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Abstract Many existing latent failure timemodels for competing risks do not provide
closed form expressions of sub-distribution functions. This paper suggests a gener-
alized FGM copula models with the Burr III failure time distribution such that the
sub-distribution functions have closed form expressions. Under the suggested model,
we develop a likelihood-based inference method along with its computational tools
and asymptotic theory. Based on the expressions of the sub-distribution functions,
we propose goodness-of-fit tests. Simulations are conducted to examine the perfor-
mance of the proposed methods. A real data from the reliability analysis of the radio
transmitter-receivers are analyzed to illustrate the proposed methods. The computa-
tional programs are made available in the R package GFGM.copula.

Keywords Bivariate survival analysis · Burr III distribution · Copula · Parametric
bootstrap · Reliability

1 Introduction

The issue of competing risks arises when researchers deal with multiple failure times.
In reliability research, a manufactured product has multiple causes of failure, where
only the first-occurring failure time is observable in a series system (Meeker and
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Escobar 1998; Crowder 2001). In many cases, a goal of competing risks analyses is to
make inference on the distributions of the component failure times without assuming
their independence.

This paper focuses on parametric approaches to deal with dependent competing
risks based on “latent failure time models” (Crowder 2001). In the literature, there
are many parametric approaches for latent failure time models such as the bivariate
Weibull model (Moeschberger 1974), bivariate normal model (Basu and Ghosh 1978),
bivariate log-normal model (Fan and Hsu 2015), and bivariate piecewise exponential
model (Staplin et al. 2015).

An alternative to these well-known bivariate models is a copula model (Nelsen
2006; Durante and Sempi 2015; Emura and Chen 2018) in whichmarginal failure time
models are flexibly chosen. Escarela and Carrière (2003) considered the Frank copula
with the three-parameter Burr XII margins, where the Burr XII distribution includes
the log-logistic, the Pareto II (Lomax), and the Weibull distributions as special cases.
Emura et al. (2015) applied the Clayton copula with the margins approximated by
a five-parameter spline. Hsu et al. (2016) used the Clayton copula with the margins
specified by a class of log-location-scalemodels. Emura andMichimae (2017) adopted
the Clayton or Joe copula with the margins approximated by piecewise exponential
models. All these methods utilize likelihood-based parametric inference based on
competing risks data.

Aforementioned models, including the popular bivariate models and the Clayton,
Frank, and Joe copulamodels, do not yield closed formexpressions for sub-distribution
functions. This drawback does not relate to parameter estimation, but it causes
inconvenience for purpose of model-diagnostic procedures or goodness-of-fit tests,
fundamental tools in parametric analyses. Furthermore, no paper seems to examine
the regularity conditions for these models to support the asymptotic theory. In con-
trast, the asymptotic theory is more rigorously analyzed under some semi-parametric
approaches (Rivest and Wells 2001; Braekers and Veraverbeke 2005; de Uña-Álvarez
and Veraverbeke 2013, 2017).

In this context, we consider the generalized Farlie–Gumbel–Morgenstern (FGM)
copula with the Burr III marginal distribution such that the sub-distribution func-
tions have closed form expressions (Sect. 2). Under the proposed model, we develop
a likelihood-based inference method, including its computational algorithms and
goodness-of-fit tests (Sect. 3). We provide more convincing asymptotic theory for
the proposed method than those for the existing parametric methods (Sect. 4). We
provide numerical studies based on Monte-Carlo simulations (Sect. 5) and a real data
example based on the reliability analysis of the radio transmitter-receivers (Sect. 6).
Some discussions are given in Sect. 7.

2 Competing risks models

2.1 Generalized FGM copula and Burr III distribution

The FGM copula was first introduced by Morgenstern (1956), which can even be
traced back to Eyraud (1936). The FGM copula is defined as
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Cθ (u, v) � uv{1 + θ (1 − u)(1 − v)}, 0 ≤ u, v ≤ 1,

where −1 ≤ θ ≤ 1. The function Cθ (u, v) is a bivariate distribution function where
the marginal distributions are the uniform on [0, 1] and the level of dependence is
determined by θ . Positive (or negative) dependence corresponds to θ > 0 (or θ < 0),
and independence corresponds to θ � 0. Due to its simple form, the FGM copula
has been used to illustrate some theoretical results or aging properties of multivariate
lifetime models. A recent example includes Navarro (2016) who demonstrated their
results on residual lifetimes of coherent systems by the trivariate FGM copula.

Bairamov and Kotz (2002) considered the generalized FGM copula defined as

Cθ (u, v) � uv{1 + θ (1 − u p)q (1 − v p)q}, p ≥ 1, q > 1, 0 ≤ u, v ≤ 1,

where the admissible range of θ is

−min

{
1,

1

p2q

(
1 + pq

q − 1

)2q−2
}

≤ θ ≤ 1

pq

(
1 + pq

q − 1

)q−1

. (1)

The restriction q > 1 is imposed since only θ � 0 is admissible for 0 < q < 1
(Bairamov and Kotz 2002). This restriction agrees with Bairamov and Bayramoglu
(2013). The generalized FGM copula is symmetric (exchangeable) and preserves the
tractability of the FGM copula, while providing closed form expressions of Kendall’s
tau, Spearman’s rho, and other measures that helps us to interpret the meaning of the
copula parameters (Amini et al. 2011; Domma and Giordano 2013, 2016; Shih and
Emura 2016).

A review of Bairamov and Bayramoglu (2013) reveals that there are several dif-
ferent versions of the generalized FGM copulas, such as those defined by Huang and
Kotz (1999) and non-symmetric FGM copulas. However, it would suffice to consider
symmetric copulas since non-symmetric copulas are rarely used in practical applica-
tions.

Let X and Y be continuous failure times having marginal distribution functions F1
and F2. We assume that the joint distribution function F(x, y) � Pr(X ≤ x, Y ≤ y)
is

(2)

F(x, y) � Cθ {F1(x), F2(y)}
� F1(x)F2(y)[1 + θ{1 − F1(x)

p}q{1 − F2(y)
p}q ].

Gumbel (1960) used the exponential distributions for F1 and F2 under the FGMcopula.
Instead, we adopt the Burr III distributions defined as

F1,(α,γ )(x) � (1 + x−γ )−α, x > 0, F2,(β,γ )(y) � (1 + y−γ )−β, y > 0,

where (α, β, γ ) are all positive shape parameters.
The Burr III distribution belongs to the Burr system (Burr 1942) and is widely

used in real applications. It has been applied to financial study (Sherrick et al. 1996),
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environmental studies (Lindsay et al. 1996; Shao 2000), and reliability theory (Mokhlis
2005). Especially, under the FGM copula with the Burr III margins, Domma and
Giordano (2013) derived the explicit formula of a reliability measure which is written
as

Pr(Y < X ) �
�
y<x

∂2

∂x∂y
F(x, y)dxdy � α

α + β
+ θ

αβ(α − β)

(α + β)(2α + β)(α + 2β)
.

Shih andEmura (2016) further extended their result to a “truncated reliabilitymeasure”

Pr(Y ≤ t, Y < X ) � Hγ (t)
β − β

α + β
Hγ (t)

α+β − θβ

{
1

α + β
Hγ (t)

α+β

− 1

2α + β
Hγ (t)

2α+β − 2

α + 2β
Hγ (t)

α+2β +
1

α + β
Hγ (t)

2α+2β
}

,

where Hγ (t) � (1 + t−γ )−1. The results can also be extended to the generalized
FGM copula. These properties make the Burr III distribution as an attractive model
for reliability, competing risks, and truncated data analyses.

2.2 Bivariate competing risks models

In bivariate competing risks analysis, observed variables are the failure time T and
the cause indicator J taking values J � 1 (cause 1 failure) or J � 2 (cause 2 failure).
Define

F(1, t) � Pr(J � 1, T ≤ t) and F(2, t) � Pr(J � 2, T ≤ t).

They are the sub-distribution functions for FT (t) � Pr(T ≤ t) such that F(1, t) +
F(2, t) � FT (t). In competing risks analysis, the sub-distribution functions play a
fundamental role as it is empirically estimable, and easy to interpret (Crowder 2001;
Escarela and Carrière 2003; Lawless 2003; Bakoyannis and Touloumi 2012).

The latent failure time model for bivariate competing risks considers two latent
failure times X andY corresponding to cause 1 and cause 2 failures, respectively (Chap
3 of Crowder 2001). One can observe the first occurring event time T � min(X, Y )
and the cause indicator J taking values J � 1 (if X ≤ Y ) or J � 2 (if Y < X ). We
assume that X and Y are continuous and non-negative random variables following the
generalized FGM copula model in Eq. (2).

For instance, consider a life test of a series system having two components, say
components 1 and 2. The system fails if either component 1 or 2 fails. At the time
of failure, one can observe the first occurring component failure time and its failure
cause. If the system does not fail at the end of the life test, one can only know that the
two component failure times are greater than the time. See Sect. 6 for more detailed
illustration on a similar example.
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Under the latent failure time model, the sub-distribution functions can be rewritten
as

F( j, t) � Pr(J � j, T ≤ t) �
t∫

0

f ( j, z)dz, j � 1, 2.

where f (1, t) � −∂ F̄(x, y)/∂x |x�y�t and f (2, t) � −∂ F̄(x, y)/∂y|x�y�t are
known as the sub-density functions, and

F̄(x, y) � 1 − F1(x) − F2(y) + F1(x)F2(y)[1 + θ{1 − F1(x)
p}q{1 − F2(y)

p}q ]

is the joint survival function.
In the existing copula-based latent failure timemethods for competing risks data, the

sub-distribution functions have not been the main tool for estimation. Instead, existing
likelihood-based estimation methods utilize the cause-specific hazard function in their
likelihood functions (e.g., Escarela and Carrière 2003; Chen 2010; Emura and Chen
2016; Emura and Chen 2018). However, the sub-distribution functions are potentially
useful for model-diagnostic procedures (Escarela and Carrière 2003) or goodness-of-
fit tests.

Escarela and Carrière (2003) proposed the survival copula model

Pr(X > x, Y > y) � F̄(x, y) � Cθ {1 − F1(x), 1 − F2(y)},

where

Cθ (u, v) � −1

θ
log

{
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

}
, θ �� 0

is the Frank copula, Fj (t) � 1 − exp{−(λ j t )α j }, λ j , α j > 0, j � 1, 2 are the
Weibull distribution functions. To assess the goodness-of-fit of their proposed model,
they compared the empirical sub-distribution functions with the model-based sub-
distribution functions:

F( j, t) �
t∫

0

α jλ j (λ j z )
α j−1{1 − Fj (z)} exp[−θ{1 − Fj (z)}]{exp[−θ{1 − F3− j (z)}] − 1}

(e−θ − 1) exp{−θ F̄(z, z)} dz

for j � 1, 2. Escarela and Carrière (2003) pointed out that the above sub-distribution
does not have a closed form. They obtained it numerically by the S-PLUS inte-
grate function. Many common bivariate distributions do not yield closed form
sub-distribution functions.

Under the generalized FGM copula model, Shih and Emura (2016) derived the
explicit expressions of sub-densities and sub-distribution functions under the Burr III
margins, defined as F1,(α,γ )(x) � (1 + x−γ )−α and F2,(β,γ )(y) � (1 + y−γ )−β , where
(α, β, γ ) are positive shape parameters. The sub-density functions can be expressed
as
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(3)

fϕ(1, t) � αγ t−γ−1Hγ (t)
α+1 − αγ t−γ−1Hγ (t)

α+β+1

− θαγ

q∑
i�0

q−1∑
j�0

(
q

i

) (
q − 1

j

)
(−1)i+ j Hγ (t)

α(pj+1)+β(pi+1)+1{1 − (1 + pq)Hγ (t)
αp}t−γ−1

and

(4)

fϕ(2, t) � βγ t−γ−1Hγ (t)
β+1 − βγ t−γ−1Hγ (t)

α+β+1

− θβγ

q∑
i�0

q−1∑
j�0

(
q

i

)(
q − 1

j

)
(−1)i+ j Hγ (t)

α(pi+1)+β(pj+1)+1{1 − (1 + pq)Hγ (t)
βp}t−γ−1,

where ϕ � (α, β, γ ), Hγ (t) � (1 + t−γ )−1, p ≥ 1, q ∈ {1, 2, . . .}, and θ in the
range of Eq. (1). The sub-distribution functions can be expressed as

Fϕ(1, t) � Hγ (t)
α − α

α + β
Hγ (t)

α+β

−θα

q∑
i�0

q−1∑
j�0

(
q

i

) (
q − 1

j

)
(−1)i+ j

{
Hγ (t)α(pj+1)+β(pi+1)

α(pj + 1) + β(pi + 1)
− (1 + pq)Hγ (t)α(pj+p+1)+β(pi+1)

α(pj + p + 1) + β(pi + 1)

}

and

Fϕ(2, t) � Hγ (t)
β − β

α + β
Hγ (t)

α+β

− θβ

q∑
i�0

q−1∑
j�0

(
q

i

) (
q − 1

j

)
(−1)i+ j

{
Hγ (t)α(pi+1)+β(pj+1)

α(pi + 1) + β(pj + 1)
− (1 + pq)Hγ (t)α(pi+1)+β(pj+p+1)

α(pi + 1) + β(pj + p + 1)

}
.

However, Shih andEmura (2016) did not consider statistical inference under themodel.

3 Proposed method

This section considers parameter estimation and proposes goodness-of-fit tests under
the generalized FGM copula model with the Burr III margins.

3.1 Maximum likelihood estimation

The generalized FGM copula model with the Burr III margins is defined as

(5)Fϕ(x, y) � (1 + x−γ )−α(1 + y−γ )−β [1 + θ {1 − (1 + x−γ )−αp}q {1 − (1 + y−γ )−βp}q ],

where ϕ � (α, β, γ ). The marginal distribution functions for X and Y are

F1,(α,γ )(x) � Fϕ(x, ∞)� (1 + x−γ )−α and F2,(β,γ )(y) � Fϕ(∞, y)� (1 + y−γ )−β .

The joint survival function is

F̄ϕ(x, y) � 1 − F1,(α,γ )(x) − F2,(β,γ )(y) + Fϕ(x, y). (6)
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Table 1 Three different observation patterns under bivariate competing risks

Observation patterns Ti δi δ∗
i Likelihood contribution

Cause 1 failure Xi 1 0 Pr(Xi � Ti , Yi > Ti ) � fϕ(1, Ti )

Cause 2 failure Yi 0 1 Pr(Xi > Ti , Yi � Ti ) � fϕ(2, Ti )

Censoring Ci 0 0 Pr(Xi > Ti , Yi > Ti ) � F̄ϕ(Ti , Ti )

In the presence of competing risks, one can observe only one of X and Y for
each subject. This implies that one cannot use correlation statistics such as Pearson’s
correlation andKendall’s tau to estimate copula parameters (p, q, θ ). Indeed, without
any model assumption on X and Y , one cannot identify their correlation structure
(Tsiatis 1975).

If some parametric or semi-parametric models are imposed on X and Y , the model
becomes identifiable. Such models include one- or two-parameter lifetime models
(David and Moeschberger 1978; Basu and Ghosh 1978), parametric Weibull regres-
sion models (Escarela and Carrière 2003), the semi-parametric Cox and AFT models
(Heckman and Honore 1989), and copula models (Zheng and Klein 1995). However,
even if the model is identifiable, the estimation of the dependence parameter remains
a difficult task since the competing risks data provide little information about depen-
dence between X and Y .

To identify the copula parameters (p, q, θ ) under the model (5), we will follow
Escarela and Carrière (2003) who adopt a profile-likelihood approach. The imple-
mentation of the profile likelihood approach under the model (5) will be described
in Sect. 6. The rest of this section develops an estimation method for the marginal
parameter ϕ � (α, β, γ ) given the copula parameters (p, q, θ ).

Let (Xi , Yi , Ci ), i � 1, 2, . . . , n, be i.i.d. triplets, where (Xi , Yi ) follows
Eq. (5) and Ci is the independent censoring time. Type I censoring corresponds to
the case where Ci � w for all i , where w is the duration of the life test. Denote
Ti � min(Xi , Yi , Ci ) as the observed failure time, δi � I(Ti � Xi ) as the indicator
of failure cause 1, and δ∗

i � I(Ti � Yi ) as the indicator of failure cause 2. The data
consist of (Ti , δi , δ∗

i ) for i � 1, 2, . . . , n (Table 1).
As in Lawless (2003, p. 435), the log-likelihood function is

	n(ϕ)�
n∑

i�1

δi log fϕ(1, Ti )+
n∑

i�1

δ∗
i log fϕ(2, Ti )+

n∑
i�1

(1 − δi − δ∗
i ) log F̄ϕ(Ti , Ti ),

where fϕ(1, t), fϕ(2, t), and F̄ϕ(t, t) are explicitly written in Eqs. (3), (4), and (6),
respectively. The maximum likelihood estimator (MLE) is

ϕ̂ � (α̂, β̂, γ̂ ) � argmax
ϕ∈


	n(ϕ), 
 � (0,∞) × (0,∞) × (0,∞).

To obtain the MLE, we use the derivatives of 	n(ϕ) with respect to ϕ � (α, β, γ ).
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Let ϕ j be the j-th element of ϕ � (α, β, γ ), j � 1, 2, 3. The first-order derivatives
of the log-likelihood function (score functions) are

∂	n(ϕ)

∂φ j
�

n∑
i�1

{
δi

1

fϕ(1, Ti )

∂ fϕ(1, Ti )

∂φ j

}
+

n∑
i�1

{
δ∗
i

1

fϕ(2, Ti )

∂ fϕ(2, Ti )

∂φ j

}

+
n∑

i�1

{
(1 − δi − δ∗

i )
1

F̄ϕ(Ti , Ti )

∂ F̄ϕ(Ti , Ti )

∂φ j

}
, j � 1, 2, 3,

where the formulas for ∂ fϕ(1, t)/∂φ j , ∂ fϕ(2, t)/∂φ j , and ∂ F̄ϕ(t, t)/∂φ j , j � 1, 2, 3
are given in Supplementary Material.

The second-order derivatives of the log-likelihood function (Hessians) are

∂2	n(ϕ)

∂φ j∂φk
�

n∑
i�1

[
δi

{
1

fϕ(1, Ti )

∂2 fϕ(1, Ti )

∂φ j∂φk
− 1

f (1, Ti )2
∂ fϕ(1, Ti )

∂φ j

∂ fϕ(1, Ti )

∂φk

}]

+
n∑

i�1

[
δ∗
i

{
1

fϕ(2, Ti )

∂2 fϕ(1, Ti )

∂φ j∂φk
− 1

fϕ(2, Ti )2
∂ fϕ(2, Ti )

∂φ j

∂ fϕ(2, Ti )

∂φk

}]

+
n∑

i�1

[
(1 − δi − δ∗

i )

{
1

F̄ϕ(Ti , Ti )

∂2 F̄ϕ(Ti , Ti )

∂φ j∂φk
− 1

F̄ϕ(Ti , Ti )2
∂ F̄ϕ(Ti , Ti )

∂φ j

∂ F̄ϕ(Ti , Ti )

∂φk

}
,

j, k � 1, 2, 3,

where the formulas for ∂2 fϕ(1, t)/∂φ j∂φk , ∂2 fϕ(2, t)/∂φ j∂φk , and
∂2 F̄ϕ(t, t)/∂φ j∂φk , j, k � 1, 2, 3 are given in Supplementary Material.

With the score functions and Hessians, one can perform the Newton–Raphson
(NR) algorithm. In our experience, the NR algorithm ascertains the MLE within 5
or 6 iterations. On the other hand, the NR algorithm is sensitive to the initial value
(Knight 2000). Our close inspection revealed that the NR algorithm gives erroneous
results when fϕ(1, Ti ) ≈ 0, fϕ(2, Ti ) ≈ 0, or F̄ϕ(Ti , Ti ) ≈ 0 for some i during
iterations. These irregular cases imply that the NR algorithm does not converge due
to a wrong initial value. To solve these problems, it suffices to apply the randomized
NR algorithm (Hu and Emura 2015).

Algorithm 1: Randomized Newton–Raphson algorithm
Let D, c, ε0, ε1, ε2, r1, r2, and r3 be some positive tuning parameters.

Step1 Set an initial value (α(0), β(0), γ (0)) � (X̄ , Ȳ , c), where

X̄ �
n∑

i�1

δi Ti/
n∑

i�1

δi and Ȳ �
n∑

i�1

δ∗
i Ti/

n∑
i�1

δ∗
i .
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Step2 Calculate Err (k+1) � max{|α(k+1) − α(k)|, |β(k+1) − β(k)|, |γ (k+1) − γ (k)|},
where

⎡
⎢⎢⎣

α(k+1)

β(k+1)

γ (k+1)

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

α(k)

β(k)

γ (k)

⎤
⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2	n (ϕ)
∂α2

∂2	n (ϕ)
∂α∂β

∂2	n (ϕ)
∂α∂γ

∂2	n (ϕ)
∂α∂β

∂2	n (ϕ)
∂β2

∂2	n (ϕ)
∂β∂γ

∂2	n (ϕ)
∂α∂γ

∂2	n (ϕ)
∂β∂γ

∂2	n (ϕ)
∂γ 2

⎤
⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎣

∂	n(ϕ)

∂α
∂	n(ϕ)

∂β

∂	n(ϕ)

∂γ

⎤
⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣
α�α(k), β�β(k), γ�γ (k)

• If Err (k+1) < ε0, stop the algorithm and the MLE is ϕ̂ � (α(k+1), β(k+1), γ (k+1)).
• If Err (k+1) > D, min{α(k+1), β(k+1), γ (k+1)} < ε1, fϕ(1, Ti ) < ε2, fϕ(2, Ti ) <

ε2, or F̄ϕ(Ti , Ti ) < ε2 for some i , stop the algorithm and return to Step 1 with the
initial value being replaced by (α(0)eu1 , β(0)eu2 , γ (0)eu3 ), where ui∼U (−ri , ri ,
i � 1, 2, 3.

Remark 1 The choice α(0) � X̄ comes from the formula E(X ) � αB(α + 1/γ, 1 −
1/γ ). The scale of α may be reflected by the value of X̄ . Similarly, we set β(0) � Ȳ .

Remark 2 We suggest trying several values for c. For illustration, we run Algorithm
1 on one simulated dataset of n � 100 under c � 1, 2, 3, 4. Table 2 shows that the
choice of c only influences the number of iterations and does not influence parameter
estimates.

Remark 3 We set c � 4 and D � 50 for the simulation (Sect. 5) while c � 1 and
D � 5000 for the data analysis (Sect. 6). The other tuning parameters are set to be
r1 � r2 � r3 � 1, ε0 � 10−5, ε1 � 10−10, and ε2 � 10−300 for both simulation and
data analysis.

3.2 Goodness-of-fit tests

We develop goodness-of-fit tests for examining the fit of the model (5). Our tests are
inspired by a graphical tool proposed byEscarela andCarrière (2003). The tests consist
of three estimators of the sub-distribution functions: (i) parametric estimator, (ii) semi-
parametric estimator, and (iii) non-parametric estimator. If the three estimators are

Table 2 The results of the randomized NR algorithm (Algorithm 1) under different initial values

Initial
values

α̂

(α � 3)
β̂

(β � 2)
γ̂

(γ � 7)
The number of
iterations

The number of
randomizations

c � 1 3.400 1.995 6.899 7 64

c � 2 3.400 1.995 6.899 6 8

c � 3 3.400 1.995 6.899 6 1

c � 4 3.400 1.995 6.899 7 0

The results are based on one simulated dataset with n � 100
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1302 J.-H. Shih, T. Emura

close to one another, we conclude that there is no evidence against the model. Escarela
and Carrière (2003) considered only the graphical comparison between (i) and (iii)
without significance tests.

(i) Parametric estimation of sub-distribution functions

Under the generalized FGM copula model with Burr III margins in Eq. (5), the sub-
distribution functions have closed forms (Sect. 2.2). Hence, if the model (5) is correct,
the consistent estimators of the sub-distribution functions are

Fϕ̂(1, t) � Hγ̂ (t)
α̂ − α̂

α̂ + β̂
Hγ̂ (t)

α̂+β̂

− θα̂

q∑
i�0

q−1∑
j�0

(
q

i

)(
q − 1

j

)
(−1)i+ j

{
Hγ̂ (t)

α̂(pj+1)+β̂(pi+1)

α̂(pj + 1) + β̂(pi + 1)
− (1 + pq)Hγ̂ (t)

α̂(pj+p+1)+β̂(pi+1)

α̂(pj + p + 1) + β̂(pi + 1)

}

and

Fϕ̂(2, t) � Hγ̂ (t)
β̂ − β̂

α̂ + β̂
Hγ̂ (t)

α̂+β̂

− θβ̂

q∑
i�0

q−1∑
j�0

(
q

i

)(
q − 1

j

)
(−1)i+ j

{
Hγ̂ (t)

α̂(pi+1)+β̂(pj+1)

α̂(pi + 1) + β̂(pj + 1)
− (1 + pq)Hγ̂ (t)

α̂(pi+1)+β̂(pj+p+1)

α̂(pi + 1) + β̂(pj + p + 1)

}
,

where Hγ̂ (t) � (1 + t−γ̂ )−1 and ϕ̂ � (α̂, β̂, γ̂ ) is the MLE.

(ii) Semi-parametric estimation of sub-distribution functions

For semi-parametric estimation, we consider the generalized FGM copula model with
margins being unspecified. Here, we approximate the hazard function of X as

h1,g1 (x) �
LX∑
	�1

g1	M	(x),

where M	(x), 	 � 1, 2, . . . , LX , are the cubic M-spline bases (Ramsay 1988) and
g1 � (g11, . . . , g1LX ) are unknown parameters with g1	 ≥ 0 for 	 � 1, 2, . . . , LX .
The cumulative hazard function of X is then approximated by

H1,g1 (x) �
LX∑
	�1

g1	 I	(x),

where I	(x) is the integration of M	(x), called as the I-spline bases (Ramsay 1988).
The hazard and cumulative hazard functions of Y are similarly approximated as

h2,g2 (y) �
LY∑
	�1

g2	M	(y) and H2,g2 (y) �
LY∑
	�1

g2	 I	(y),
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where g2 � (g21, . . . , g2LY ) with g2	 ≥ 0 for 	 � 1, 2, . . . , LY . With the above
definitions, the approximate marginal distribution and density functions of X and Y
can be written as

Fj,g j (x) � 1 − exp{−Hj,g j (x)}, f j,g j (x) � h j,g j (x) exp{−Hj,g j (x)}, j � 1, 2.

Letting g � (g1, g2), the semi-parametric model is written as

Fg(x, y) � Pr(X ≤ x, Y ≤ y) � F1,g1 (x)F2,g2 (y)[1 + θ {1 − F1,g1 (x)
p}q {1 − F2,g2 (y)

p}q ],

Let ĝ be theMLE under this model.We use theM- and I-spline bases of LX � LY � 5
derived in Emura et al. (2015) and Emura and Chen (2018) which are available in the
R joint.Cox package (Emura 2017).

By Theorem 6 in Shih and Emura (2016), we estimate the sub-distribution functions
as

Fĝ(1, t) � F1,ĝ1 (t) −
t∫

0

F2,ĝ2 (z) f1,ĝ1 (z)dz

− θ

q∑
i�0

q−1∑
j�0

(
q

i

) (
q − 1

j

)
(−1)i+ j

t∫
0

F2,ĝ2 (z)
pi+1F1,ĝ1 (z)

pj {1 − (1 + pq)F1,ĝ1 (z)
p} f1,ĝ1 (z)dz

and

Fĝ(2, t) � F2,ĝ2 (t) −
t∫

0

F1,ĝ1 (z) f2,ĝ2 (z)dz

− θ

q∑
i�0

q−1∑
j�0

(
q

i

)(
q − 1

j

)
(−1)i+ j

t∫
0

F1,ĝ1 (z)
pi+1F2,ĝ2 (z)

pj {1 − (1 + pq)F2,ĝ2 (z)
p} f2,ĝ2 (z)dz,

where the integrals are computed by the R integrate function.

(iii) Non-parametric estimation of sub-distribution functions

For non-parametric estimation, we let T(1) < T(2) < · · · < T(k) be distinct uncensored
times. Then, the non-parametric estimators of sub-distribution functions (Lawless
2003, p.437-439) are

F̂(1, t) �
∑

i : T(i)≤t

Ŝ(t)
di1
ni

and F̂(2, t) �
∑

i : T(i)≤t

Ŝ(t)
di2
ni

,

where

Ŝ(t) �
∏

i :T(i)<t

ni − di
ni

, ni �
n∑
j�1

I(Tj ≥ T(i)), di �
n∑
j�1

I(Tj � T(i)),

di1 �
n∑
j�1

δi I(Tj � T(i)), and di2 �
n∑
j�1

δ∗
i I(Tj � T(i)).
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Based on these estimators for sub-distribution functions, we consider two test
hypotheses: (I) The overall model fit and (II) The fit of the generalized FGM cop-
ula.

(I) Test for the overall model fit

The null hypothesis for the overall fit is defined as

H1
0 : Pr(X ≤ x, Y ≤ y) � Cθ {F1,(α,γ )(x), F2,(β,γ )(y)}, for some (α, β, γ ),

where Cθ (u, v) � uv{1 + θ (1 − u p)q (1 − v p)q}, F2,(α,β)(y) � (1 + y−γ )−β , and
F1,(α,γ )(x) � (1 + x−γ )−α . The rejection of this hypothesis implies that either the
generalized FGM copula or the marginal Burr III model is incorrect. The test statistic
for this hypothesis is based on the distance between the parametric estimators and the
non-parametric estimators. Specially, we consider the Cramér-vonMises type statistic

S1 �
n∑

i�1

δi {Fϕ̂(1, Ti ) − F̂(1, Ti )}2 +
n∑

i�1

δ∗
i {Fϕ̂(2, Ti ) − F̂(2, Ti )}2.

A large value of S1 rejects H1
0 (rejects the overall model).

(II) Test for the fit of the generalized FGM copula

The null hypothesis for the generalized FGM copula is

H2
0 : Pr(X ≤ x, Y ≤ y) � Cθ {F1(x), F2(y)}, for some F1 and F2,

whereCθ (u, v) � uv{1+θ (1−u p)q (1−v p)q}. The rejection of this hypothesis implies
that the generalized FGM copula is incorrect. The test statistic for this hypothesis is
based on the distance between the semi-parametric estimators and the non-parametric
estimators, namely

S2 �
n∑

i�1

δi {Fĝ(1, Ti ) − F̂(1, Ti )}2 +
n∑

i�1

δ∗
i {Fĝ(2, Ti ) − F̂(2, Ti )}2.

A large value of S2 rejects H2
0 (rejects the generalized FGM copula).

To obtain level α tests, we apply the parametric bootstrap (Efron and Tibshirani
1993).

Algorithm 2: The goodness-of-fit tests with parametric bootstrap
Let B be a large integer.

Step 1 Generate bootstrap samples (T (b)
i , δ

(b)
i , δ

∗(b)
i ), i � 1, 2, . . . , n, b �

1, 2, . . . , B under the model (5) with ϕ̂ � (α̂, β̂, γ̂ ).
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Step 2 Based on the bootstrap samples, compute the Cramér–von Mises type statistics

S(b)1 �
n∑

i�1

δ
(b)
i {F

ϕ̂(b) (1, T (b)
i ) − F̂ (b)(1, T (b)

i )}2

+
n∑

i�1

δ
∗(b)
i {F

ϕ̂(b) (2, T (b)
i ) − F̂ (b)(2, T (b)

i )}2

and

S(b)2 �
n∑

i�1

δ
(b)
i {Fĝ(b) (1, T (b)

i ) − F̂ (b)(1, T (b)
i )}2

+
n∑

i�1

δ
∗(b)
i {Fĝ(b) (2, T (b)

i ) − F̂ (b)(2, T (b)
i )}2,

for each b � 1, 2, . . . , B.

Step 3 If the Cramér-von Mises type statistic Sk is greater than the 100 × (1 − α)
percent point of {S(b)k , b � 1, 2, . . . , B}, we reject the null hypothesis Hk

0 for
k � 1, 2.

Remark 4 Step 1 requires an algorithm to generate the censoring time C (b)
i . In the

simulation, we generate C (b)
i ∼U (0, w), where w � maxδi�δ∗

i �0(Ti ). In the real data

analysis, we set C (b)
i � 630 according to the Type I censoring condition (Sect. 6).

3.3 Software

The computation programs are implemented in our R package, GFGM.copula (Shih
2018). R users can calculate the MLE and estimates of the mean failure times with
their SEs and CIs. Users can also calculate the sub-distribution functions and the
goodness-of-fit statistics.

4 Asymptotic inference

This section develops the asymptotic theory of the MLE and gives the standard error
and confidence interval. The regularity conditions are also examined.

4.1 Asymptotic theory

Let G(t) � Pr(C > t) and g(t) � −dG(t)/dt be the survival function and density
function of the independent censoring time C . Then the joint density of (T, �, �∗),
where T � min(X, Y, C), � � I(T � X ), and �∗ � I(T � Y ), is defined as
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fϕ(t, δ, δ∗) � { fϕ(1, t)G(t)}δ{ fϕ(2, t)G(t)}δ∗ {g(t)F̄ϕ(t, t)}1−δ−δ∗
, (t, δ, δ∗) ∈ χ,

where χ � (0, ∞) × {(1, 0), (0, 1), (0, 0)} and ϕ � (α, β, γ ). We assume that
G does not depend on ϕ. The expectation of any function h : R3 �→ R is defined as

Eϕ{h(T, �, �∗)} �
∞∫
0

∑
(δ,δ∗)∈Q

{h(t, δ, δ∗) fϕ(t, δ, δ∗)}dt,

Q � {(1, 0), (0, 1), (0, 0)}.

The Fisher information matrix is denoted as I (ϕ) whose elements are

I jk(ϕ) � Eϕ

(
∂ log fϕ(T, �, �∗)

∂φ j
· ∂ log fϕ(T, �, �∗)

∂φk

)
, j, k � 1, 2, 3.

As in Lehmann and Casella (1998, p. 463), we consider the following assumptions:

Assumption (A) There exists an open subset ω ⊂ 
 containing the true parameter,
that is ϕ0 � (α0, β0, γ 0) ∈ ω.

Assumption (B) For all ϕ ∈ 
, the following equations hold

Eϕ

(
∂ log fϕ(T, �, �∗)

∂φ j

)
� 0, j � 1, 2, 3,

Eϕ

(
∂ log fϕ(T, �, �∗)

∂φ j
· ∂ log fϕ(T, �, �∗)

∂φk

)
� Eϕ

(
− ∂2 log fϕ(T, �, �∗)

∂φ j∂φk

)
, j, k � 1, 2, 3.

Assumption (C) For allϕ ∈ 
, theFisher informationmatrix I (ϕ) is positive definite.

Assumption (D) There exists a function Mjk	 such that∣∣∣∣∂3 log fϕ(t, δ, δ∗)
∂φ j∂φk∂φ	

∣∣∣∣ ≤ Mjk	(t, δ, δ∗), for all (t, δ, δ∗) ∈ χ, ϕ ∈ ω,

where m jk	 � Eϕ0{Mjk	(T, �, �∗)} < ∞ for j, k, 	 � 1, 2, 3.

Assumption (A) holds if one does not impose unusual constraints on
. Assumption
(B) holds under a mild assumption on the interchangeability between differentiation
and integration; see Supplementary Material for the proof. Assumption (B) implies
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Table 3 Limits of the third-order derivatives of log f1,(α,γ )(t) and logψϕ(1, t)

log f1,(α,γ )(t) t → 0 t → ∞ logψϕ(1, t) t → 0 t → ∞

log f1,(α,γ )(t) t → 0 t → ∞ logψϕ(1, t) t → 0 t → ∞
∂3 log f1,(α,γ )(t)

∂α3
2
α3

2
α3

∂3 logψϕ(1, t)
∂α3

0 0

∂3 log f1,(α,γ )(t)

∂α2∂β
0 0

∂3 logψϕ(1, t)
∂α2∂β

0 0

∂3 log f1,(α,γ )(t)

∂α2∂γ
0 0

∂3 logψϕ(1, t)
∂α2∂γ

0 0

∂3 log f1,(α,γ )(t)

∂β3 0 0
∂3 logψϕ(1, t)

∂β3 0 2
β3

∂3 log f1,(α,γ )(t)

∂α∂β2 0 0
∂3 logψϕ(1, t)

∂α∂β2 0 0

∂3 log f1,(α,γ )(t)

∂β2∂γ
0 0

∂3 logψϕ(1, t)
∂β2∂γ

0 0

∂3 log f1,(α,γ )(t)

∂γ 3
2

γ 3
2

γ 3
∂3 logψϕ(1, t)

∂γ 3 0 0

∂3 log f1,(α,γ )(t)

∂α∂γ 2 0 0
∂3 logψϕ(1, t)

∂α∂γ 2 0 0

∂3 log f1,(α,γ )(t)

∂β∂γ 2 0 0
∂3 logψϕ(1, t)

∂β∂γ 2 0 0

∂3 log f1,(α,γ )(t)
∂α∂β∂γ

0 0
∂3 logψϕ(1, t)

∂α∂β∂γ
0 0

I jk(ϕ) � Eϕ

(
−∂2 log fϕ(T, �, �∗)

∂φ j∂φk

)
, j, k � 1, 2, 3. (7)

Assumption (C) is hard to verify analytically. As an alternative, we check the
positive definiteness of Î (ϕ̂n) that will be defined in Sect. 4.2. Such conditions always
hold in our numerical analyses. Table 3 shows that all the derivative expressions in
Assumption (D) are bounded. Assumption (D) holds under a simple assumption that
will be given in Sect. 4.3.

Theorem 1 If Assumptions (A)–(D) hold, then (a) Existence and consistency: With
probability tending to 1 as n → ∞, there exists theMLE ϕ̂n � (α̂n, β̂n, γ̂n) such that

ϕ̂n
p→ ϕ0 as n → ∞. (b) Asymptotic normality:

√
n(ϕ̂n − ϕ0)

d→ N3(0, I (ϕ0)−1) as
n → ∞.

The proof follows Theorem 6.5.1 of Lehmann and Casella (1998). However,
Assumptions (A)–(D) have been modified for the competing risks setting in which
the density fϕ(t, δ, δ∗) and the bound Mjk	(t, δ, δ∗) are the mixture of continuous
and discrete parts.
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4.2 Standard error and confidence interval

We use Theorem 1 to obtain the standard error (SE) and the confidence interval (CI).
Based on Eq. (7), we obtain an approximation to the Fisher information matrix

I (ϕ0) ≈ Î (ϕ̂n) ≡ −1

n

∂2	n(ϕ)

∂ϕ∂ϕT

∣∣∣∣
ϕ�ϕ̂n

,

where Î (ϕ̂n) is available from the last step in Algorithm 1. For instance, the SE of
α̂n is SE(α̂n) � [ Î−1(ϕ̂n)]α , where [ ]α is the diagonal element corresponding to
α. By Theorem 1 and a log-transformation, the 95% CI of α0 is α̂n × exp{±1.96 ×
SE(α̂n)/α̂n}.

The delta method applies to a differentiable function g : R3 �→ R to obtain

SE{g(ϕ̂n)} �
√√√√{

∂g(ϕ)

∂ϕ

}T {
−∂2	n(ϕ)

∂ϕ∂ϕT

}−1 {
∂g(ϕ)

∂ϕ

}∣∣∣∣∣
ϕ�ϕ̂n

.

For example, the mean failure time for cause 1 failure is

μX � g(ϕ) � Eϕ(X ) � αB

(
α +

1

γ
, 1 − 1

γ

)
.

The SE of μ̂X � g(ϕ̂n) is obtained from

∂g(ϕ)

∂ϕ
�

(
∂g(ϕ)

∂α
,

∂g(ϕ)

∂β
,

∂g(ϕ)

∂γ

)T

,

∂g(ϕ)

∂α
�αB

(
α +

1

γ
, 1 − 1

γ

){
ψ

(
α +

1

γ

)
− ψ(α)

}
,

∂g(ϕ)

∂β
� 0, and

∂g(ϕ)

∂γ
� α

γ 2 B

(
α +

1

γ
, 1 − 1

γ

) {
ψ

(
1 − 1

γ

)
− ψ

(
α +

1

γ

)}
,

where ψ(α) � �′(α)/�(α) is the digamma function. Then the 95% CI of μ̂X is
μ̂X × exp{±1.96 × SE(μ̂X )/μ̂X }.

One might compute the SE and 95% CI using the bootstrap. However, it requires
likelihood maximization for each resampling step, yielding a large number of ran-
domizations and the NR iteration steps in Algorithm 1. Once we admit the asymptotic
theory to hold, the SE and 95% CI can be obtained more quickly from the last step of
Algorithm 1.

4.3 Simple sufficient condition

A simple sufficient condition to verify Assumption (D) is given below.
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Table 4 Three censoring percentages under (α, β, γ ) � (2, 2, 3)

w � 6 w � 3 w � 2

Cause 1 failure Pr(Xi � Ti , Yi > Ti ) × 100 40% 30% 20%

Cause 2 failure Pr(Xi > Ti , Yi � Ti ) × 100 40% 30% 20%

Censoring Pr(Xi > Ti , Yi > Ti ) × 100 20% 40% 60%

Lemma 1 Assumption (D) holds if 
 � [uα, vα] × [uβ, vβ ] × [uγ , vγ ], for some
positive numbers 0 < uα < vα , 0 < uβ < vβ and 0 < uγ < vγ .

The proof of Lemma 1 is given in Supplementary Material.

5 Simulation

This section evaluates the performance of the proposed methods by simulations.

5.1 Simulation design

To assess the performance of the maximum likelihood estimation, we generate data
(Xi , Yi ) for i � 1, 2, . . . , n from the generalized FGM copula model with Burr III
margins, that is

Fϕ(x, y) � (1 + x−γ )−α(1 + y−γ )−β [1 + θ {1 − (1 + x−γ )−αp}q {1 − (1 + y−γ )−βp}q ],

where p � 3, q � 2, and θ � 0.7 (τ � 0.284). We choose the true parameters
to be (α, β, γ ) � (2, 2, 3), (2, 4, 5), or (3, 2, 7). We generate independent
censoring time Ci∼U (0, w), where w > 0 is a constant yielding three different
censoring percentage: light (20%), moderate (40%), and heavy (60%) (Table 4). Then,
we obtain the data (Ti , δi , δ∗

i ), where Ti � min(Xi , Yi , Ci ), δi � I(Ti � Xi ), and
δ∗
i � I(Ti � Yi ) for i � 1, 2, . . . , n.
Based on the data, we obtain the MLE (α̂, β̂, γ̂ ) along with their SEs using

Algorithm 1 (Randomized NR algorithm). We count the number of NR iterations and
the number of randomizations to assess the convergence speed of Algorithm 1. In
addition, we obtain the MLEs μ̂X � Eϕ̂(X ) and μ̂Y � Eϕ̂(Y ), and their SEs. We
compute the 95% CI to examine the coverage probability (CP) for each estimate. Our
simulation results are based on 10,000 repetitions. Algorithm 1 ascertained the MLE
in every repetition. SupplementaryMaterial includes additional results on a sensitivity
analysis under a copula misspecification.
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To assess the performance of the goodness-of-fit tests, we generate data (Ti , δi , δ∗
i )

for i � 1, 2, . . . , n in a similar fashion under three different copulas (generalized
FGM,Clayton, and independent)with twodifferentmargins (Burr III and exponential).
The censoring percentages are controlled around 20% in all the cases. The dependence
parameter in the generalized FGM and Clayton copulas are chosen to yield the same
Kendall’s tau, τ � 0.284. The marginal parameters are (α, β, γ ) � (1.5, 1, 1) for
the Burr III margins and (λ1, λ2) � (0.5, 1) for the exponential margins. For each
repetition, we calculate the Cramér-von Mises type test statistics and test H1

0 and H2
0

at level α � 0.05 with sample size n � 200 and bootstrap replications B � 500. Due
to the high computational cost, the simulation results for the goodness-of-fit test are
reported under 500 repetitions.

5.2 Simulation results

Table 5 gives the average values of (α̂, β̂, γ̂ ) and the mean square errors (MSEs). It
shows that the estimates are almost unbiased and the MSEs decrease when the sample
size increase. On the other hand, the MSEs increase as the censoring percentage gets
high. Even under the heavy censoring cases, the estimates are still nearly unbiased
for n � 200 and 300. Table 5 also reveals that Algorithm 1 converges quickly (4–7
iterations on average). In the case of (α, β, γ ) � (3, 2, 7), randomizations on
initial values are frequently required. Hence, the randomization scheme is necessary
to stabilize the algorithm.

Table 6 gives the standard deviations (SDs) of theMLE (α̂, β̂, γ̂ ) and their average
SEs. It reveals that the SDs of the estimates are all close to the average SEs. Also, the
CPs of the 95% CIs are very close to the nominal 0.95 in all the cases. The results
support our asymptotic theory of Sect. 4.

Table 7 presents the SDs of μ̂X � Eϕ̂(X ) and μ̂Y � Eϕ̂(Y ), and their average SEs.
In all cases, the SDs are close to the average SEs. The CPs of the 95% CIs are also
close to 0.95. The results show that the delta method and the asymptotic theory works
properly.

Table 8 shows the performance of the goodness-of-fit tests. When the data are
generated under the correctmodel (generalizedFGMcopulawith theBurr IIImargins),
the rejection rates of the tests agree with the nominal level 0.05. In addition, the mean
of the test statistic Sk is very close to the mean of its bootstrap versions. This indicates
that the bootstrap approximation to the null distribution of the test statistic works fairly
well.

When data are generated from the generalized FGM copula (correct copula) with
the exponential margins (incorrect margins), the overall test has strong power to reject
the null hypothesis. Hence, if the copula is correctly specified, the wrong marginal
models are easy to detect. Note, however, that the rejection of the overall test does not
identify which one is incorrect between copula and margins. The test of the copula
keeps the rejection rate below the nominal level. The results imply that the two tests
lead to the correct model identification: the generalized FGM copula is accepted and
the exponential margins are rejected.
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Table 7 Simulation results on the estimates μ̂X � Eϕ̂(X ) and μ̂Y � Eϕ̂(Y ) based on 10,000 repetitions

Parameters Proportion n μ̂X μ̂Y

SD SE CP SD SE CP

α � 2 Xi � Ti (40%) 100 0.107 0.106 0.944 0.107 0.106 0.943

β � 2 Yi � Ti (40%) 200 0.076 0.075 0.948 0.075 0.075 0.945

γ � 3 Ci � Ti (20%) 300 0.062 0.061 0.946 0.062 0.061 0.944

Xi � Ti (30%) 100 0.129 0.127 0.940 0.128 0.127 0.942

Yi � Ti (30%) 200 0.091 0.090 0.948 0.090 0.090 0.946

Ci � Ti (40%) 300 0.073 0.073 0.948 0.074 0.073 0.945

Xi � Ti (20%) 100 0.186 0.177 0.936 0.183 0.177 0.938

Yi � Ti (20%) 200 0.123 0.121 0.945 0.121 0.121 0.950

Ci � Ti (60%) 300 0.100 0.098 0.944 0.100 0.098 0.944

α � 2 Xi � Ti (59%) 100 0.043 0.042 0.944 0.059 0.058 0.942

β � 4 Yi � Ti (21%) 200 0.030 0.030 0.947 0.041 0.041 0.949

γ � 5 Ci � Ti (20%) 300 0.024 0.024 0.946 0.034 0.033 0.946

Xi � Ti (45%) 100 0.048 0.048 0.946 0.069 0.068 0.937

Yi � Ti (15%) 200 0.034 0.034 0.949 0.048 0.048 0.946

Ci � Ti (40%) 300 0.028 0.028 0.946 0.039 0.039 0.951

Xi � Ti (30%) 100 0.060 0.060 0.942 0.089 0.086 0.943

Yi � Ti (10%) 200 0.043 0.042 0.946 0.061 0.061 0.945

Ci � Ti (60%) 300 0.035 0.034 0.944 0.050 0.049 0.942

α � 3 Xi � Ti (29%) 100 0.032 0.032 0.946 0.028 0.027 0.941

β � 2 Yi � Ti (51%) 200 0.023 0.023 0.951 0.019 0.019 0.947

γ � 7 Ci � Ti (20%) 300 0.019 0.018 0.945 0.016 0.016 0.949

Xi � Ti (21%) 100 0.038 0.037 0.940 0.032 0.031 0.943

Yi � Ti (39%) 200 0.027 0.026 0.945 0.022 0.022 0.944

Ci � Ti (40%) 300 0.022 0.022 0.945 0.018 0.018 0.949

Xi � Ti (14%) 100 0.048 0.046 0.937 0.039 0.039 0.940

Yi � Ti (26%) 200 0.034 0.033 0.944 0.028 0.027 0.942

Ci � Ti (60%) 300 0.027 0.027 0.949 0.022 0.022 0.948

SD standard deviation of the estimator, SE average standard error, CP coverage probability of the 95%
confidence interval

When data are generated from the Clayton (incorrect) or the independence (incor-
rect) copula with the Burr III (correct) margins, the overall test has modest power
to reject null hypothesis. The power increases if the marginal distributions are also
incorrect. The test of the copula provides modest power to reject the generalized FGM
copula. Hence, the two tests lead to the correct identification of the copula: the gener-
alized FGM copula is rejected and the overall model is rejected. However, its power
is low possibly due to the non-identifiability issue of the competing risks data.
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Table 9 Summary of the radio data (n � 369) from Mendenhall and Hader (1958)

Confirmed failure Unconfirmed failure Censoring
(δi � 1) (δ∗

i � 1) (δi � δ∗
i � 0)

The number of events
(event rate %)

218 (59%) 107 (29%) 44 (12%)

Average (h) X̄ � 229.6147 Ȳ � 191.1963 C � 630 (fixed)

6 Data analysis

We illustrate the proposed method by using the radio transmitter-receivers data from
Mendenhall andHader (1958). The dataset contains failure times (hours) of theARC-1
VHF radio transmitter-receivers of a single commercial airline. ARC-1 is the name of
the radios and VHF stands for Very High Frequency. The radios were removed from
the aircraft for maintenance when they are assumed to be failed. However, it turns out
that some radios sent for maintenance were actually not failed. Therefore, the failure
can be divided into two modes: confirmed failure and unconfirmed failure. Failure
times were censored at 630 h due to the policy of the airline to remove radios having
operated for 630 h.

We denote the confirmed latent failure time as Xi and the unconfirmed latent failure
time as Yi for subject i � 1, 2, . . . , 369. The censoring time is fixed at Ci �
630 for all i (Type I censoring). Observations consist of triplets (Ti , δi , δ∗

i ), i �
1, 2, . . . , 369, where Ti � min(Xi , Yi , Ci ), δi � I(Ti � Xi ), and δ∗

i � I(Ti � Yi ).
The data are summarized in Table 9.

As mentioned in Sect. 3.1, we fix the copula parameters (p, q, θ ) to perform
likelihood-based inference. Here, we set p � 3 and q � 2 to allow for a wide range
of Kendall’s tau (Shih and Emura 2016). To improve the fit of the data, we introduce
a location parameter η to the generalized FGM copula model with Burr III margins as

F(ϕ,η)(x, y) � F1,(α,γ,η)(x)F2,(β,γ,η)(y)

× [1 + θ {1 − F1,(α,γ,η)(x)
p}q{1 − F2,(β,γ,η)(y)

p}q ],

where

F1,(α,γ,η)(x) � {1 + (x − η)−γ }−α and F2,(β,γ,η)(y) � {1 + (y − η)−γ }−β.

Estimation procedures in Sect. 3.1 can be applied to the transformed data (Ti −
η, δi , δ∗

i ), i � 1, 2, . . . , 369. Now, given η and θ , the log-likelihood in Sect. 3.1 is
modified as

	n(ϕ, η, θ ) �
n∑

i�1

δi log fϕ(1, Ti − η) +
n∑

i�1

δ∗
i log fϕ(2, Ti − η)

+
n∑

i�1

(1 − δi − δ∗
i ) log F̄ϕ(Ti − η, Ti − η).
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Fig. 1 The contour plot of the profile log-likelihood function. The point is drawn at (η̂, θ̂ ) � (−71, 0.75)
which reaches the maximum profile log-likelihood value

The profile log-likelihood of η and θ is defined as

	̃n(η, θ ) � 	n(ϕ̂(η, θ ), η, θ ) � max
ϕ

	n(ϕ, η, θ ),

where ϕ̂(η, θ ) is obtained by using Algorithm 1 (Randomized NR algorithm). We
suggest applying a grid search method to obtain (η̂, θ̂ ) � argmax(η,θ)∈
 	̃n(η, θ ).
Figure 1 gives the contour plot of the profile log-likelihood 	̃n(η, θ ) within the admis-
sible range θ ∈ (−0.604, 0.777) under p � 3 and q � 2. It reveals that the maximum
value is attained at (η̂, θ̂ ) � (−71, 0.75).

The positive dependence θ̂ � 0.75 (τ̂ � 0.304) seems to be reasonable since the
radios with unconfirmed failure may still have a minor problem. The results imply
that the unconfirmed failure time Y may predict the true (confirmed) failure time X .

We perform the proposed goodness-of-fit tests by using Algorithm 1. The results
show that the test of the overall model is accepted (S1 � 0.0375; P-value � 0.502)
and the test of the generalized FGM copula is also accepted (S2 � 0.0075; P-value �
0.992). Therefore, there is no evidence against the generalized FGM copula model
with the Burr III margins. Figure 2 shows the model-diagnostic plot that compares the
three estimators of the sub-distribution functions (parametric, semi-parametric, and
non-parametric). We see that the three estimators are close one another, implying that
the model fits the data well.
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Fig. 2 Parametric (Burr III), semi-parametric (spline), and non-parametric estimators of the sub-distribution
functions (causes 1 and 2) based on the radio data

Table 10 Parameter estimates based on the radio data from Mendenhall and Hader (1958)

α̂ β̂ γ̂ μ̂X μ̂Y

Estimate 1326.8 1835.3 1.298 938.8 1225.6

95% CI (817.6, 2153.1) (1132.4,
2974.4)

(1.211, 1.392) (693.1, 1263.6) (890.7, 1677.2)

The mean failure times are μ̂X � α̂B(α̂ + 1/γ̂ , 1− 1/γ̂ ) + η̂ and μ̂Y � β̂B(β̂ + 1/γ̂ , 1− 1/γ̂ ) + η̂, where
η̂ � −71

Table 10 summarizes parameter estimates and their 95%CIs.Algorithm1converges
quickly (in 6 iterations) without randomization. This implies that the initial value is
appropriate. Figure 3 confirms that (α̂, β̂, γ̂ ) attains the maximum of the likelihood.

Figure 4 shows the fitted marginal density f j (t) and distribution function Fj (t),
j � 1, 2. It reveals that the frequency of confirmed failure ( f1(t)) is higher than
the frequency of unconfirmed failure ( f2(t)) within the first 200 h. Beyond 200 h, the
failure may be more likely due to non-fatal problems or human errors.

Figure 2 shows that the spline model fits better than the Burr III model. However,
the spline model requires 10 parameters, and these parameters are hard to interpret. In
addition, the spline model yields an improper distribution, i.e., the support is defined
up to the largest observed failure time. The Burr III model provides an interpretable
model with only 4 parameters (including the location parameter). Moreover, one can
estimate the mean failure times under the Burr III model (Table 10), which are not
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Fig. 3 Profile plots of the log-likelihood function based on the radio data. The vertical lines signify the
MLEs α̂ � 1326.8, β̂ � 1835.3, and γ̂ � 1.298

Fig. 4 The fitted densities and distribution functions based on the radio data

derived under the spline model. Hence, the Burr III model seems more appealing than
the spline model in reliability analysis.

7 Discussion

There is a large body of literature on parametric inference procedures for latent fail-
ure time models with competing risks (Moeschberger 1974; Basu and Ghosh 1978;
Crowder 2001; Escarela and Carrière 2003; Fan and Hsu 2015; Emura et al. 2015;
Staplin et al. 2015; Hsu et al. 2016; Emura and Michimae 2017). Nevertheless, these
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parametric procedures appear to lack a competitive advantage over the semiparametric
procedures in a few important aspects.

First, most parametric procedures employ the asymptotic theory of the MLE, but
surprisingly, no paper seems to examine the regularity conditions for the theory.Hence,
we still remain in ignorance on the validity of asymptotic inference in these inference
procedures. On the other hand, the asymptotic theory is rigorously analyzed under the
semi-parametric approaches (Rivest andWells 2001; Braekers and Veraverbeke 2005;
de Uña-Álvarez and Veraverbeke 2013, 2017). Our paper examined the regularity
conditions for the proposed inference procedure under the class of the generalized
FGM copula with the Burr III margins.

Second, the model-diagnostic procedures or goodness-of-fit tests are rarely dis-
cussed except for Escarela and Carrière (2003). These are important issues in
parametric inference due to its strong reliance on model assumptions. In this paper,
based on the explicit sub-distribution functions under the Burr III model, we have
developed formal goodness-of-fit tests that refined the original idea of Escarela and
Carrière (2003).

The location parameter η introduced in the data analysis (Sect. 6) is not included
in the asymptotic theory (Sect. 4). The inclusion of η will make the log-likelihood
non-differentiable since η is the lower support of the failure times. To further increase
the flexibility of our model, it is possible to introduce a scale parameter σ to the Burr
III marginal distribution to yield the four-parameter Burr III distribution considered
by Lindsay et al. (1996). Concretely, one has

F1,(α,γ,η,σ )(x) �
{
1 +

(
x − η

σ

)−γ
}−α

and

F2,(β,γ,η,σ )(y) �
{
1 +

(
y − η

σ

)−γ
}−β

,

where x, y > η, α, β, γ, σ > 0.Moreover, onemay also consider different location
and scale parameters for different marginal distributions.
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