u(l — u)v(l — v).

To show that the double integrals in Theorem 4.1 are finite, we need the following lemma.

Lemma 4.2: The following inequalities hold
2w <1-2w) < Lo ifu > 0; uﬁ'l(ﬁ(u) < d(u) < ﬁ(ﬁ(u) ifu<O.

The inequalities in Lemma 4.2 follow from Example 3.6.3 and Exercise 3.47 in Casella and
Berger [25].

Theorem 4.2: For all 6; € [—1, 1], E; and F; are finite.

Proof of Theorem 4.2: We first show that E; is finite. Since the function inside the double
integral is always positive, it suffices to show that

dudv < oo, for0; € [—1,1]. (5)

]O f #* {1 — 20(v)}2p (v)
1+6;{1 —=2®0w)}{l —2d(v)}

—00 —OQ

The proof is separated into three different cases: 6; = 1,—1,and 6; € (—1,1).
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If0; € (—1,1),wehave 1 + 6;{1 — 2®(w)}{l — 2P (v)} > 1 — |6;| > 0. Then,

7 7 $* {1 — 20)) 2 (v)
11 6,(1 — 20 ){1 — 20(v))

—00 =00

64 / ¢ (u)du f (1 =20} ¢ (v)dv

1
= < o0
6/37 (1 — |6i))

Hence we have shown the double integral in Equation (5) is finite if 6; € (—1, 1). The proof
for the case of 6; = lor — 1 requires Lemma 4.2 and is given in Supplementary Mate-
rial. The remaining proof for F; will be obtained automatically in the proof of the next
theorem. |

Theorem 4.3: For all 6; € [—1, 1], the determinant of I; can be expressed as

1608 . 807 0; 1 6?
det(I;) = 2(E —F)-I—Or Ej+;Fj + 1—-—).

O‘11 i2 il O‘12 Oi1 Gi2

In addition, det(1;) is positive and I; is positive definite.

Proof of Theorem 4.3: The expression of det(l;) follows from straightforward calculations.
If E; > |F;|, then El2 > Fi2 and E; > |0;F;|/7. Therefore, E; > |F;| implies det(I;) > 0 since
1 — 6?/7? > 0. Thus, it suffices to show the inequality E; > |F;|. It holds according to the
Cauchy-Schwarz inequality as follow:

2 2
| < / /d) (W1 —2®(w)|¢ (v)|1—2<l>(v)|dudv
14 6,{1 —2®w)H1 — 2 (v))

—00 —00

00 1/2

/]"( $*/2(w)1 — 20 (v) |92 (v) >2dudv
J ) \ran - 20w — 2007

]O/OO( $2W)]1 — 20 (w)|gV/2 () )zdudv
S\ 461 —20@H1 - 20w))]'?

/°° 7 $* {1 — 20 ()2 (v)
11 6,(1 — 20 ){1 — 20(v))

—00 —00

[A

1/2

dudv = Ei.

The above inequality not only ensures det(l;) > 0 but also guarantees |F;| < oo. Since
407E;/oi + 1/07 > 0, we have shown that the upper left 1 x 1 and 2 x 2 determinants of
I; are positive. Hence I; is positive definite. |

The expressions for E; and F; in Theorem 4.1 are still difficult to evaluate in prac-
tice. In order to make these expressions more tractable, we apply the Taylor expansion
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for [1 4+ 6;{1 — 2®(w)}{1 — 2®(v)}]~L. Without loss of generality, we exclude the cases
of 6; =1 and — 1 by assuming 6; € (—1,1). Based on this subtle assumption, we have
—1 < (=60)*{1 — 20 (w)}* {1 — 2® (v)}* < 1, for all u, v. Then,
o0

(=60 {1 = 20 (w)}*{1 — 20 (v)}*.
k=0

1
1+ 6i{1 — 20w}l — 20 ()}

After some calculations, we obtain the new expressions of E; and F;.

Theorem 4.4: If0; € (—1,1), then E; and F; in Theorem 4.1 have alternative forms

— 6 X (2K ¢ i 3 ¢
Ei=kz_;2k+32(£)<—z) /<z><u><1><u>du,

£=0
0o 2k+-2 2k + 2 2
Fi==) o/ Z( ; )( 2! / #* ()& (1) du
k=0 £=0

The proof of Theorem 4.4 involves the Lebesgue dominated convergence theorem
that ensures the interchangeability between integration and infinite summation, and the
binomial theorem. The proof of Theorem 4.4 is given in Supplementary Material.

Since |0;] < 1, the contributions of high-order terms in the expressions of E; and F; are
small for large k. It turns out that only kK =0 and 1 are essential and k > 2 are negligible.
Accordingly, we let E; = A; + A29i2 +e; =E; + ¢, where A = V3/18x,

1 (2 ¢ r 3 ¢
Azfgg(e) (—2) / &> () D (u)du,

00 2 2k
e = Z Z <2k) (—2)* f ¢ (u)CIDZ(u)du
g:

Note that e; is the remainder terms of E;. Similarly, we let F; = B16; + Bzef +fi= F + fi>
where

2 e 2
B=—Y ()2 [ Pwetwd .
=0 e
4 e 2
By = —) Z@ (-2)° / ¢ () @' (wydu ¢
=0 e
2
00 2k+2
fi==3 07 D (Zk“)( 2)! / $2(u) D (u)du
k=2 £=0

One can obtain the values of A;, A,, B, and B, numerically. Finally, we approximate
the exact Fisher information by its linear approximation.
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Theorem 4.5: (Approximate Fisher information matrix) If 6; € (—1,1), then

1 407 . 407 . 0;
2 0 2 b Fi= s
L= |% n ) o 0i1072 , oo | [;ii f,*:|’
0 Lz 407 5 O 407 5 i €
1 1
Oi2 0i10i2 0107 o}

where E; = 0.0306 + 0.0030 x 62, F; = —0.0037 x 6; — 0.0008 x 67, e} = 40%¢;/0} =
O0?), ey, = 40%e;i/0h = O(0P), and [ = 407/ (onoin) = OO) as 6; — 0.

5. Asymptoticinference

This section develops the asymptotic theory for the MLE and then gives asymptotically
valid standard error and confidence region under the proposed model.

5.1. Asymptotic theory

The proposed method deals with independent but not identically distributed (i.n.i.d.) sam-
ples due to the heterogeneity of covariance matricesacrossi = 1,2, - - - , n. Thisimplies that
the well-known asymptotic theory for MLEs under independent and identically distributed
(i.i.d.) samples is not suitable for our setting.

The classical paper of Bradly and Gart [26] studied the asymptotic properties of MLEs
when samples are i.n.i.d.. However, as pointed out by Emura et al. [27], the regularity condi-
tions of Bradly and Gart [26] are not reliable as the proof of their theory is far from complete
and relies on a less known theorem (Khintchine’s theorem). Here, we reform the regularity
conditions of Bradly and Gart [26] to be adapted to more common tools on probability
theory, such as the weak law of large numbers (WLLN) and the Lindeberg-Feller central
limit theorem (CLT) for i.n.i.d. random variables. The WLLN for i.n.i.d. random variables
from Theorem 1.14 in Shao [28] is stated as follows:

The WLLN Let Yy, Yy, -+, Y, be independent random variables with E{|Y;|} < oo for
i=1,2,---,n. If there exists a constant p € [1,2] such that n PX_ E{|Y;|P} — 0. Then

1 n
—E {Yi—E(Yi)}£>O, asn — oo,
n

i=1

where ‘5> denotes convergence in probability.

Let 1{-} be the indicator function and Cov(D) be the covariance matrix of a random
vector D. The Lindeberg-Feller multivariate CLT from Proposition 2.27 in van der Vaart
[29] is stated as follows:

The Lindeberg-Feller CLT Let D, 1,D,, 5, - - , Dy, be independent 2-dimensional ran-
dom vectors with finite second moments such that

n
Y E[lIDy; — E(Du)|*1{||Dy; — E(Dy)l| > £}] > 0, asn— oo (6)
i=1
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foralle > 0,and X' ,Cov(D,;) — X for a positive definite matrix X. Here || - || denotes
the Euclidean norm for 2-dimensional vectors. Then,

n
d
Z {D,; — E(D,,;)} = BVN(0, %), asn— oo,
i=1

< d J . . . .
where ‘—’ denotes convergence in distribution.
Equation (6) is known as the Lindeberg condition. We state the regularity conditions.

Assumption (A): The parameter space ® is open and contains the true parameter point
0_ (,,0 ,,00T
W= (g 1y)

For instance, ® = R? and ® = (0, 0)? satisfy Assumption (A), but ® = [0, 00)? does

not. In general, Assumption (A) holds unless unusual constraints on ® are imposed.

Assumption (B): There exists a 2 x 2 positive definite matrix I such that

1y
Jim L 2 =1,
i=1
where I is called the large sample Fisher information matrix.

Assumption (C): For j, k, £ = 1,2, there exist finite constants wjx, and mjx such that

) 1 < 93 log fin (Y;)
tin £ 50, | e

= Wike»
A0 pkd e } !

n . . 2 . . 2
lim * ZE“ [{ alogﬁ’”(Yl)} alogﬁ’“(Y’)} } = mjt.

n—-oo n P aluj 8,uk

Assumption (D): For m = 1,2, 3, there exist constants s; ,, j = 1,2 such that

n n

1 1 1 1
lim — E ——=S,m <00, lim — E — = So,m < 0.
n—00 pn 4 . oj; n—o00 n 4 . o}

1= 1=

Assumptions (B)-(D) hold if (O’izl, aizz, 0;) = (0’12, 0’22, 0) for all i’s. More generally, they
hold if (6, 03, 6;) are stable with respect to i. The expectations in Assumption (C) can be
written as double integrals which are independent of w as in Theorem 4.1. Assumption (D)
ensures the stability of variances among the studies. Assumptions (B) - (D) are required to
verify the conditions in the WLLN and the Lindeberg-Feller CLT.

We examine Assumption (D) through a concrete example. Suppose that o3’s are inde-
pendently sampled from X|u < X < v which follows a truncated gamma distribution with
a shape parameter @ > 0, a scale parameter 8 > 0, and a truncation interval [u, v], where
0 < u < v < 00. By the strong law of large number for i.i.d. samples, we have

1w 1
—ZT—>E(X_m|u<X<v)<oo, asn — oo,m=1,2,3.
nz—loilm

The truncation ensures the existence of the expectation E(X ™|u < X < v). Hence
Assumption (D) holds by defining sy, = E(X™™|u < X < v). If @« > m, we have an
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explicit formula

Sim = EX"|u < X < p) = = mMIP@ = mv/p) = Ple = m, u/p)}

['(a) g™ {P(a, v/ B) — Pa, u/B)}

where
t 00
1
P(z,t) = —/xz_le_xdx,F(z) = /xz_le_xdx.
I'(z)
0 0

On the contrary, if there is no truncation, then the expectation E(X ™) does not exist when
a < m. This implies that Assumption (D) does not hold. Our simulation studies of Section
6 shall use the setting of « = 1/2, § = 1/2, and [u, v] = [0.009, 0.6].

Theorem 5.1: If Assumptions (A) - (D) hold, then

(a) Existence and consistency: With probability tending to one, there exists the MLE @%LE

(AN, A3

d
(b) Asymptotic normality: f(uMLE n®) — BVN(O,I7 1), as n — oo.

such that uMLE = nl asn — oo.

Theorem 5.1 is proven by approximating ¢, () — £,(n0) and /n (uMLE n0) to the
sum of i.n.i.d. random variables and applying the WLLN and CLT for i.n.i.d. samples to
them. The proof of Theorem 5.1 mainly follows from Theorem 6.5.1 in Lehmann and
Casella [30] and is given in Supplementary Material.

5.2. Standard error and confidence interval
We provide three different approaches to obtain the standard error (SE) of g(uMLE) and
confidence interval (CI) of g(p), where g : R? i Ris a differentiable function.

(i) Using the exact Fisher information

Under Assumption (B) and for large #, we approximate the large sample Fisher informa-
tion matrix by I ~ X1 | I;/n. By Theorem 5.1 (b) and the delta method, the SE of g(j MLE)
is

-1
EExact ~ MLE — { 3g(lk) } { 3g(lk) }
(g@Y'E) = Zl S

(ii) Using the approximate Fisher information

The second approach is an application of Theorem 4.5. When # is large, we obtain
another approximation of the large sample Fisher information matrix by I ~ X' | I;/n ~
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b)) i":lji /n, where I; is the approximate Fisher information matrix in Theorem 4.5. Thus,

0.012 x 6 4 0.1224 x 67 + 1 0.0032 x 67 + 0.0148 x 67 + 71,
I = o 0i10i2
: 0.0032 x 67 + 0.0148 x 67 + 716, 0.012 x 6 +0.1224 x 67 + 1
0i1072 Uizz

Accordingly, the SE of g(iMF) is

SEAPPrOx (g MIE)y _ Iag(lk)} {Z } !3g(u)}

on
~ MLE
m=H,

(iii) Using the observed Fisher information

The last approach is based on Equation (4). When # is large, we approximate the large
sample Fisher information matrix by the observed information matrix

1 <& | A 19°€,(n)
%;ZLN;ZL‘( %LE)——;a g T MLE
i=1 i=1 WOR Tu=i
This quantity is available from the NR algorithm. The SE of g(uMLE)

Obs (3 MLE) ogm) | " _32€n(u)}_1{3g(u)}
SET e, O = { o }{ onopT i

~ MLE
=i,

The approach (i) is computationally most difficult as it involves double integrals. How-
ever, it has a good theoretical support in the light of Theorem 5.1. The approach (ii) is
substantially easier to compute than the approach (i), but relies on the non-asymptotic
approximation. Both the approaches (i) and (ii) do not involve any unknown quantity
if the function dg(p)/0p does not depend on . For instance, if g(m) = o — w1, then
{og(n)/ it = (=1, )T is independent of p. The approach (iii) is also easy to compute,
but involves estimation of . This seems unnatural since the Fisher information matrix
does not depend on w (Theorem 4.1). In all the three approaches, the 95% confidence
interval is g(uMLE) + 1.96 x SE{g( AMLE)}.

5.3. Confidence ellipsoid
This section considers the confidence ellipsoid (CE) for w. By Theorem 5.1 (b),

( ~MLE MLE

d
M)T”I(lk - lk) - X(%f:p asn — oo,
where I is a consistent estimator of I. Let ngzz 0.95 be the 0.95 percentile of the chi-squared
distribution with two degrees of freedom. We construct a 95% CE for p based on the three
different approaches of estimating I.
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(i) Using the exact Fisher information

CI-EExaCt — { AMLE lL) ZI (AMLE - M‘) S X§f=2,095} :

(ii) Using the approximate Fisher information

CEAPProx — {u (" — ) ZI By =) < xifzz,o,gs} :

(iii) Using the observed Fisher information

~ T
CEObS:{u (i — ) (

~ MLE )
8u8u AMLE) Wy — W) = de:2,0.95} .

5.4. Percentage study weight

Under the bivariate FGM model, we consider the percentage study weight [31] which
shows the relative contribution of each individual study for estimating the common mean
vector. According to Riley et al. [31], the percentage study weight of study i for ,tijBN under
the bivariate normal model is

100% x Wi/ S Wi Wi = (2L, G h7IC i, e j=12i=1,2-,n

Analogously, we derive the percentage study weight of study i for ;leLE under the bivariate
FGM model and it is

100% x Hyjj/ S/ H, i Hy = (S0, ) 7 (S, )7, j=1,2,i=1,2,--- ,n
Our derivations are based on the asymptotic approximation (Theorem 5.1)

var(i, ) & (nD) 7! A~ (BE 1) 7

6. Simulation

We conduct Monte Carlo simulations to examine the performance of the proposed method.

We generate data Y; = (Y1, Yin)T following the FGM model in Equation (2), for
i=12,---,n Without loss of generality, the mean vector is set to be p = (0,0)T. To set
the known variances U and 02, we mimic the simulation setting of Kontopantelis and
Reeves [32]. That is, 0121, 012 X2 g /% restricted in the interval [0.009, 0.6]. This leads to
E [011] =E [012] = 0.173. We generate the dependence parameter 6; from the beta distribu-
tion Beta(27, 3), Beta(42.5,42.5), or Beta(3,27), corresponding to stronger (E[0;] = 0.9),
medium (E[6;] = 0.5), or weaker (E[6;] = 0.1) dependence, respectively.

Based on the data, we compute /JLIIVInLE and ,uMLE /lIIVIHLE by using the NR Algorithm,
and count the number of iterations to assess the convergence speed. We calculate the
three SEs (SEEXact SEAPPrOX a5 SEOPS) and evaluate the coverage probability (CP)

of the three 95% ClIs. In addition, we also examine the square error loss defined as
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Table 1. Simulation results on i} and 23* — 4}/MF based on 1,000 repetitions.

~ MLE ~MLE _ ~MLE
'u1,n MZ n M n
Exact Approx Obs Exact Approx Obs

Parameters n  SD SE cp SE Ccp SE cp SD SE cp SE CcP SE cp

E[61=09 5 0.123 0.119 0954 0.119 0954 0.120 0.957 0.154 0.171 0.950 0.171 0.951 0.172 0.949
10 0.079 0.077 0936 0.077 0.937 0.077 0943 0.097 0.111 0.956 0.111 0.956 0.111 0.953
15 0.063 0.062 0953 0.062 0.953 0.062 0.953 0.078 0.088 0.956 0.088 0.956 0.088 0.955

E6]=05 5 0.124 0.121 0958 0.121 0.958 0.121 0.961 0.163 0.173 0.959 0.173 0.959 0.174 0.960
10 0.086 0.080 0.949 0.080 0.949 0.080 0.947 0.109 0.113 0.947 0.113 0.947 0.113 0.948
15 0.061 0.063 0963 0.063 0.963 0.063 0.960 0.085 0.090 0.948 0.090 0.948 0.090 0.947

E[61=01 5 0.126 0.122 0950 0.122 0950 0.122 0.950 0.174 0.176 0.964 0.176 0.964 0.176 0.964
10 0.080 0.079 0943 0.079 0.943 0.079 0943 0.111 0.114 0.960 0.114 0.960 0.114 0.961
15 0.064 0.064 0953 0.064 0.953 0.064 0.953 0.089 0.090 0.959 0.090 0.959 0.090 0.960

SD = standard deviation, SE = standard error, CP = coverage probability of the 95% Cl, Exact = exact Fisher information,
Approx = approximate Fisher information, Obs = observed Fisher information.

Table 2. Simulation results on ﬁnMLE based on 1,000 repetitions.

Exact Approx Obs
No. of Square

Parameters n iterations error loss CcpP CcpP CP
E[61 =0.9 5 3.0 0.0304 0.952 0.952 0.949
10 2.9 0.0128 0.949 0.949 0.951
15 2.8 0.0077 0.949 0.950 0.951
E[6;] = 0.5 5 2.8 0.0311 0.959 0.959 0.959
10 2.6 0.0138 0.953 0.953 0.951

15 2.6 0.0083 0.950 0.950 0.951
E[6;1 = 0.1 5 2.0 0.0317 0.954 0.954 0.952
10 2.0 0.0132 0.960 0.960 0.959
15 2.0 0.0081 0.951 0.951 0.952

CP = coverage probability of the 95% CE, Exact = exact Fisher information, Approx = approximate Fisher information,
Obs = observed Fisher information.

L(AMLE, n) = (MMLE u)T(uMLE p) and evaluate the CP of the 95% CEs (CEFx<t,
CEAPPrOX and CEObS) Our simulations are based on n € {5, 10, 15} and 1,000 repetitions.
Table 1 displays the performance of ,uMLE and ,uMLE /LIIV%E The standard deviation
(SD) decreases when the sample size increases from n = 5 to n = 15. The SEs are all very
close to the SDs. The close proximity of SEAPPTX to SEEXt indicates that the proposed
approximation is fairly accurate. The CPs of the 95% Cls are reasonably close to the 95%.
Table 2 shows the average number of iterations in the NR algorithm. It reveals that the
NR Algorithm converges very quickly (2-3 iterations on average). As expected, stronger
dependence (E[6;] = 0.9) requires more iterations than weaker dependence (E[6;] = 0.1).
Table 2 also shows that the square error loss of @EALE decreases when the sample size
increases from n = 5 to n = 15. The CPs of the 95% CE:s are all close to the nominal level.
Overall, the proposed methods yield sound performance on estimates, SEs, square error

loss, and CPs. This implies that the asymptotic inference of Section 5 works fairly well.

7. Data analysis

We analyse the entrance examination data for entering Graduate Institute of Statis-
tics, National Central University (NCU), Taiwan. The data consist of mathematics and
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Mathematics score Y, Statistics score Yg

Figure 3. The mean scores of mathematics (Y1) and statistics (Y;;) based on the entrance examination
data. The horizontal line denotes Yj & 1.960,.]2 forj = 1, 2. The vertical line denotes the estimator of the

common mean.

statistics scores of 848 students who took written exams from 2013 to 2017. Thus, we let
i=1,2,---,5corresponding to 2013, 2014, ... ,2017. The possible range of score is from
0 to 100 for both subjects. The number of applicants monotonically increase from 2013
(n; = 148) to 2017 (n5 = 198). The data are the official records from Admission Division
of NCU.

For each academic year, we compute the mean scores of mathematics (Y;;) and statistics
(Yi2), and their covariance matrix (C;) by using the individual scores. Specifically, we let

— ni
Y; 1 Yiij
Y, = = — T,
l _Yi2i| n Z |:Yi2j
j=1
_ n; T
Ci — oh ,01'01'101'2] _ 1 |:Yi1j — il] [Yilj — i1:|
1= T T 2 - o . o . >
| £i0i1072 0 ni(n; — 1) s YzZ] —Yp YlZ_] — I'p

where (Yj1;, Y,-zj)T is a vector of scores for student j and n; is the number of students in
year i. The values of Y;’s are shown in Figure 3 and summarized in Table 3. The subsequent
meta-analysis is solely based Y;’s and C;’s.

We fit the data to the bivariate FGM model in Equation (2). First, the dependence
parameter 0;,i = 1,2,- - - , 5 is estimated by the relationship p; = 6;/7 with some bound-
ary corrections to meet 6; € [—1, 1] [22]. Thus, we let 6; = min[1, max{—1, 7 p;}] for i =
1,2,---,5. Accordingly, we obtain ; = 1,i = 1,2, - - , 5. Then, we use the NR Algorithm
to obtain the MLE @flALE = (ﬂll\j[r];E, ,&g/%E) = (37.16,41.17). The fitted results are summa-
rized in Table 4 and Figure 4. The three different ways of calculating Cls give very similar
results (Table 4). This agrees with the simulation results.

Our analysis reveals that the mean scores of mathematics and statistics are significantly
below 50. Considering that the maximum score is 100 for both subjects, majority of stu-
dents performed poorly on the exams. The 95% CE for w confirms this observation as the

CE is far away from p = (50, 50) (Figure 4). The mean score of statistics (/llz\/lnLE =41.17)is
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Table 3. Summary statistics for the entrance exam data.

Covariance matrix (C;)

Number of Mathematics Statistics
i Year students (n;) score (Yi1) score (Y2) Math Stat Di 0;
[1.77  0.89]
1 2013 148 35.17 30.41 _0.89 2_99_ 0.38 1
[1.89 1.76]
2 2014 155 2343 31.63 _1.76 3.61_ 0.67 1
(215  2.12]
3 2015 167 30.74 48.11 _2.1 2 6.1 3_ 0.58 1
[3.87 2.91]
4 2016 180 50.91 65.22 _2‘91 5.02_ 0.66 1
[3.17  2.10]
5 2017 198 61.62 40.22 _2‘1 0 3_29_ 0.65 1
g =
o _|
b S SORNUNNNERRUERNRt SO . o
o~ ]
-
n
L=
==
% ]
* MLE
........ gscj‘ncl
3 — 95%CE
: — T T - T T
35 36 37 38 39 40

Mathematics

Figure 4. The MLE and the 95% Cl and CE for the common means based on the exact Fisher information
matrix.

slightly higher than the mean score of mathematics ( ﬂll\/[nLE = 37.16). This may be because
some mathematics problems are too difficult for students from the schools of humanities.

We compare the MLEs between the FGM model and the bivariate normal model.
Under the bivariate normal model, the MLE becomes @EN =(X f’ZICi_l)_l )y fZICi_lYi =
(35.83,38.64). These mean scores appear unnaturally low. Indeed, a worse fit of the bivari-
ate normal model is indicated by its inferior log-likelihood value (Table 5). This is mainly
caused by the poor fit for the scores in 2017, which contains the largest number of students.

The large value of the log-likelihood function under the bivariate FGM copula model is
partly due to the boundary correction 6; = min[1, max{—1, 7 p;}]. Accordingly, the fitted
values for the correlation are decreased by the boundary correction. However, the log-
likelihood value under the bivariate normal model will increase if we also decrease its
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Table 4. Estimation results for the entrance exam data.

Model Mathematics Statistics
FGM Estimate 37.16 4117
95% Cl (Exact) (35.85,38.48) (39.48,42.87)
(Approx) (35.85,38.48) (39.47,42.88)
(Obs) (35.85,38.47) (39.65,42.70)
Bivariate Normal Estimate 35.83 38.64
95% Cl (34.51,37.16) (36.94, 40.34)

95% CI (Approx) is computed by setting¢; =1 —107"0,i =1,... 5.

Table 5. The individual log-likelihood values calculated for the entrance exam data.

Model 2013 2014 2015 2016 2017 Total
Log-likelihood FGM —22.52 —64.60 —-21.91 —84.63 —98.14 —291.80
value Bivariate normal —14.97 —48.33 —34.96 —73.47 —170.92 —342.65

Log-likelihood (Total):

5 2 5 2 5
R (Ylj M
FGM(;LQALE Z log Q;i(Y;; ng/ILE E Z /5 — 5log(27) — E E log ojj = —291.80,

i=1 j=1 i=1 j=1 i=1

5 ~BN 2 5 ~ BN 2 2 5
R pi(Yin _M15)(Yi2_ﬂz5) (Y’J Hijs )
(ILBN) : —5logQ2m) — log o
5 Z (1 _ p,-Z)UnU,z ZZ 2(1 _ 2) 2 ZZ U

5

1
-3 > "log(1 — p}) = —342.65.
i=1

Table 6. Percentage study weights based on the entrance exam data.

2013 2014 2015 2016 2017

Subject Model (n1=148) (n;=155) (n3=167) (ns=180) (ns=198)
Percentage Mathematics FGM 26.4% 24.8% 21.8% 12.1% 14.9%
study weights Bivariate normal 26.9% 24.9% 21.8% 11.8% 14.6%
Statistics FGM 26.1% 21.6% 12.8% 15.6% 23.9%
Bivariate normal 26.5% 20.9% 12.9% 15.5% 24.2%

correlation. This phenomenon may relate to our ignorance of the between-study variance
(heterogeneity) of the mean scores. One potential way to clarify this problem is to consider
a random-effects model which is our future work.

Finally, we report the percentage study weight that is the contribution of each year for
estimating the common mean score (Section 5.4). Table 6 reveals that the percentage study
weights are similar between the bivariate FGM copula and bivariate normal models. The
largest percentage corresponds to the year 2013 (i = 1) which has the smallest within-study
variance for both two subjects (Cy,;; = 1.77 and Cy 22 = 2.99).

8. Summary and discussions

This paper proposes a likelihood-based estimation method for a common mean vector in
bivariate meta-analysis under the FGM copula model. We have established key theoretical
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results behind the estimation method, including the expressions of the Fisher informa-
tion matrix and the validity of the asymptotic theory under the i.n.i.d samples. We also
provide three different approaches to construct a confidence interval (region) for the com-
mon mean. We show by simulations that our estimation method is nearly unbiased and
provides fairly accurate coverage probability of the confidence interval. Our real data anal-
ysis demonstrates the case where the bivariate FGM model fits better than the bivariate
normal model.

The proposed method based on the bivariate FGM model is not simply an alternative
to the bivariate normal model. Even if the bivariate normal model is the main model, a
sensitivity analysis based on the bivariate FGM model would be useful. Indeed, our data
real analysis revealed that the estimates are remarkably different between two models. Such
results typically imply that at least one of the two models is not adequate to the data. In such
a circumstance, we suggest choosing a better model by comparing their likelihood values.

In the literature, many authors considered different ways to generalize the FGM copula
[18,33-37]. There are two merits to consider these generalized FGM copulas. First, the
generalized FGM copulas may extend the narrow range of correlation in the FGM copula.
Second, the generalized FGM copulas can introduce the asymmetric structure and may be
useful to study directional dependence [18]. Bivariate meta-analysis under the generalized
FGM copula is a topic for future research.

We shall consider the extension of the current FGM model to allow survival data. In
meta-analysis of bivariate survival data, it is common to apply copula models with the
Weibull margins (e.g., [3]), spline margins [6,38], or nonparametric margins [39]. The
Clayton copula has been the most common choice among other copulas. This is because
the Clayton copula has simple derivative functions [40], making it suitable for deriving a
likelihood function even in the presence of censoring in meta-analysis [6,38]. However,
the Fisher information of the Clayton copula is not very simple even under complete data
[40]. Our recent paper shows that the generalized FGM copula proposed by Bairamov and
Kotz [35] gives simple expressions for a likelihood-based analysis with bivariate competing
risks data in a single study setting [41].
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