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Abstract The first part of this paper reviews the properties of bivariate dependence
measures (Spearman’s rho, Kendall’s tau, Kochar and Gupta’s dependence measure,
and Blest’s coefficient) under the generalized Farlie–Gumbel–Morgenstern (FGM)
copula. We give a few remarks on the relationship among the bivariate dependence
measures, derive Blest’s coefficient, and suggest simplifying the previously obtained
expression of Kochar and Gupta’s dependence measure. The second part of this paper
derives some useful measures for analyzing bivariate competing risks models under
the generalized FGM copula. We obtain the expression of sub-distribution functions
under the generalized FGMcopula, which has not been discussed in the literature.With
the Burr III margins, we show that our expression has a closed form and generalizes the
reliabilitymeasure previously obtained byDomma andGiordano (Stat Pap 54(3):807–
826, 2013).
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1 Introduction

In a bivariate distribution, studying dependence measures between two random vari-
ables is essential. While the Pearson correlation may be the most popular measure
for dependence, it is affected by the marginal distributions and is meaningful only for
continuous variables.

Bivariate dependencemeasures that are free from themarginal distributions include,
among others, Spearman’s rho, Kendall’s tau, Blest’s coefficient, and Kochar and
Gupta’s dependence measure. Spearman’s rho and Kendall’s tau are based on the
concept of concordance and they are related to each other (Capéraà and Genest 1993;
Nelsen 2006). Blest’s coefficient (Blest 2000) is derived by a graphical representation
of rank differences. The dependence measure of Kochar and Gupta (1987) is based on
the concept of quadrant dependence (Lehmann 1966). These dependence measures
are free from the marginal distributions; they depend only on the copula between
two continuous random variables (Scarsini 1984; Nelsen 2006). Spearman’s rho and
Kendall’s tau are appropriately defined even for non-continuous variables (Nešlehová
2007).

A bivariate copula is a bivariate distribution function of two uniform random vari-
ables on the unit interval [0, 1] (Nelsen 2006). By using copulas, one can model the
dependence structure between two random variables having arbitrary marginal dis-
tributions. Well-known copulas include the Clayton (Clayton 1978), Frank (Frank
1979; Genest 1987), Gumbel (Gumbel 1960a) and Joe (Joe 1993) copulas from the
Archimedean family and the Gaussian and t−copulas from the elliptical family.

This paper focuses on the Farlie–Gumbel–Morgenstern (FGM) copula and the
generalized FGM copula. The FGM copula is a copula corresponding to the FGM
distribution introduced by Morgenstern (1956), which is also traced back to Eyraud
(1936). In application to the diabetic retinopathy study, Louzada et al. (2013) demon-
strated that, among a pool of copulas, the FGM copula yields the best fit for the data.

The FGM distribution is defined as a bivariate distribution function F(x, y)

= F1(x)F2(y)[1 + θ{1 − F1(x)}{1 − F2(y)}] with marginal distribution functions
F1 and F2 and a parameter θ . Gumbel (1960b) studied the FGM distribution with
exponential margins. For certain functions A(·) and B(·), Farlie (1960) generalized
the FGMdistribution by F(x, y) = F1(x)F2(y)[1+θ{1− A(F1(x))}{1− B(F2(y))}].
Due to its nice mathematical properties, the generalized FGM copula has been studied
by many authors, including Bairamov and Kotz (2002), Nelsen (2006), Amini et al.
(2011), Domma andGiordano (2013, 2016), to name but a few.While there exist a few
different ways of generalizing the FGM copula (e.g., Rodíguez-Lallena and Úbeda-
Flores 2004; Amblard and Girard 2009), we focus on the particular generalization
considered by Bairamov and Kotz (2002).

The first part of this paper reviews the properties of selected dependence measures
(Spearman’s rho, Kendall’s tau, Blest’s coefficient, Kochar and Gupta’s dependence
measure) under the generalized FGM copula of Bairamov and Kotz (2002). We give
a few remarks on the relationship among the dependence measures, derive Blest’s
coefficient, and suggest simplifying the expression of Kochar and Gupta’s dependence
measure previously obtained by Amini et al. (2011).
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Bivariate dependence measures and bivariate competing risks... 1103

The second yet more novel contribution of this paper is to derive the expressions of
sub-distribution functions with competing risks under the generalized FGM copula.
Such expressions have not been derived in the literature, though the sub-distribution
functions play a fundamental role in competing risks models (Gray 1988; Crowder
2001; Bakoyannis and Touloumi 2012). With the Burr III margins, we show that
our expression is explicitly written and is a generalization of the reliability measure
obtained by Domma and Giordano (2013).

This paper is organized as follows. Section 2 introduces copulas and basic notations.
Section 3 reviews the generalized FGMcopula and its dependencemeasures. Section 4
derives the expressions of sub-distribution functions with dependent competing risks
models under the generalized FGM copula. Section 5 illustrates the usage of the gen-
eralized FGM copula by a real dataset. Section 6 concludes the paper. Supplementary
Material includes detailed proofs and simulation results to support the results.

2 Copula

Abivariate copula is a bivariate distribution functionwhosemargins are uniform on the
unit interval [0, 1] (Nelsen 2006). A bivariate copula is amapC : [0, 1]2 → [0, 1]with
C(u, 1) = u andC(1, v) = v. Let X andY be randomvariableswith a joint distribution
function F(x, y) = Pr(X ≤ x, Y ≤ y) and continuousmarginal distribution functions
F1(x) = Pr(X ≤ x) and F2(y) = Pr(Y ≤ y), respectively. By Sklar’s theorem (Sklar
1959), one has a unique representation

F(x, y) = C{F1(x), F2(y)}.

This representation is extremely useful as it separates the dependence structure C
from the marginal distributions F1 and F2. Many dependence measures between X
andY , including Spearman’s rho andKendall’s tau, depend only on the copula function
C(·, ·).

Spearman’s rho (ρ) and Kendall’s tau (τ ) are expressed as

ρ = 12

1∫

0

1∫

0

C(u, v)dudv − 3, τ = 4

1∫

0

1∫

0

C(u, v)dC(u, v) − 1.

They are interpreted similarly to the Pearson correlation; the possible ranges are ρ ∈
[−1, 1] and τ ∈ [−1, 1]; the independence implies ρ = τ = 0.

The one-parameter FGM copula is C(u, v) = uv{1 + θ(1 − u)(1 − v)}, where
θ ∈ [−1, 1] is a parameter. The copula density is c(u, v) = 1 + θ(1 − 2u)(1 − 2v).
Spearman’s rho and Kendall’s tau are θ/3 and 2θ/9, respectively (Schucany et al.
1978; Nelsen 2006). Therefore, the range of Spearman’s rho is [−1/3, 1/3] and the
range of Kendall’s tau is [−2/9, 2/9]. The advantage of the FGM copula is the simple
linear expressions of ρ and τ . The disadvantage is narrow ranges for ρ and τ .

The FGM copula belongs to neither the Archimedean nor elliptical family when
θ �= 0 and it reduce to the independent copulawhen θ = 0.However, it has beenwidely
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1104 J.-H. Shih, T. Emura

discussed in the literature due to its mathematically interesting properties (Nelsen
2006).

3 Generalized Farlie–Gumbel–Morgenstern copula

The generalized FGMdistribution is proposed by Bairamov and Kotz (2002) to extend
the narrow range of Spearman’s rho (ρ) and Kendall’s tau (τ ). With additional param-
eters, p, q ≥ 1, the generalized FGM copula is

C(u, v) = uv{1 + θ(1 − u p)q(1 − v p)q}, (1)

where the possible range of θ is

−min

{
1,

1

p2q

(
1 + pq

q − 1

)2q−2
}

≤ θ ≤ 1

pq

(
1 + pq

q − 1

)q−1

.

The copula density is c(u, v) = 1+ θ(1− u p)q−1{1− (1+ pq)u p}(1− v p)q−1{1−
(1 + pq)v p}. The case of p = q = 1 corresponds the original FGM copula.

3.1 Spearman’s rho and Kendall’s tau

We review the expressions for Spearman’s rho and Kendall’s tau, and then we discuss
their properties.

Proposition 1 (Spearman’s rho and Kendall’s tau) Under the generalized FGM cop-
ula in Eq. (1), Spearman’s rho (ρ) and Kendall’s tau(τ ) are

ρ = 12

{
q

2 + pq
B

(
2

p
, q

)}2

θ, τ = 8

{
q

2 + pq
B

(
2

p
, q

)}2

θ,

where B(a, b) = �(a)�(b)/�(a+b) is the beta function and �(a) = ∫ ∞
0 xa−1e−x dx

is the gamma function. Hence, 2ρ = 3τ in the range of θ .

Proposition 1 is an obvious simplification from the results of Amini et al. (2011)
who obtained

ρ = 12θ

p2

{
B

(
2

p
, q + 1

)}2

(2)

and

τ = 4θ

p2

{
B

(
2

p
, q + 1

)}2

+ 4θ

p2

{
B

(
2

p
, q

)
− (1 + pq)B

(
2

p
+ 1, q

)}2

+4θ

p2

{
B

(
2

p
, 2q

)
− (1 + pq)B

(
2

p
+ 1, 2q

)}2

. (3)
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Proposition 1 is the consequence of applying the properties of the beta function

B(a + 1, b) = a

a + b
B(a, b), B(a, b + 1) = b

a + b
B(a, b)

to Equations (2) and (3). Our independent derivations, without passing through Equa-
tions (2) and (3), are given in Supplementary Material. Proposition 1 is also an
immediate consequence from more general results of Domma and Giordano (2013,
2016).

Proposition 1 reveals the relationship 2ρ = 3τ , where

ρ ∈
[
−min

{
1,

1

p2q

(
1 + pq

q − 1

)2q−2
}
12M,

1

pq

(
1 + pq

q − 1

)q−1

12M

]
,

τ ∈
[
−min

{
1,

1

p2q

(
1 + pq

q − 1

)2q−2
}
8M,

1

pq

(
1 + pq

q − 1

)q−1

8M

]
,

and M = {q B(2/p, q)/(2 + pq)}2. The relationship 2ρ = 3τ is well-known under
the original FGM copula over a limited range, ρ = [−1/3, 1/3] and τ ∈ [−2/9, 2/9]
(Schucany et al. 1978; Nelsen 2006). Under the generalized FGM copula with param-
eters p = 3 and q = 2, for instance, the ranges are extended to ρ ∈ [−0.368, 0.473]
and τ ∈ [−0.245, 0.315].

Figure 1 displays the range of Kendall’s tau and Spearman’s rho. While the ranges
of Kendall’s tau and Spearman’s rho are extended by sensible choices of p and q, the
ranges are still narrow.

The relationship ρ = 1.5τ in Proposition 1 shows that themagnitude of Spearman’s
rho is 1.5 times larger than that of Kendall’s tau. Capéraà and Genest (1993) gave

Fig. 1 The range of Kendall’s tau (τ) and Spearman’s rho (ρ) under the generalized FGM copula with
parameters p ∈ [1, 5] and q = 1 or 2
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1106 J.-H. Shih, T. Emura

near minimal conditions that make Spearman’s rho larger than Kendall’s tau, say
ρ ≥ τ ≥ 0. Below, we examine their results with the generalized FGM copula.

Lehmann (1966) andEsary et al. (1967) introduced the following concept of positive
dependence for a bivariate random vector (X, Y ) with a copula C :

• X is said to be left-tail decreasing in Y , denoted as LTD(X |Y ), if and only if
Pr(X ≤ x |Y ≤ y) = C(u, v)/v is a non-increasing function of v = Pr(Y ≤ y)

for any u = Pr(X ≤ x).
• X is said to be right-tail increasing in Y , denoted as RTI(X |Y ), if and only if
Pr(X ≤ x |Y > y) = {u − C(u, v)}/(1 − v) is a non-increasing function of
v = Pr(Y ≤ y) for any u = Pr(X ≤ x).

One can easily check that a pair (X, Y ) with the FGM copula satisfies both
LTD(X |Y ) and RTI(X |Y ) for θ > 0. However, we will verify that a pair (X, Y )

with the generalized FGM copula is LTD(X |Y ), but is not RTI(X |Y ) for θ > 0, p �= 1
and q �= 1. Under the generalized FGM copula with θ > 0,

C(u, v)

v
= u{1 + θ(1 − u p)q(1 − v p)q}

is a non-increasing function of v for all u. Thus, LTD(X |Y ) holds true. On the other
hand, for p = q = 2 and v′ ≥ v, we know

u − C(u, v)

1 − v
≥ u − C(u, v′)

1 − v′ ⇔ v(1 − v2)2

1 − v
≤ v′(1 − v′2)2

1 − v′ .

The last inequality does not hold for all v′ ≥ v; letting v = 0.7 and v′ = 0.8, we have

0.7(1 − 0.72)2/(1 − 0.7) = 0.6069 > 0.5184 = 0.8(1 − 0.82)2/(1 − 0.8),

which contradicts to RTI(X |Y ).
According to Capéraà and Genest (1993), LTD(X |Y ) and RTI(X |Y ) implies ρ ≥

τ ≥ 0, but not vice versa. They exhibited the Mardia copula as an example of copulas
that holds ρ ≥ τ ≥ 0 without satisfying LTD(X |Y ) and RTI(X |Y ) conditions. The
generalized FGM copula gives an additional example as we have demonstrated above.

3.2 Blest’s coefficient and symmetrized Blest’s coefficient

Blest (2000) proposed a rank correlation measure which emphasizes the differences
in the top ranks. This concept differs from Spearman’s rank correlation measure that
gives the same weight for all ranks. To be specific, Blest’s coefficient (ν) is defined
as

ν = 2 − 12

1∫

0

1∫

0

(1 − u)2vdC(u, v).
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Blest’s coefficient is not symmetric unless a copula is symmetric. Therefore, Genest
and Plante (2003) suggested a symmetrized version of Blest’s coefficient (ξ), defined
as

ξ = ν + ν̃

2
= −4 + 6

1∫

0

1∫

0

uv(4 − u − v)dC(u, v),

where

ν̃ = 2 − 12

1∫

0

1∫

0

(1 − v)2udC(u, v).

The following theorem derives the expressions of Blest’s coefficient and symmetrized
Blest’s coefficient based on the definitions above.

Theorem 1 (Blest’s coefficient and symmetrized Blest’s coefficient) Under the gen-
eralized FGM copula in Eq. (1),

ν = ξ = 24

{
q

2 + pq
B

(
2

p
, q

)}2

θ − 24

{
q

2 + pq
B

(
2

p
, q

)}{
q

3 + pq
B

(
3

p
, q

)}
θ.

Proof of Theorem 1 Since the generalized FGM copula in Eq. (1) is symmetric in its
margins, we have ν = ν̃ = ξ . According to Genest and Plante (2003), an alternative
representation of Blest’s coefficient is

ν = −2 + 24

1∫

0

1∫

0

(1 − u)C(u, v)dudv.

Then the results can be easily obtained from straightforward calculations. 
�

Corollary 1 The relationship between Blest’s coefficient and Spearman’s rho is

ν = 2ρ

{
1 − (2 + pq)�(3/p)�(2/q + q)

(3 + pq)�(3/p + q)�(2/p)

}
.

Proof of Corollary 1 According to Theorem 1, we have

ν = 2ρ

{
1 − q/(3 + pq)B(3/p, q)

q/(2 + pq)B(2/p, q)

}
= 2ρ

{
1 − (2 + pq)�(3/p)�(2/q + q)

(3 + pq)�(3/p + q)�(2/p)

}
.

Thus, we obtain the desired result. 
�
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1108 J.-H. Shih, T. Emura

Fig. 2 The range of Blest’s coefficient (ν) and Spearman’s rho (ρ) under the generalized FGM copula with
parameters p ∈ [1, 5] and q = 1 or 2

For instance, the relationship between Blest’s coefficient and Spearman’s rho are

ν = 2(p + 5)

3(p + 3)
ρ, for q = 1,

ν = 2(2p2 + 15p + 19)

3(p + 3)(2p + 3)
ρ, for q = 2,

Figure 2 compares the range of Blest’s coefficient and Spearman’s rho. For the case
q = 1, the range of Blest’s coefficient is smaller or equal to the range Spearman’s
rho since 2(p + 5)/3(p + 3) is decreasing in p. The equality ν = ρ = θ/3 occurs at
p = q = 1 corresponding to the original FGM copula [see also, Example 1 of Genest
and Plante (2003)]. Figure 2 shows that with sensible choices of p and q, the range of
Blest’s coefficient can be slightly larger than the range of Spearman’s rho.

3.3 Kochar and Gupta’s dependence measure

The dependence measure of Kochar and Gupta (Kochar and Gupta 1987) is based
on the concept of quadrant dependence. A bivariate random vector (X, Y ) is positive
quadrant dependent if F(x, y) ≥ F1(x)F2(y) for all x, y ∈ R (Lehmann 1966).
Negative quadrant dependence is defined by replacing “≥” with “≤”. Let

dk(x, y) = F(x, y)k − F1(x)k F2(y)k, ∀x, y ∈ R,

where k = {1, 2, . . .}. For each k, it is easy to show

X and Y are positively quadrant dependent ⇔ dk(x, y) ≥ 0, ∀x, y ∈ R,

X and Y are negatively quadrant dependent ⇔ dk(x, y) ≤ 0, ∀x, y ∈ R,

X and Y are independent ⇔ dk(x, y) = 0, ∀x, y ∈ R.
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Therefore, Kochar and Gupta (1987) introduced a dependence measure

Dk =
∞∫

−∞

∞∫

−∞
dk(x, y)d F(x, y) =

1∫

0

1∫

0

{C(u, v)k − ukvk}dC(u, v).

The last equation shows that Kochar and Gupta’s dependence measure is free from
the marginal distributions and depends only on the copula.

Theorem 2 (Kochar and Gupta’s dependence measure) Under the generalized FGM
copula in Eq. (1),

Dk = k

{
q

k + 1 + pq
B

(
k + 1

p
, q

)}2

θ

+
k−1∑
j=1

(
k
j

)
(k − j)(k+1)

{
q

k + 1 + ( j + 1)pq
B

(
k + 1

p
, ( j +1)q

)}2

θ j+1.

Proof of Theorem 2 Amini et al. (2011) obtained

Dk =
k∑

j=1

(
k
j

)
θ j

p2

{
B

(
k + 1

p
, jq + 1

)}2

+
k∑

j=1

(
k
j

)
θ j+1

p2

×
{

B

(
k + 1

p
, ( j + 1)q

)
− (1 + pq)B

(
k + 1

p
+ 1, ( j + 1)q

)}2

.

By applying the properties of the beta function to the above function, we have

Dk =
k∑

j=1

(
k
j

) {
jq

k + 1 + j pq
B

(
k + 1

p
, jq

)}2

θ j

+
k∑

j=1

(
k
j

) {
( j − k)q

k + 1 + ( j + 1)pq
B

(
k + 1

p
, ( j + 1)q

)}2

θ j+1.

With some further simplifications, we obtain the desired result. The detailed proof is
available in Supplementary Material. 
�

Our new expression of Dk in Theorem 2 is useful to study the properties of Dk .
Our expression shows that Dk is a polynomial of order k in the form

Dk = d1θ + d2θ
2 + · · · + dkθ

k,
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1110 J.-H. Shih, T. Emura

Fig. 3 The range of Dk , k = 1, 2, 3, under the generalized FGM copula with parameters p ∈ [1, 5] and
q = 1 or 2

where the coefficients d1, d2, . . . , dk are explicitly defined in Theorem 2. For instance,

D1 =
{

q

2 + pq
B

(
2

p
, q

)}2

θ,

D2 = 2

{
q

3 + pq
B

(
3

p
, q

)}2

θ + 6

{
q

3 + 2pq
B

(
3

p
, 2q

)}2

θ2,

D3 = 3

{
q

4 + pq
B

(
4

p
, q

)}2

θ + 24

{
q

4 + 2pq
B

(
4

p
, 2q

)}2

θ2

+ 12

{
q

4 + 3pq
B

(
4

p
, 3q

)}2

θ3.

Thus, we have D1 = ρ/12 = τ/8. The expressions of D1, D2 and D3 reveal that
D1(−θ) = −D1(θ) but D2(−θ) �= −D2(θ) and D3(−θ) �= −D3(θ). Figure 3
illustrates the ranges of D1, D2 and D3.

4 Competing risks measures

In this section, we derive some useful measures for analyzing dependent competing
risks models under the generalized FGM copula. We focus on measures related to
“sub-distribution function” which plays a fundamental role in competing risks models
(Gray 1988; Crowder 2001; Escarela and Carrière 2003; Bakoyannis and Touloumi
2012).

Let X and Y be continuous failure times following the generalized FGM copula in
Eq. (1). Under competing risks models, the failure times X and Y are called “latent
failure times” (Chap. 3 of Crowder 2001); what we actually observe is the first occur-
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ring failure time T = min(X, Y ) and the failure cause C = 1 if X ≤ Y or C = 2 if
Y < X .

Traditionally, specific bivariate distributions have been employed for modeling the
joint distribution of (X, Y ), such as bivariate normal distribution (Basu and Ghosh
1978) and bivariate Weibull distribution (Moeschberger 1974). Instead, we follow
copula-based approaches that specify a copula form with flexible marginal distribu-
tions (Zheng and Klein 1995).

The sub-distribution functions of the failure cause 1 (C = 1) and failure cause 2
(C = 2) can be written respectively as

F(1, t) = P(C = 1, T ≤ t) =
t∫

0

f (1, z)dz,

F(2, t) = P(C = 2, T ≤ t) =
t∫

0

f (2, z)dz,

where f (1, t) = −∂ F(x, y)/∂x |x=y=t and f (2, t) = −∂ F(x, y)/∂y|x=y=t are called
“sub-density function”, where

F(x, y) = 1 − F1(x) − F2(y) + F(x, y)

= 1 − F1(x) − F2(y) + F1(x)F2(y)[1 + θ{1 − F1(x)p}q{1 − F2(y)p}q ]

is the joint survival function under the generalized FGM copula.

Theorem 3 Under the generalized FGM copula in Eq. (1), the sub-density functions
can be expressed as

f (1, t) = f1(t) − F2(t) f1(t) − θ

q∑
i=0

q−1∑
j=0

(
q
i

) (
q − 1

j

)
(−1)i+ j

×{F2(t)
pi+1F1(t)

pj f1(t) − (1 + pq)F2(t)
pi+1F1(t)

pj+p f1(t)},

f (2, t) = f2(t) − F1(t) f2(t) − θ

q∑
i=0

q−1∑
j=0

(
q
i

)(
q − 1

j

)
(−1)i+ j

×{F1(t)
pi+1F2(t)

pj f2(t) − (1 + pq)F1(t)
pi+1F2(t)

pj+p f2(t)}.

Proof of Theorem 3 From the expression f (2, t) = −∂ F(x, y)/∂y|x=y=t , we have

f (2, t) = f2(t) − F1(t) f2(t)

− θ F1(t){1 − F1(t)
p}q f2(t){1 − F2(t)

p}q−1{1 − (1 + pq)F2(t)
p}.

Following a similar technique asDommaandGiordano (2013),we apply the binominal
theorem to obtain the desired results. The form of f (1, t) is obtained similarly. More
detailed derivations are given in Supplementary Material. 
�
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While the expressions in Theorem 3 look complicated, they allow one to view
f (1, t) (or f (2, t)) as a polynomial in F1(t) and F2(t). Accordingly, Theorem 3
immediately yields the following theorem:

Theorem 4 Under the generalized FGM copula in Eq. (1), the sub-distribution func-
tions can be expressed as

F(1, t) = F1(t) −
t∫

0

F2(z) f1(z)dz − θ

q∑
i=0

q−1∑
j=0

(
q
i

) (
q − 1

j

)
(−1)i+ j

×
⎧⎨
⎩

t∫

0

F2(z)
pi+1F1(z)

pj f1(z)dz − (1 + pq)

t∫

0

F2(z)
pi+1F1(z)

pj+p f1(z)dz

⎫⎬
⎭ ,

F(2, t) = F2(t) −
t∫

0

F1(z) f2(z)dz − θ

q∑
i=0

q−1∑
j=0

(
q
i

) (
q − 1

j

)
(−1)i+ j

×
⎧⎨
⎩

t∫

0

F1(z)
pi+1F2(z)

pj f2(z)dz − (1 + pq)

t∫

0

F1(z)
pi+1F2(z)

pj+p f2(z)dz

⎫⎬
⎭ .

We examine the cases where the integrals in F(1, t) and F(2, t) have closed forms.
To this end, we select the Burr III marginal distributions, defined as F1(x) = (1 +
x−δ)−α and F2(y) = (1 + y−δ)−β , where α, β, δ are all positive shape parameters.
Under the generalized FGM copula, the bivariate distribution function of (X, Y ) is

F(x, y) = (1+x−δ)−α(1+y−δ)−β [1+θ{1 − (1+x−δ)−αp}q{1 − (1+y−δ)−βp}q ].
(4)

The Burr III distribution belongs to the Burr system (Burr 1942) which is widely
used in real applications. For instance, Lindsay et al. (1996) fitted the Burr III distribu-
tion for the diameter distribution of forest stands. Distributions from the Burr system
have been discussed by various authors for lifetime data analysis with competing risks
(Crowder 2001; Escarela and Carrière 2003; Lawless 2003). In addition, the reliabil-
ity measure with the Burr III margins has been considered by Domma and Giordano
(2013).

The following theorems are obtained by substituting the Burr III distribution to the
formulas of Theorems 3 and 4.

Theorem 5 Under the generalized FGM copula with the Burr III margins in Eq. (4),
the sub-density functions can be expressed as

f (1, t) = Kαδ(t)Hδ(t)
α+1 − Kαδ(t)Hδ(t)

α+β+1

− θ

q∑
i=0

q−1∑
j=0

(
q
i

)(
q − 1

j

)
(−1)i+ j
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×{Kαδ(t)Hδ(t)
α(pj+1)+β(pi+1)+1

− (1 + pq)Kαδ(t)Hδ(t)
α(pj+p+1)+β(pi+1)+1},

f (2, t) = Kβδ(t)Hδ(t)
β+1 − Kβδ(t)Hδ(t)

α+β+1

− θ

q∑
i=0

q−1∑
j=0

(
q
i

)(
q − 1

j

)
(−1)i+ j

×{Kβδ(t)Hδ(t)
α(pi+1)+β(pj+1)+1

− (1 + pq)Kβδ(t)Hδ(t)
α(pi+1)+β(pj+p+1)+1},

where Kαδ(t) = αδt−δ−1, Kβδ(t) = βδt−δ−1 and Hδ(t) = (1 + t−δ)−1.

Theorem 6 Under the generalized FGM copula with the Burr III margins in Eq. (4),
the sub-distribution functions can be expressed as

F(1, t) = Hδ(t)
α − α

α + β
Hδ(t)

α+β − θα

q∑
i=0

q−1∑
j=0

(
q
i

) (
q − 1

j

)
(−1)i+ j

×
{

Hδ(t)α(pj+1)+β(pi+1)

α(pj + 1) + β(pi + 1)
− (1 + pq)Hδ(t)α(pj+p+1)+β(pi+1)

α(pj + p + 1) + β(pi + 1)

}
,

F(2, t) = Hδ(t)
β − β

α + β
Hδ(t)

α+β − θβ

q∑
i=0

q−1∑
j=0

(
q
i

)(
q − 1

j

)
(−1)i+ j

×
{

Hδ(t)α(pi+1)+β(pj+1)

α(pi + 1) + β(pj + 1)
− (1 + pq)Hδ(t)α(pi+1)+β(pj+p+1)

α(pi + 1) + β(pj + p + 1)

}
,

where Hδ(t) = (1 + t−δ)−1.

The proof of Theorem 6 is given in Supplementary Material.
Ifwe consider theBurr IIImarginswith different shape parameters, say δ1 and δ2,we

have F1(x) = (1+ x−δ1)−α and F2(y) = (1+ y−δ2)−β . To obtain the sub-distribution
functions, one needs to compute

t∫

0

(1 + z−δ1)−αβδ2(1 + z−δ2)−β−1z−δ2−1dz.

Thepreceding expressionhas a closed formonlywhen δ1 = δ2 = δ bya transformation
1 + z−δ = k (Supplementary Material). Thus, simple formulas for sub-distribution
functions are unavailable when δ1 �= δ2.
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The case of p = q = 1 becomes the sub-distribution functions of the FGM copula,

F(1, t) = Hδ(t)
α − α

α + β
Hδ(t)

α+β − θα

{
1

α + β
Hδ(t)

α+β

− 1

α + 2β
Hδ(t)

α+2β− 2

2α + β
Hδ(t)

2α+β + 1

α + β
Hδ(t)

2α+2β
}

,

F(2, t) = Hδ(t)
β − β

α + β
Hδ(t)

α+β − θβ

{
1

α + β
Hδ(t)

α+β

− 1

2α + β
Hδ(t)

2α+β − 2

α + 2β
Hδ(t)

α+2β + 1

α + β
Hδ(t)

2α+2β
}

.

Letting t → ∞ in the above expression, we have

F(2,∞) = P(Y < X) = α

α + β
+ θ

αβ(α − β)

(α + β)(2α + β)(α + 2β)
.

This expression coincides with the reliability measure for the Burr III stress and
strength variables under the FGM copula obtained by Domma and Giordano (2013).
From these findings, our expressions F(1, t) and F(2, t) are interpreted as “trun-
cated reliability measures”, which generalize the expression of Domma and Giordano
(2013).

5 Example from The Diabetic Retinopathy Study

We analyze a real data from the diabetic retinopathy study that is available in the R
survival package (Therneau and Lumley 2016). The objective of the study is to access
the effectiveness of the laser photocoagulation treatment for diabetic patients. For each
patient, one eye was randomly selected to receive the treatment and the other eye was
treated as a control. The data consist of time-to-blindness of the treatment eye (X ) and
time-to-blindness of the control eye (Y ) for 197 diabetic patients. The patients were
separated into two groups: Adult group (Age ≥20, 83 patients) and Juvenile group
(Age <20, 114 patients). Both X and Y may be censored due to death, dropout, or the
study end. In Adult group, 78% of X and 40% of Y were censored: in Juvenile group,
68% of X and 55% of Y were censored.

We assume that (X, Y ) follows the generalized FGM copula with the Burr III
margins in Eq. (4).We set p = 3 and q = 2 to yield a wide range τ ∈ [−0.245, 0.315],
whereby the range of θ is [−0.605, 0.778]. For each group, the parameters (α, β, δ, θ)

are estimated by themaximum likelihood estimator (MLE) based on bivariate censored
data [Section 11.2.2.1 of Lawless (2003)].

The MLEs are summarized in Table 1. We obtained θ̂ = 0.621 (τ̂ = 0.252) in
Adult group and θ̂ = 0.593 (τ̂ = 0.240) in Juvenile group. These results agree with
Louzada et al. (2013) who applied a Bayesian estimate θ̂ = 0.644 for both groups
under the original FGM copula. Under the original FGM copula, however, the range
of Kendall’s tau is τ ∈ [−0.222, 0.222] that is too narrow. Hence, the generalized
FGM copula may be more suitable for fitting the data.
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Table 1 Parameter estimates
for the generalized FGM copula
model with the Burr III margins
based on data from the diabetic
retinopathy study

Group α̂ β̂ δ̂ θ̂

Adult 12.250 5.690 0.565 0.621 (τ̂ = 0.252)

Juvenile 7.407 5.607 0.489 0.593 (τ̂ = 0.240)

Fig. 4 Estimates of the sub-distribution functions using the parametric and non-parametric approaches
based on the diabetic retinopathy data

Based on the MLEs obtained above, we estimated the sub-distribution functions
using the formulas available in Theorem 6. We also applied the non-parametric esti-
mator of sub-distribution functions [Section 9.2 of Lawless (2003)]. Figure 4 reveals
that the two estimators are close to one another. This implies that the generalized FGM
copula with Burr III margins fit well to the data.

6 Concluding remarks

New results obtained in this paper include the expression of Blest’s coefficient
(Sect. 3.2), simplified expression of Kochar and Gupta’s dependence measure
(Sect. 3.3), sub-density and sub-distribution functions under the generalized FGM
copula (Sect. 4). With these expressions, the paper discusses mathematical relation-
ships among the bivariate dependence measures, which are not explicitly discussed in
the literature.

One should keep in mind that there still exists many other bivariate dependence
measureswith unknown expressions under the generalized FGMcopula, such asGini’s
coefficient (Gini 1912) and theSchweizer–Wolffmeasure (Schweizer andWolff 1981).
Gini’s coefficient is a bivariate dependencemeasure based on the concept concordance
whose formula may be difficult to derive under the generalized FGM copula. The
Schweizer–Wolff measure is a L p distance
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⎛
⎝kp

1∫

0

1∫

0

|C(u, v) − uv|p dudv

⎞
⎠

1
p

, 1 ≤ p < ∞,

where kp is a normalizing constant. It only takes positive values, so it is different from
other bivariate dependence measures discussed in this paper. For p = ∞, it becomes
4 sup0<u,v<1 |C(u, v)−uv|. For integer values of p, the expressions may be available.

As for the bivariate competing risks models, we show that the sub-distribution
function has an explicit form with the Burr III margins (Theorem 6). An interesting
conclusion of this paper is that our expressions for the sub-distribution functions
generalize the reliability measure previously considered by Domma and Giordano
(2013).

We have conducted Monte Carlo simulations to verify the correctness of all the
newly obtained expressions of dependence measures and competing risks measures
under the generalized FGM copula. The simulation results are available in Supple-
mentary Material.

Our results imply that the generalized FGM copula is appealing for many statis-
tical problems, especially for analyzing competing risks data. In copula-based latent
failure time models for competing risks data, statistical inference procedures often
requires the form of a sub-density or a cause-specific hazard function; see real exam-
ples from biomedical studies (Escarela and Carrière 2003; Emura et al. 2015, 2017;
Emura and Chen 2016), economic studies (Lo and Wilke 2010; De Uña-Álvarez and
Veraverbeke 2014) and animal studies (Braekers and Veraverbeke 2005; Emura and
Michimae 2017). In addition, the sub-distribution functions are used in the process
of deriving estimators (Lo and Wilke 2010; De Uña-Álvarez and Veraverbeke 2013,
2014). Usually in the copula-based latent failure time models, the sub-distribution is
not a target of estimation, but useful for model diagnostic procedures (Escarela and
Carrière 2003). We are currently examining the applications of our theoretical results
to the statistical problems with real competing risks.
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