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ABSTRACT

Statistical process control is an important and convenient tool to stabilize the qual-
ity of manufactured goods and service operations. The traditional Shewhart control
chart has been used extensively for process control, which is valid under the indepen-
dence assumption of consecutive observations. In real world applications, there are
many types of dependent observations in which the traditional control chart cannot
be used. In this paper, we propose to apply a copula-based Markov chain to perform
statistical process control for correlated observations. In particular, we consider three
methods to obtain the estimates of upper control limit (UCL) and lower control limit
(LCL) for the control chart. It is shown by simulations that Joe’s parametric maximum
likelihood method provides the most reliable estimates of the UCL and LCL compared
to the other methods. We also propose simulation techniques to compute the average
run length (ARL) of the proposed charts, which can be used to set the UCL and LCL
for a given value of ARL. The piston rings data are analyzed for illustration.
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1. Introduction

With the promotion of industrial technologies, statistical process control (SPC)

has been essential and convenient tools for manufacturers. Unavoidably, as factories

produce items in mass production, they encounter some defective items. The basic

idea of SPC is to keep the defective rate at some specified threshold (often at 0.27%).

Consequently, the manufacturers can control the loss of their business profits.

In the traditional Shewhart charts, the process measurements on items are assumed

to be independent. Unfortunately, the assumption of independence usually does not

satisfy when the intermission between samples is short. For instance, manufacturing

ill-conditioned items could cause machine’s temperature to get higher than the normal

condition. If the intermission is short, the chance of producing ill-conditioned product

in the next item increases. Hence, very often in industrial practice, measurements are

positively correlated.

A first order autoregressive AR(1), a first order moving average MA(1), and a

first order integrated moving average IMA(1) model are typically used for SPC with

correlated observations. A concise review of these models in the SPC literature is found

in Box and Narasimhan (2010). The early work starts with the papers by Johnson and

Bagshaw (1974), Bagshaw and Johnson (1975) and Vasilopoulos and Stamboulis (1978).

After that, the problem of SPC with correlated observation has been widely studied.

A comprehensive overview of this problem is found in Wieringa (1999), Knoth and

Schmid (2004) and Psarakis and Papaleonida (2007). Although higher order models are

available, the literature on SPC remains focused on the first order models (Wetherill

and Brown 1991; Wardell, et al. 1994; Wieringa, 1999; Knoth and Schmid, 2004;

Psarakis and Papaleonida 2007; Montgomery 2009a, b; Box and Narasimhan, 2010).

In this paper, we also consider a first order (i.e., Markov) model, but the dependence

is modeled via copulas, which has not been considered in the SPC literature.

2. Background

2.1 Copula-based Markov Chain Model

A copula is a bivariate distribution function with the two marginals being unif(0,

1). Copulas are useful to model the dependence between the two random variables that

are transformed to unif(0, 1). Sklar (1959) showed that for any bivariate distribution

function H (y1, y2) with marginal distributions G1(y1) and G2(y2), there exists a copula

C : [0, 1]2 → [0, 1] such that

H (y1, y2) = C(G1(y1), G2(y2)).

More information on copulas can be found in the books of Joe (1997) and Nelsen (2006).
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Darsow, Nguten and Olsen (1992) first introduced copula-based Markov chain mod-

els for serially correlated observations {Yt : t = 1, . . . , n}, where a copula defines the

correlation between Yt−1 and Yt . The resultant series become a stationary process with

the stationary distribution G1 = G2 (Joe, 1997; Chen and Fan, 2006). The copula-

based Markov model includes the 1st order autoregressive model, or AR(1), as a special

case with a Gaussian copula and normal margin (p.260 of Joe, 1997).

This paper focuses on the one-parameter Clayton copula defined as:

C (u1, u2;α) = (u−α1 + u−α2 − 1)−1/αI(u−α1 + u−α2 − 1 > 0),

where αϵ(−1,∞)\{0} describe the correlation between Yt−1 and Yt . If αϵ(−1, 0), Yt−1

and Yt have negative correlation; when αϵ(0,∞), Yt−1 and Yt have positive correlation.

It is well known that the correlation measure on the scale of [-1, 1] is represented by

Kendall’s tau τ = α/(α + 2). Figure 1 shows the plot of the first-order Markov series

{Yt : t = 1, . . . , n} under the Clayton copula with the marginal being the standard

normal distribution. It is seen that when α increases, the serial correlations become

strong.
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Fig.1. The plot of {Yt : t = 1, . . . , n} under the Clayton copula with the

marginal being the standard normal distribution, where n=500 .

In this article, we focus on the Clayton copula due to its popularity in applications.

Some recent applications of the Clayton copula are referred to Sari et al. (2009) for

industrial statistics and Emura and Chen (2014) for biostatistics.
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2.2 Motivation and the Organization

In this paper, we assume that only one observation is available at each time, as usu-

ally assumed in the literature of SPC for autocorrelated data (Schmid, 1995; Wieringa,

1999; Kramer and Schmid, 2000; Knoth and Schmid, 2004; Psarakis and Papaleonida,

2007; Box and Narasimhan, 2010; Hryniewicz, 2012). Hence, we monitor individual

observations {Yt : t = 1, . . . , n} rather than subgroup averages. This is because the

serial correlation reduces by taking subgroup averages (Wieringa, 1999).

The main theme of this paper is the application of the copula-based Markov chain

models to SPC. In SPC, one often needs to estimate the upper control limit (UCL)

and lower control limit (LCL) for {Yt : t = 1, . . . , n}. If the marginal mean µ and

the marginal standard deviation σ of Yt are known, one may set the three-sigma limits

LCL=µ− 3σ and UCL=µ+3σ. For the aforementioned example of the Clayton model

with the standard normal margins (µ = 0, σ = 1), the UCL and LCL are +3 and -3,

respectively.

In many real examples, such theoretical limits are unknown since the marginal

distributions (µ and σ) are unknown. Therefore, the control limits must be estimated

using the in-control data or Phase I data (p.230 of Montgomery 2009a). To the best of

our knowledge, there is no paper discussing the estimation of the control limits under

the copula-based time series models. Therefore, the primary objective of this paper

is developing estimation procedures for ULC and LCL, which is detailed in Section 3.

Then, Section 4 contains simulations that investigate the performance of the methods

in Section 3.

If observations are correlated, however, the above three-sigma limits µ±3σ may not

keep the average run length (ARL) at the desired level (often at ARL=370). In the case

of dependent observation, one might alternatively determine the UCL and LCL such

that the ARL is equal to a given value. This is done by selecting a constant c such that

the limits µ±cσ achieve a given ARL (Schmid, 1995). Besides setting the control limits,

the ARL is an important measure of the performance of a control chart. Therefore, the

secondary objective of this paper is developing appropriate simulation techniques for

calculating the ARL under a copula-based Markov model, which is detailed in Section

5. The choice of c will be discussed with the real data analysis in Section 6.

Chapter 7 concludes the paper. Detailed calculations are given in Appendices.

3. Estimation of Process Parameters

We introduce methods to estimate parameters that are useful for SPC. Such pa-

rameters include the center line, UCL, and LCL.
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3.1 Model Assumptions

Following Joe (1997) and Chen and Fan (2006), we impose the following assumption

throughout the paper:

Assumption 1

Let {Yt : t = 1, . . . , n} be a sequence of random variables, representing a quality charac-

teristics. The variables follow a stationary first-order Markov process with the transition

probability determined by

P (Yt−1 ≤ yt−1, Yt ≤ yt) = H∗(yt−1, yt) = C(G∗(yt−1), G
∗(yt);α

∗),

where G∗(·) is continuous marginal (stationary) distribution and C(·, ·;α∗) is the true

parametric copula for an unknown value α∗. Assume that, the copula is also continuous,

and is neither the Fréchet-Hoeffding upper nor lower bound.

Assumption 1 derives the conditional density of Yt given Yt−1 via

g∗(yt)c(G
∗(yt−1), G

∗(yt);α
∗),

where c(·, ·;α∗) is the copula density of C(·, ·;α∗), and g∗(·) is the density of the true

marginal (stationary) distribution G∗(·).
Under Assumption 1, the transformed process, {Ut : Ut ≡ G∗(Yt)} is a stationary

Markov process of order 1 in which the joint distribution of Ut and Ut−1 is given

by the copula C(u0, u1;α
∗), and the conditional density of Ut given Ut−1 = u0 is

fUt|Ut−1=u0(u) = c(u0, u1;α
∗). This property is shown to be useful for generating the

data.

3.2 Joe’s Method

We demonstrate how the likelihood estimator of Joe (Joe, 1997) can be used to

estimate relevant parameters. In most quality control work, relevant parameters are

µ = E(Yt) and σ =
√

var(Yt) to get the control limits µ± 3σ. Hence, it is convenient

to parameterize G∗ in terms of (µ, σ). Here we propose to set G∗(y) = Φ{(y − µ)/σ},
where Φ is the distribution function of N(0, 1).

The log-likelihood function given data {yt : t = 1, . . . , n} is

L(µ, σ, α) =
1

n

n∑
t=1

log{ 1
σ
ϕ(
yt − µ

σ
)}+ 1

n

n∑
t=2

log c{Φ(yt−1 − µ

σ
),Φ(

yt − µ

σ
);α}.

The formula of log-copula density log c(u1, u2;α) is given in Appendix A.1. The maxi-

mum likelihood estimator (MLE) that maximizes the preceding formula is denoted by

(µ̂, σ̂, α̂). The resultant estimators of LCL and UCL are µ̂−3σ̂ and µ̂+3σ̂, respectively.

The log-likelihood function L(µ, σ, α) is twice differentiable and the formulas of

the first and second derivatives are given in Appendix A.2. The derivatives are quite

complicated but they are useful for likelihood inference.
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It is well-known that the Newton-Raphson algorithm is sensitive to the initial values,

especially in estimating three or more parameters (see Section 5.7 of Knight (2000)).

We also encounter the cases that the algorithm diverges due to a wrong initial value.

Knight (2000) suggests trying several different initial values. Based on this suggestion

and our own numerical experiences, we propose the following “randomized” Newton-

Raphson algorithm:

Newton-Raphson algorithm with randomization

Step 1: Choose the initial value (µ0, σ0, α0), defined as

µ0 = Ȳ =
1

n

n∑
t=1

Yt , σ0 =

√√√√ n∑
t=1

Y 2
t /n− Ȳ 2 , α0 = −2τ0/(τ0 − 1) ,

where

τ0 =

(
n

2

)−1∑
i<j

{sgn(Yj − Yi)sgn(Yj+1 − Yi+1)} ,

and where sgn(x)=-1 for x < 0, sgn(x) = 0 for x = 0 and sgn(x) = 1 for x > 0.

Step 2:

Set 
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for k = 0, 1, . . . . . ., where the formulas for the derivatives are given in Appendix

A.2.

• If |µk+1 - µk| < 10−5, |σk+1 - σk| < 10−5 and |αk+1 - αk| < 10−5, stop the

algorithm and set (µ̂, σ̂, α̂) = (µk+1, σk+1, αk+1).

• If |µk+1 - µk| > 1020, |σk+1 - σk| > 1020 or |αk+1 - αk| > 1020, replace (µ0, σ0, α0)

with (µ0, σ0, α0 + µ), where µ ∼ unif(-0.1, 0.1), and return to Step 1.

Recently, Hu (2014) successfully applied a similar randomized Newton-Raphson

method to stabilize the computation of the MLE under double-truncation. The esti-

mators for the LCL and UCL are µ̂− 3σ̂ and µ̂+ 3σ̂, respectively.
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3.3 Chen and Fan’s Method

Chen and Fan (2006) proposed a copula-based Markov chain to describe the de-

pendence structure for financial time-series data. In their paper, they considered a

semi-parametric copula model with non-parametric marginal distributions. In this sec-

tion, we discuss how to apply their method to estimate relevant parameters that are

useful for SPC.

The semi-parametric copula-based Markov chain model has unknown parameters

(G∗, α∗). Chen and Fan (2006) proposed to estimate the unknown marginal (stationary)

distribution G∗ using Gn(·), the rescaled empirical distribution function defined as

Gn(y) =
1

n+ 1

n∑
t=1

I{Yt ≤ y}.

Now, we estimate mean µ = E[Yt] and standard deviation σ = SD[Yt] using Gn(·).
One can use the Stieltjes integral to get the estimators

µ̂ =

∫
ydGn(y) =

n

n+ 1
Ȳ ,

where Ȳ =
∑n

t=1 Yt/n, and

σ̂2 =

∫
y2dGn(y)− [

∫
ydGn(y)]

2 =
1

n+ 1

n∑
t=1

Y 2
t − (

n

n+ 1
Ȳ )2.

Hence,

σ̂ =

√√√√ 1

n+ 1

n∑
t=1

Y 2
t − (

n

n+ 1
Ȳ )2.

If the marginal distribution G∗(·) is known, then the log-likelihood function is given by

L(α) =
1

n

n∑
t=1

log g∗(Yt) +
1

n

n∑
t=2

log c(G∗(Yt−1), G
∗(Yt);α).

Then, the unknown α∗ is estimated by maximizing the above function with G∗(·) being
replaced by Gn(·). The estimators for LCL and UCL are µ̂−3σ̂ and µ̂+3σ̂, respectively.
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3.4 Standard Method

It is of interest to compare the above two methods with the standard estimators

defined as

µ̂ = Ȳ =
1

n

n∑
t=1

Yt, σ̂ =

√√√√ 1

n

n∑
t=1

Y 2
t − (Ȳ )2.

The corresponding estimators for the LCL and UCL are µ̂−3σ̂ and µ̂+3σ̂, respectively.

Such estimators were considered in Kramer and Schmit (2000) under AR(1) models.

The standard estimator is consistent but may incur the loss of efficiency by ignoring

correlation.

4. Simulations

We have introduced three methods to estimate the process parameters. To know

which method is most suitable for the SPC work, we compare the performance of the

methods via simulations.

4.1 Simulation Methods

We develop the algorithm for generating {Yt : t = 1, . . . , n} by extending the con-

ditional approach for bivariate copula models (Frees and Valdez, 1998). Our sim-

ulations focus on the Clayton copula with α = 2(τ = 0.5), α = 8(τ = 0.8) and

α = −1/3(τ = −0.2). We choose the marginal (stationary) distribution to be the nor-

mal distribution G∗(y) = Φ{(y−µ)/σ} with (µ, σ) = (1, 1). The algorithm is stated as

follows:

Algorithm 1 ( Data generation )

1. Generate a random number U1, where U1 ∼ unif(0,1). Then, set Y1 = Ψ−1(U1),

where Ψ(y) = Φ{(y − µ)/σ}.
2. Set Yt+1 = Ψ−1{[1 + (U

−α/(α+1)
t+1 − 1)Ψ(Yt)

−α]−1/α}, where Ut+1 ∼ unif(0,1),

t = 1, . . . , n.

After generating the data, we calculate parameter estimates using the three methods:

Method 1 (Joe’s method; see Section 3.2)

Method 2 (Chen and Fan’s method; see Section 3.3)

Method 3 (Standard method; see Section 3.4)

The MSE of an estimator θ̂ with respect to the unknown parameter θ is defined as

MSE (θ̂) = E[(θ̂ − θ)2]. We compare the three methods in terms of the MSE for

θ = µ, σ, and µ+ 3σ. We also examine the bias, defined as Bias (θ̂) = E(θ̂)− θ.
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4.2 Simulation Results

The results based on 1000 repetitions are given in Tables 1-3. Generally speaking,

the three methods give estimates θ̂ close to the true values of θ = µ, σ and µ + 3σ,

respectively. Their MSE get close to zero as the sample sizes increase.

Under positive correlation (α > 0), it is clear that the MSE for Joe’s method is

always smaller than other two methods (Tables 1-3). Under α = 2(τ = 0.5), Joe’s

method reduces MSE(σ̂) and MSE(µ̂+ 3σ̂) about by half the MSEs for the other two

methods. When α = 8(τ = 0.8), Joe’s method gives remarkably superior MSE(µ̂+3σ̂)

to the other methods. The dominance of Joe’s method over the other two becomes

modest in terms of MSE(µ̂). In SPC, however, the accuracy of MSE(µ̂ + 3σ̂) is more

important than MSE(µ̂) since the out-of-control signals are decided by the UCL and

LCL.

Under negative correlation (α < 0), the three methods are quite comparable. The

MSE of the three methods are very similar for all configurations. Overall, the MSE

under the negative correlation is much smaller than that under positive correlation.

The efficiency of Joe’s method is reasonable since it is performed under the correct

assumptions on the Clayton copula and the normality. On the other hand, Chen and

Fan’s method and standard method do not rely on the distributional assumptions. To

see the performance under a model misspecification, we generate heavy-tailed data

{Y ∗
t : t = 1, . . . , n} under the t-distribution by

Y ∗
t = µ+ σ

√
ν − 2

ν
Ψ−1[Φ{(Yt − µ)/σ}; ν],

where Ψ−1[·; ν] is the quantile function of the t-distribution with degree of freedom

ν = 10. The performance of the three methods are comapred in Table 4. Although

Joe’s method is still the best for all configurations, its superiority becomes somewhat

offset.

Therefore, as long as the true model is correctly specified or approximated well,

Joe’s method is most accurate in terms of MSE under positively correlated series.

Since industrial settings typically faces with positively correlated series, Joe’s method

seems to be of great value. In practice, it is important to check the goodness-of-fit

before using Joe’s method.

5. Average Run Length

In this section, we develop simulation techniques to obtain the average run length

(ARL). In particular, we choose the antithetic variables method to gain computational

efficiency.
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5.1 Calculation of ARL

The average run length (ARL) of a control chart is one way to determine the per-

formance of control charts. The ARL is the average number of sample points that

are plotted before a point is beyond the control limits. The ARL can help engineers

know the performance of chart under study. For instance, if the process is in-control,

engineers wish to keep the production process as long as possible. Hence, the chart

that has a large ARL is preferred. The ARL is defined as follows:

Definition (ARL):

Let {Yt, t = 1, 2, . . .} be a sequence of random variables, representing a quality charac-

teristics and A=min{t : Yt < µ− 3σ or Yt > µ+3σ} be the run length. Then, the ARL

is defined to be E(A).

If {Yt = 1, 2, . . .} are independent and identically distributed, the ARL is easily

calculated as E(A) = 1/p, where p = P (Y1 < µ−3σ or Y1 > µ+3σ} [see p.37 of Wieringa

(1999); p. 249 of Montgomery (2009a)]. However, for correlated observations, the ARL

calculation is extremely difficult. Schmid (1995) proposed some analytical methods to

calculate the ARL. However, his formula is complicated and does not give us practical

way to calculate the ARL. Schmid (1995) and Hryniewicz (2012) used Monte Carlo

simulations to calculate the ARL under the autoregressive model and copula-based

chain model, respectively. In the following, we also suggest the Monte Carlo method

to calculate the ARL under the copula-based models.

One can use Algorithm 1 to generate data until the data falls outside control limits

and then obtain the value of run length. Repeating this step many times, we get the

ARL. In this paper, we set m= 10000 repetitions. The algorithm is as follows:

Algorithm 2 (ARL with Monte Carlo)

1. Draw Y1 ∼ N(µ, σ).

2. Draw Ut+1 ∼ unif(0, 1), and then set Yt+1 = Ψ−1{[1+(U
−α/(α+1)
t+1 −1)Ψ(Yt)

−α]−1/α}
for t = 1, 2, . . . . . ., where Ψ(y) = Φ{(y − µ)/σ}.

3. Calculate the run length A = min{t : Yt < µ− 3σ or Yt > µ+ 3σ}.
4. Repeat Step 1∼ Step 3 m times. The ARL is the average of the m run length.

5.2 Antithetic Variables

The calculation of the ARL requires a large number of Monte Carlo runs to get

an accurate result. Some simulation techniques can help reduce the computational

cost. The well-known techniques are common random number, antithetic variables,

control variates, stratified sampling and important sampling (Chapter 9, Ross, 2013).
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We introduce antithetic variables method, which is a simple method to reduce variable

and computational cost.

The antithetic variables method aims to reduce the variance by introducing cor-

relation in the series of Monte Carlo runs. In Algorithm 2, the ARL is written as

A = h{Ut; t = 1, 2, . . .}. It is important to notice that B = h{1 − Ut; t = 1, 2, . . .}
has the same distribution as A. This implies that (A+B)/2 is unbiased for the ARL.

Furthermore, if cov(A,B) < 0, then

var[(A+B)/2] < var[A]/2

which becomed smaller than the variance of the average of two independent sequences.

The following algorithm shows how to use the antithetic variables method:

Algorithm 3 (ARL with antithetic variables)

1. Draw Y1 ∼ N(µ, σ).

2. Draw U1 ∼ unif(0, 1) and then set Y1,1 = Ψ−1(U1) and Y2,1 = Ψ−1(1− U1), where

Ψ(y) = Φ{(y − µ)/σ}.
3. Draw Ut+1 ∼ unif(0, 1) and set Y1,t+1 = Ψ−1{[1+ (U

−α/(α+1)
t+1 − 1)Ψ(Y1,t)

−α]−1/α},
t = 1, 2, . . . . . .

4. Calculate A = min{t : Y1,t < µ− 3σ or Y1,t > µ+ 3σ}.
5. Set Y2,t+1 = Ψ−1{[1− Ut+1)

−α/(α+1) − 1)Ψ(Y2,t)
−α]−1/α}, t = 1, 2, . . . . . ..

6. Calculate B = min{t : Y2,t < µ− 3σ or Y2,t > µ+ 3σ}.
7. Repeat step 1∼ step 6m times, and get two sequences (A1, . . . , Am) and (B1, . . . , Bm).

The ARL is
∑m

i=1(Ai +Bi)/2m.

Remark: In Step 3 and Step 5, we use common uniform random variables. In this

way, we save the number of generating uniform random numbers by half, compared

with Algorithm 2.

5.3 Simulation Results

We compare the calculation of the ARL between the Monte Carlo method (Al-

gorithm 2) and antithetic variables method (Algorithm 3) under the same simulation

settings as Section 4.1. To check whether the use of antithetic variables reduces the

variance or not, we compare the standard deviation (SD) of the antithetic variables

method with that of the usual Monte Carlo method. For the two algorithms to be

comparable, the ARL for the Monte Carlo is
∑2m

i=1Ai/(2m) and for the anntithetic

variables method is
∑m

i=1(Ai + Bi)/(2m), where m = 10000. Thus, the SD for the

Monte Carlo method is
√∑2m

i=1A
2
i /(2m)− {

∑2m
i=1Ai/(2m)}2 and for the antithetic

variables method is
√∑m

i=1(A
2
i +B2

i )/(2m)− {
∑m

i=1(Ai +Bi)/(2m)}2. Smaller SD
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corresponds to better computational efficiency. We also calculate the sample correla-

tion between the two sequences of the antithetic variables, denoted by cor(A,B). If

cor(A,B) < 0 , we expect that the antithetic variables method reduces the SD.

The results are given inTable 5. The Monte Carlo and antithetic variables methods

produce similar values for the ARL, which means that the two methods give a good

approximation to the true ARL. Also, the SD of the two methods is quite similar. This

implies that the variance reduction using the antithetic variables is quite modest. This

result agrees with the fact that cor(A,B) is very close to zero. However, it should be

noted that the antithetic variables method reduces by half the number of generating

random numbers.

We also examine the case of the one-sided control limit in which the ARL is the

average number of sample points that are plotted before a point is beyond the UCL

only, i.e. A = min{t : Yt > µ + 3σ}. The results are summarized Table 6. In this

case, cor(A,B) < 0 occurs in all configurations. The reason is that, if the sequence

A reaches the UCL, the alternative sequence B gets close to the LCL. However, the

effect of negative correlation is modest and there is no apparent efficiency gain. In

conclusion, the antithetic variables method saves the number of random samples but

does not improve efficiency.

We display the properties of both in-control and out-of-control ARL under various

Kendall’s tau in Table 7. It is seen that the ARL increases as Kendall’s tau increases.

This kind of the increase of the ARL with the correlation is well known (e.g., Schmid,

1995; Wieringa, 1999; Konth and Schmid 2004), and is in accordance with the simula-

tion results of Hryniewicz (2012). The out-of-control ARL (1 σ -shift or 2 σ -shift) is

substantially smaller than the in-control ARL, showing the good performance in detect-

ing the out-of-control state. However, when the correlation is large, there is some delay

in detecting the out-of-control signals. Under the case that Kendall’s tau=0.0001, the

ARL values agree with the well-known ARL values of the Shewhart chart for indepen-

dent observations (ARL=370 under in-control; ARL=43.96 under 1 σ -shift; ARL=6.30

under 2 σ -shift).

To keep the in-control ARL at desired level (e.g., 370), one can select constant

c such that the limits µ ± cσ achieve a given ARL (Schmid, 1995). To do this, one

can try many different values of c to calculate the ARL using either Algorithm 2 or

3. Then, the appropriate value of c is the one that is closest to the desired ARL.

This procedure will be explained in the subsequent real data analysis. Obviously,

this is a computationally intensive procedure. As the future work, we wish to reduce

the computational cost by importance sampling [see Chen, Fuh, and Teng (2013) and

reference therein]. However, this is challenging since the definition of the ARL involves

infinitely many random variables.
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5.4 ARL Under Estimated Parameters

If the marginal mean µ and the marginal standard deviation σ are unknown, one

needs to estimate them from data under in-control status, which is often done in Phase

I trial (Montgomery, 2009a). These estimates are used to calculate the UCL and LCL

to set the control limit of Phase II. Here, the primary interest is to find a good estimator

that have small deviation from the specified in-control ARL (true ARL). We conduct

simulations to investigate the influence of parameter estimation on the ARL of Phase

II. Such simulation designs have been considered in Kramer and Schmid (2000) and

Hryniewicz (2012).

Table 8 compares the ARL under the estimated parameters and the true ARL,

where the true ARL represents the case of the known UCL and LCL. For estimated

parameters, the UCL and LCL have random variation due to estimation in Phase I. We

use the three methods (Joe’s method, Chen and Fan’s method and standard method) to

estimate the UCL and LCL. Table 8 shows that the standard method leads to the ARL

that are somewhat different from the true ARL. This is because the standard method

provides less accurate estimate of the UCL and LCL, especially for strongly correlated

cases. Although this is pointed out by Hryniewicz (2012), the paper does not offer the

solution. Similarly, Chen and Fan (2006) also performed poorly (Table 8). However,

Joe’s method provides the most unbiased ARL. Especially, when the correlation is high

(Kendall’s tau = 0.8), only Joe’s method give reasonable approximation to the true

ARL.

Based on the fact that Joe’s method relies on the normality assumption, we also

conduct simulations under model misspecifications. Table 8 shows the results under

misspecification in Phase I, based on the t-distribution with degree of freedom ν = 10

(as considered in Section 4.2). Although Joe’s method still provides the best approxi-

mation to the true ARL, the advantage is reduced. Therefore, as long as the normality

assumption is approximated well, Joe’s method would be recommended.

6. Data Analysis

We demonstrate the proposed copula-based control chart using the data on diameter

measurements of piston rings (Montgomery, 2009b). We download the data available

from R qcc package (Luca, 2014), and obtained the diameter measurements {Yt; t =
1, 2, . . . , 200} for the 200 samples.

Using Joe’s method, the estimates are obtained as µ̂ = 74.0036, σ̂ = 0.0115, and

α̂ = 0.1422 that corresponds to Kendall’s tau = 0.0664. Therefore, the data exhibit

weak positive dependence. In the last step of the Newton-Raphson algorithm, we ex-

amine the gradient
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Since all the eigenvalues is negative, the Hessian matrix is negative definite. Hence,

(µ̂, σ̂, α̂) is a local maxima. We have confirmed the global uniqueness of the MLE by

drawing the likelihood functions. Figure 2 shows that (µ̂, σ̂, α̂) attains the maximum.

Fig. 2. The likelihood function for the piston rings data (Montgomery

2009b). The vertical line signifies the MLE α̂=0.1422, µ̂=74.0036, and

σ̂=0.0115.

The resultant control chart is displayed in Figure 3. The MLE produces UCL

(µ̂ + 3σ̂)=74.0381 and LCL (µ̂ + 3σ̂)=73.9691. Only one point, corresponding to the

67th observation, gives the out-of-control signal, and all the others fall between LCL and

UCL. Therefore, some assignable cause that changes the mean should be investigated

for the 67th sample.
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Fig. 3. The control chart using the piston rings data (Montgomery

2009b). The center line represents the estimated mean µ̂, and the other

two straight lines are UCL (µ̂+ 3σ̂) and LCL (µ̂+ 3σ̂), which are obtained

by Joe’s method under the Clayton copula.

Under the estimated parameters, we calculate the ARL under the Clayton copula

with α=0.1535 and the normal distribution with µ=74.0036 and σ=0.0115. Here, the

3-sigma limits are UCL (µ+3σ)=74.0381 and LCL (µ+3σ)=73.9691. Using Algorithm

2 (Monte Carlo) with m = 10000, we obtain the ARL = 382.442 (se = 3.885). Suppose

that one wishes to have a control chart with ARL = 370. Accordingly, we reduce

the coefficient from 3 to 2.99. Then, the choice UCL (µ + 2.99σ)=74.0380 and LCL

(µ− 2.99σ ) = 73.9693 achieves the desired ARL = 371.155 (se = 3.767).

7. Conclusion and Discussion

This paper provides a framework for performing statistical process control using

copula-based Markov chain models. Although the copula-based Markov models have

been utilized to many different fields, the application to statistical process control has

not been considered in the literature. In particular, we demonstrate how to apply

Joe’s method, Chen and Fan’s method, and the standard method for calculating the

control limits, and then compare their performance via simulations. The results show

that Joe’s method performs best in terms of accuracy of the estimated control limits

and the average run length with estimated parameters, when the model assumptions

are adequate. Hence we propose to use Joe’s method for the application to statistical

process control. For illustration, we demonstrate the usage of Joe’s method for diameter

measurements of piston rings data.
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We also propose simulation techniques to calculate the average run length of the

proposed control charts. The Monte Carlo method and antithetic variables method are

presented, where the latter reduces by half the number of generating uniform random

numbers. It is demonstrated through the data analysis that the algorithms are useful

when one wishes to set copula-based control limits for a given value of the average run

length.

Although we have applied a copula-based Markov model for a serially correlated

data, there are many cases where two series of correlated data are available. Specifically,

suppose that one observe two quality characteristics, say {Xt : t = 1, . . . , n} and {Xt :

t = 1, . . . , n}. If there is no serial correlation within each series, the correlation between

the two series is modeled by a bivariate normal distribution. Then, the simultaneous

monitoring of the two series is performed by a control ellipse or Hotelling T 2-chart

(Chap.11 of Montgomery, 2009a). These approaches must be modified to take into

account serial correlation in the two series. In the presence of two series, one is not

only interested in monitoring the process mean, but also the association between the

two series. For instance, the inner diameter Xt may change the outer diameter Yt of

some parts. Such monitoring schemes have not been considered in the SPC context, but

there are a rich literature studying on the causal relationship between two series. We

only mention that many methods to study the causal relationship between the series

have been proposed (Hung and Tseng, 2012 and references therein).

The extension of the copula-based process control to the discrete variables is an im-

portant direction for future research. Due to Assumption I, the method presented in this

paper is only applicable to continuous margins. However, the well-known np-control

chart and c-control chart assume that the observations follow independent binomial

distribution and Poisson distribution, respectively (Wetherill and Brown 1991; Mont-

gomery 2009a, b). The copula approach to incorporate the dependence is a challenging

but interesting topic since estimation under the copula models with discrete margins

are relatively new. The difficulty comes from the fact that the correlation parameter for

copula models may be affected by the marginal distributions [see Nešlehová (2007) for

binomial margins and Genest, Nešlehová and Rémillard (2013) for Poisson margins].

Another challenge in the np-control chart is that it requires large n and not too small p

(Emura and Lin, 2013). The copula approach to the discrete cases will be a promising

topic for research.

One of important issues that we did not discuss in this paper is the goodness-of-fit

of a given copula. We choose the Clayton copula for its popularity in applications and

mathematical tractability. Obviously, there are many other choices, such as Frank,

Gumbel, Gaussian copulas (Nelsen, 2006). Many of the goodness-of-fit methods for

parametric models use distance statistics, such as the Kolmogorov-Smirnov statistic

and Cramér-von Mises statistic. The asymptotic distribution of such statistics under

the null model typically requires the empirical process techniques (Genest, Rémillard,

and Beaudoin, 2009; Emura and Konno, 2012), which needs further study.
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Appendices 

A.1 Log-density for the Clayton copula 

The density of the Clayton copula is given by 

)2(

21

)1(

2

)1(

12121

2

21

1

]1[)1(/);,();,c( +---+-+- -

-++=¶¶¶= aaaaaaaa uuuuuuuuCuu  , 0>a . 

Hence, the log-copula density is: 

)1log(2
1

log)1(log)1()1log();,( 212121 -+÷
ø

ö
ç
è

æ +-+-+-+= -- aa

a
aaaa uuuuuul . 

A.2 Likelihood function and its first and second derivatives 

Let }/)({ 11 smf -= -- tt
Yu  and }/)({ 11 sm-F= -- tt

YU . Using the formulas of Appendix 

A.1, the likelihood function of Section 3.2 is rewritten as

.)1log(2
1

log)1(log)1()1log(
1

2

)(1
log)2log(

2

1
),,(

2

11

1
2

2

å

å

=

--
--

=

ú
û

ù
ê
ë

é
-+÷

ø

ö
ç
è

æ +-+-+-++

-
---=

n

t

tttt

n

t

t

UUUU
n

Y

n
L

aa

a
aaa

s
m

spasm

Hence, its derivatives are  

å

å

=
--

-

+-
-

+-
-

-

-

=

ú
ú
û

ù

ê
ê
ë

é
÷
÷
ø

ö
ç
ç
è

æ

-+

++
-÷÷
ø

ö
çç
è

æ
+

+
+

-
=

¶
¶

n

t tt

tttt

t

t

t

t

n

t

t

UU

uUuU

U

u

U

u

n

Y

n

L

2 1

)1(

1

)1(

1

1

1

1
2

,
1

1211

1),,(

aa

aa

s
a

s
a

s
m

m
asm

  

å

åå

=
--

-

+-
-

+-
--

= -

--

=

þ
ý
ü

î
í
ì

-+
-+-

+-+

þ
ý
ü

î
í
ì

ú
û

ù
ê
ë

é
÷
ø
ö

ç
è
æ -

+÷
ø
ö

ç
è
æ -

++ú
û

ù
ê
ë

é
-

-
=

¶
¶

n

t tt

tttttt

n

t t

tt

t

tt

n

t

t

UU

uUYuUY

n

U

uY

U

uY

n

Y

n

L

2 1

)1(2

1

)1(

1

2

1

2
2

1

1

2

1

1
3

2

,
1

}/)({}/)({
)21(

1

)1(
11)(1),,(

aa

aa smsm
a

s
m

s
m

a
ss

m
s

asm

  

,
1

loglog1
2

1

)1log(
)log(

1

11),,(

2 1

11

2
2

1
1

å

å

=
--

-

-
-

-
-

=

--
-

-

ïþ

ï
ý
ü

ïî

ï
í
ì

-+

+
÷
ø

ö
ç
è

æ ++

ïþ

ï
ý
ü

ïî

ï
í
ì -+

+-
+

=
¶

¶

n

t tt

tttt

n

t

tt

tt

UU

UUUU

n

UU
UU

n

L

aa

aa

aa

a

aaa
asm

  



484 TING-HSUAN LONG AND TAKESHI EMURA

,)()1(
)1(

211

/}/)({/}/)({111),,(

2

2)1(

1

)1(

1112

1

2
2

22

2

1

2

111

2

1

22

2

å

å

=

+-
-

+-
-

--
---

-

= -

----

þ
ý
ü

î
í
ì

úû
ù

êë
é +--+

-+
+

-

ïþ

ï
ý
ü

ïî

ï
í
ì

ú
û

ù
ê
ë

é +-
+

+-+
+-=

¶
¶

n

t

tttttt

tt

n

t t

tttt

t

tttt

uUuUUUH
UUn

U

uuUY

U

uuUY

n

L

aaaa
aa s

a
s

a

ssmssm
s
a

sm
asm

 

where 

tt

t

tttt

t

tt
uU

Y
uUuU

Y
uUH

)1(

2

2)2(

1

)1(

12

12

1

)2(

11

11 aaaa

s
m

s
a

s
m

s
a +-+-

-
+-

-
-

-
+-

- ÷
ø

ö
ç
è

æ -
+

+
+÷

ø

ö
ç
è

æ -
+

+
= . 

In addition, 

,)1(
)1(

)21(1

)(
2)1(

1

)(
2)1(

1

1)(
3

1),,(

2

2112

1

2
2

2

3

2 1

11

2

2

1

1

1

3

1

1
24

2

2

2

å

å

å

å

=

--
---

-

=

= -

---

-

--

=

ïþ

ï
ý
ü

ïî

ï
í
ì

--+
-+

+
-

ïþ

ï
ý
ü

ïî

ï
í
ì

÷
÷
ø

ö
ç
ç
è

æ
÷÷
ø

ö
çç
è

æ
÷
ø

ö
ç
è

æ -
+

-
+-÷÷

ø

ö
çç
è

æ
÷
ø

ö
ç
è

æ -
++

ïþ

ï
ý
ü

ïî

ï
í
ì

÷
÷
ø

ö
ç
ç
è

æ
÷÷
ø

ö
çç
è

æ
÷
ø

ö
ç
è

æ -
+

-
+-÷÷

ø

ö
çç
è

æ
÷
ø

ö
ç
è

æ -
++

þ
ý
ü

î
í
ì

+
-

-=
¶

¶

n

t

tt

tt

n

t t

ttt

t

tt

n

t t

ttt

t

tt

n

t

t

KUUK

UUn

U

uYY

U

uY

n

U

uYY

U

uY

n

Y

n

L

a
a

s
m

s
m

s
m

a

s
m

s
m

s
m

a

ss
m

s
asm

aa

aa

 

where 

,)1(2

)1(2

2

)1(

3

2

11

1

1
1

)1(

13

1
1

ú
ú
û

ù

ê
ê
ë

é
÷
ø

ö
ç
è

æ -
+

-
÷÷
ø

ö
çç
è

æ
++-

-
+

ú
ú
û

ù

ê
ê
ë

é
÷
ø

ö
ç
è

æ -
+

-
÷÷
ø

ö
çç
è

æ
++-

-
=

+-

--

-

-
-

+-
-

-

s
m

s
m

a
s
m

s
m

s
m

a
s

m

a

a

tt

t

t

tt

t

tt

t

t

tt

t

YY

U

u
uU

Y

YY

U

u
uU

Y
K

 

and }}{/){( )1(

1

)1(

1

2

12 ttttt
uUuUYK

aasm +-
-

+-
-- +-= . Finaly, 

,
1

)log()log(

1

)loglog(1
2

1

)1(

)loglog(2
)1log(

2

)1(

11),,(

2 1

22

11

1

2

11

2 1

2

11

1322

2

å

å

=
--

-

-
-

-
-

--
-

-
-

-
-

=
--

-

-
-

-
---

-

ïþ

ï
ý
ü

ïî

ï
í
ì

-+

+
-÷
÷
ø

ö
ç
ç
è

æ

-+

+
÷
ø

ö
ç
è

æ ++

ïþ

ï
ý
ü

ïî

ï
í
ì

-+

+
--+-

+
-=

¶

¶

n

t
tt

tttt

tt

tttt

n

t
tt

tttt

tt

UU

UUUU

UU

UUUU

n

UU

UUUU
UU

n

L

aa

aa

aa

aa

aa

aa
aa

a

aaaa

asm



A CONTROL CHART USING COPULA-BASED MARKOV CHAIN MODELS 485

[ ]

å

å

å

å

å

å

å

=

+-+-
-

+-
---

-

=
-

+-
-

-+-
-

+-
---

-

=

+-+-
--

-

=
--

+-
---

+-
---

-

=
--

-

+-
-

+-
--

= -

-----

-

-

=

þ
ý
ü

î
í
ì

ú
û

ù
ê
ë

é
÷
ø
ö

ç
è
æ -

+
-+

+
+

þ
ý
ü

î
í
ì

ú
û

ù
ê
ë

é
÷
ø
ö

ç
è
æ -

+
-+

+
+

þ
ý
ü

î
í
ì

ú
û

ù
ê
ë

é -
+

-
+

-+
+

-+

þ
ý
ü

î
í
ì

-+-+
-+

+
-+

þ
ý
ü

î
í
ì

÷÷
ø

ö
çç
è

æ

-+
++

+ú
û

ù
ê
ë

é -+-+
+

þ
ý
ü

î
í
ì

ú
û

ù
ê
ë

é -+-+
+÷÷
ø

ö
çç
è

æ
+

+
-+

-
-=

¶¶
¶

n

t

tt

t

tttt

tt

n

t

tt

t

tttt

tt

n

t

t

t

tt

t

t

tt

n

t

tttttt

tt

n

t tt

tttt

t

ttttt

n

t t

ttttt

t

t

t

t

n

t

t

uU
Y

uUuU
UUn

uU
Y

uUuU
UUn

u
Y

Uu
Y

U
UUn

uYUuYU
UUn

UU

uUuU

U

uYUuY

n

U

uYUuY

U

u

U

u

n

Y

n

L

2

)1(

2

)1(

1

)1(

12

1

2

1

)1(

12

1)1(

1

)1(

12

1

2
3

2
)1(2

2

)2(

1

2

3

1

2

1

)1(

1

22

11

)2(

1

1

2 1

)1(

1

)1(

1

22

22

1

32

2
2

1

22

11

3

11

2

1

1

1

2

1
3

2

,)(
)1(

121

)(
)1(

121

)(
)1(

)1(

121

/)(/)()1(
)1(

121

1

12/)(/)(11

/)(/)(111

2),,(

aaa
aa

aaa
aa

aa
aa

aa
aa

aa

aa

s
m

a
s

a

s
m

a
s

a

s
m

s
m

a
s

a

smsma
s

a

s
asmsm

s
a

smsm
s

a
s
a

s
m

sm
asm

å

å

å

=
--

-

+-
-

+-
-

-
-

-
-

=
--

-

+-
--

+-
-

=
--

-

+-
-

+-
-

-

-

þ
ý
ü

î
í
ì

-+
+--+

-

þ
ý
ü

î
í
ì

-+
--+

-

þ
ý
ü

î
í
ì

÷÷
ø

ö
çç
è

æ

-+
+

-÷÷
ø

ö
çç
è

æ
+=

¶¶
¶

n

t tt

tttttttt

n

t tt

tttttt

n

t tt

tttt

t

t

t

t

UU

uUuUUUUU

n

UU

uUUuUU

n

UU

uUuU

U

u

U

u

n

L

2
2

1

)1(

1

)1(

111

2 1

)1(

11

)1(

1

2 1

)1(

1

)1(

1

1

1

2

,
)1(

)]()log()(log[12

1

)log()log(12

1

211),,(

aa

aaaa

aa

aa

aa

aa

s
a

s
a

ssam
asm

 

.
)1(

])(log)(log][/)([12

)1(

])(log)(log][/)([12

1

)(log)(12

1

/)(log)(12

1

/)(/)(
2

1

1),,(

2
2

1

11

2)1(

2
2

1

11

2

1

)1(

11

2 1

)1(

2 1

2

11

)1(

11

2 1

2)1(2

1

)1(

11

2
2

1

1

2

1

2

å

å

å

å

å

å

=
--

-

-
-

-
-

+-

=
--

-

-
-

-
--

+-
--

=
--

-

+-

=
--

-

--
+-

--

=
--

-

+-
-

+-
--

= -

--

þ
ý
ü

î
í
ì

-+
+-+

-

þ
ý
ü

î
í
ì

-+
+-+

-

þ
ý
ü

î
í
ì

-+
--+

-

þ
ý
ü

î
í
ì

-+
--+

-

þ
ý
ü

î
í
ì

-+
-+-

-+

þ
ý
ü

î
í
ì

÷÷
ø

ö
çç
è

æ-
+÷÷
ø

ö
çç
è

æ-
=

¶¶
¶

n

t tt

ttttttt

n

t tt

ttttttt

n

t tt

tttt

n

t tt

tttt

n

t tt

tttttt

n

t t

tt

t

tt

UU

UUUUuUY

n

UU

UUUUuUY

n

UU

UuUY

n

UU

UuUY

n

UU

uUYuUY

n

U

uY

U

uY

n

L

aa

aaa

aa

aaa

aa

a

aa

a

aa

aa

sma

sma

ma

sma

smsm

s
m

s
m

as
asm

 

 



486 TING-HSUAN LONG AND TAKESHI EMURA

 

Table 1  Simulation results for m̂  based on 1000 repetitions. 

  Method 1 

( Joe ) 

Method 2 

( Chen & Fan ) 

Method 3 

( Standard ) 

1=m , 1=s , 2=a  ( 5.0=t ) 

300=n  )ˆE( m  0.9899 0.9911 0.9944 

 )ˆBias( m  -0.0101 -0.0089 -0.0056 

 )ˆMSE( m  0.0271 0.0299 0.0301 

600=n  )ˆE( m  0.9929 0.9946 0.9963 

 )ˆBias( m  -0.0071 -0.0054 -0.0037 

 )ˆMSE( m  0.0114 0.0126 0.0126 

1000=n  )ˆE( m  1.0000  1.0000  1.0010  

 )ˆBias( m  0.0000 0.0000 0.0010 

 )ˆMSE( m  0.0079 0.0091 0.0091 

1=m , 1=s , 8=a  ( 8.0=t ) 

300=n  )ˆE( m  1.0161 1.0272 1.0306 

 )ˆBias( m  0.0161 0.0272 0.0306 

 )ˆMSE( m  0.1761 0.2283 0.2300 

600=n  )ˆE( m  1.0055 1.0201 1.0218 

 )ˆBias( m  0.0055 0.0201 0.0218 

 )ˆMSE( m  0.0783 0.1024 0.1028 

1000=n  )ˆE( m  0.9619 0.9702 0.9712 

 )ˆBias( m  -0.0381 -0.0298 -0.0288 

 )ˆMSE( m  0.0676 0.0909 0.0910 

1=m , 1=s , 3/1-=a  ( 2.0-=t ) 

300=n  )ˆE( m  0.9983 0.9961 0.9994 

 )ˆBias( m  -0.0017 -0.0039 -0.0006 

 )ˆMSE( m  0.0016 0.0016 0.0015 

600=n  )ˆE( m  1.0027 1.0016 1.0033 

 )ˆBias( m  0.0027 0.0016 0.0033 

 )ˆMSE( m  0.0008 0.0008 0.0008 

1000=n  )ˆE( m  0.9989 0.9984 0.9994 

 )ˆBias( m  -0.0011 -0.0016 -0.0006 

 )ˆMSE( m  0.0005 0.0005 0.0005 
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Table 2  Simulation results for ŝ  based on 1000 repetitions. 

  Method 1 

( Joe ) 

Method 2 

( Chen & Fan ) 

Method 3 

( Standard ) 

1=m , 1=s , 2=a  ( 5.0=t ) 

300=n  )ˆE( s  0.9982 0.9842 0.9841 

 )ˆBias( s  -0.0018 -0.0158 -0.0159 

 )ˆMSE( s  0.0060 0.0098 0.0100 

600=n  )ˆE( s  0.9948 0.9882 0.9882 

 )ˆBias( s  -0.0052 -0.0118 -0.0118 

 )ˆMSE( s  0.0027 0.0051 0.0051 

1000=n  )ˆE( s  0.9955 0.9908 0.9907 

 )ˆBias( s  -0.0045 -0.0092 -0.0093 

 )ˆMSE( s  0.0018 0.0033 0.0033 

1=m , 1=s , 8=a  ( 8.0=t ) 

300=n  )ˆE( s  0.9371 0.8521 0.8508 

 )ˆBias( s  -0.0629 -0.1479 -0.1492 

 )ˆMSE( s  0.0242 0.0444 0.0451 

600=n  )ˆE( s  0.9857 0.9186 0.9182 

 )ˆBias( s  -0.0143 -0.0814 -0.0818 

 )ˆMSE( s  0.0179 0.0271 0.0273 

1000=n  )ˆE( s  1.0098 0.9537 0.9536 

 )ˆBias( s  0.0098 -0.0463 -0.0464 

 )ˆMSE( s  0.0115 0.0212 0.0213 

1=m , 1=s , 3/1-=a  ( 2.0-=t ) 

300=n  )ˆE( s  1.0042 1.0008 1.0009 

 )ˆBias( s  0.0042 0.0008 0.0009 

 )ˆMSE( s  0.0019 0.0019 0.0019 

600=n  )ˆE( s  1.0058 1.0046 1.0046 

 )ˆBias( s  0.0058 0.0046 0.0046 

 )ˆMSE( s  0.0012 0.0011 0.0011 

1000=n  )ˆE( s  1.0046 1.0039 1.0039 

 )ˆBias( s  0.0046 0.0039 0.0039 

 )ˆMSE( s  0.0007 0.0006 0.0006 
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Table 3   Simulation results for UCL= sm ˆ3ˆ +  based on 1000 repetitions. 

  Method 1 

( Joe ) 

Method 2 

( Chen & Fan ) 

Method 3 

( Standard ) 

1=m , 1=s , 2=a  ( 5.0=t ),  UCL=4 

300=n  )ˆ3ˆE( sm +  3.9845 3.9438 3.9467 

 )ˆ3ˆBias( sm +  -0.0155 -0.0562 -0.0533 

 )ˆ3ˆMSE( sm +  0.0320 0.0585 0.0585 

600=n  )ˆ3ˆE( sm +  3.9773 3.9592 3.9608 

 )ˆ3ˆBias( sm +  -0.0227 -0.0408 -0.0392 

 )ˆ3ˆMSE( sm +  0.0152 0.0304 0.0304 

1000=n  )ˆ3ˆE( sm +  3.9863 3.9723 3.9732 

 )ˆ3ˆBias( sm +  -0.0137 -0.0277 -0.0268 

 )ˆ3ˆMSE( sm +  0.0092 0.0184 0.0184 

1=m , 1=s , 8=a  ( 8.0=t ),  UCL=4 

300=n  )ˆ3ˆE( sm +  3.8275 3.5834 3.5830 

 )ˆ3ˆBias( sm +  -0.1725 -0.4166 -0.4170 

 )ˆ3ˆMSE( sm +  0.3294 0.5220 0.5241 

600=n  )ˆ3ˆE( sm +  3.9627 3.7758 3.7765 

 )ˆ3ˆBias( sm +  -0.0373 -0.2242 -0.2235 

 )ˆ3ˆMSE( sm +  0.0789 0.1740 0.1738 

1000=n  )ˆ3ˆE( sm +  3.9914 3.8314 3.8321 

 )ˆ3ˆBias( sm +  -0.0086 -0.1686 -0.1679 

 )ˆ3ˆMSE( sm +  0.0186 0.1083 0.1082 

1=m , 1=s , 3/1-=a  ( 2.0-=t ),  UCL=4 

300=n  )ˆ3ˆE( sm +  4.0108 3.9987 4.0020 

 )ˆ3ˆBias( sm +  0.0108 -0.0013 0.0020 

 )ˆ3ˆMSE( sm +  0.0202 0.0199 0.0200 

600=n  )ˆ3ˆE( sm +  4.0200 4.0153 4.0169 

 )ˆ3ˆBias( sm +  0.0200 0.0153 0.0169 

 )ˆ3ˆMSE( sm +  0.0125 0.0121 0.0121 

1000=n  )ˆ3ˆE( sm +  4.0126 4.0102 4.0112 

 )ˆ3ˆBias( sm +  0.0126 0.0102 0.0112 

 )ˆ3ˆMSE( sm +  0.0073 0.0070 0.0070 
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Table 4   Simulations under a misspecified model for UCL= sm ˆ3ˆ +  based on 1000 

repetitions. 

  Method 1 

( Joe ) 

Method 2 

( Chen & Fan ) 

Method 3 

( Standard ) 

1=m , 1=s , 2=a  ( 5.0=t ),  UCL= sm 3+ =4 

300=n  )ˆ3ˆE( sm +  4.0287 3.9233 3.9261 

 )ˆ3ˆBias( sm +  0.0287 -0.0767 -0.0739 

 )ˆ3ˆMSE( sm +  0.0608 0.0860 0.0861 

600=n  )ˆ3ˆE( sm +  4.0599 3.9726 3.9741 

 )ˆ3ˆBias( sm +  0.0599 -0.0274 -0.0259 

 )ˆ3ˆMSE( sm +  0.0453 0.0581 0.0582 

1000=n  )ˆ3ˆE( sm +  4.0479 3.9804 3.9814 

 )ˆ3ˆBias( sm +  0.0479 -0.0196 -0.0186 

 )ˆ3ˆMSE( sm +  0.0202 0.0305 0.0305 

1=m , 1=s , 8=a  ( 8.0=t ),  UCL= sm 3+ =4 

300=n  )ˆ3ˆE( sm +  3.7583 3.5208 3.5206 

 )ˆ3ˆBias( sm +  -0.2417 -0.4792 -0.4794 

 )ˆ3ˆMSE( sm +  0.3948 0.5474 0.5478 

600=n  )ˆ3ˆE( sm +  3.9351 3.7161 3.7167 

 )ˆ3ˆBias( sm +  -0.0649 -0.2839 -0.2833 

 )ˆ3ˆMSE( sm +  0.1772 0.1962 0.1961 

1000=n  )ˆ3ˆE( sm +  3.9611 3.7946 3.7952 

 )ˆ3ˆBias( sm +  -0.0389 -0.2054 -0.2048 

 )ˆ3ˆMSE( sm +  0.0929 0.1507 0.1506 

1=m , 1=s , 3/1-=a  ( 2.0-=t ),  UCL=4 

300=n  )ˆ3ˆE( sm +  3.9880 3.9826 3.9859 

 )ˆ3ˆBias( sm +  -0.0120 -0.0174 -0.0141 

 )ˆ3ˆMSE( sm +  0.0280 0.0278 0.0279 

600=n  )ˆ3ˆE( sm +  4.0021 4.0060 4.0077 

 )ˆ3ˆBias( sm +  0.0021 0.0060 0.0077 

 )ˆ3ˆMSE( sm +  0.0175 0.0169 0.0170 

1000=n  )ˆ3ˆE( sm +  3.9963 4.0021 4.0031 

 )ˆ3ˆBias( sm +  -0.0037 0.0021 0.0031 

 )ˆ3ˆMSE( sm +  0.0100 0.0092 0.0092 

 

    



490 TING-HSUAN LONG AND TAKESHI EMURA

 

Table 5   Calculation of ARL based on Monte Carlo and antithetic variable methods with 

2m = 20000 repetitions. 

),( sm  

 Monte Carlo Antithetic 
),(cor BA  Ratio

a
 

 ARL SD ARL SD 

)1,0(  2=a b
 620.930 632.505 616.383 627.166 0.0714 1.008 

 8=a c
 763.152 772.725 753.803 755.466 -0.0515 1.022 

)3,0(  2=a  621.307 616.196 615.454 613.850 0.0508 1.003 

 8=a  764.426 771.462 754.856 753.365 -0.0536 1.024 

)1,1(  2=a  616.695 615.549 605.901 606.064 0.0532 1.015 

 8=a  759.815 748.315 760.938 757.564 -0.0515 0.987 

)3,1(  2=a  613.520 622.567 615.391 615.253 0.0445 1.011 

 8=a  762.030 761.094 753.432 751.918 -0.0786 1.012 

)1,2(  2=a  623.782 638.164 629.492 633.717 0.0577 1.007 

 8=a  762.654 767.709 764.261 770.023 -0.0423 0.997 

)3,2(  2=a  616.641 613.566 620.629 616.973 0.0394 0.994 

 8=a  766.410 758.899 781.132 772.514 -0.0430 0.982 

a 
Ratio > 1 corresponds to better performance of the antithetic variables method; 

 Ratio = (SD for Monte Carlo) / (SD for Antithetic variables). 

b 2=a  corresponds to 5.0=t . 

c 8=a  corresponds to 8.0=t . 
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Table 6  Calculation of ARL based on Monte Carlo and antithetic variable methods with 2m 

= 20000 repetitions. One-sided case. 

),( sm  

 Monte Carlo Antithetic 
),(cor BA  Ratio

a
 

 ARL SD ARL SD 

)1,0(  2=a b
 748.477 750.8413 744.3434 742.4753 -0.0219 1.0112 

 8=a c
 786.569 793.4528 796.9079 815.5159 -0.0867 0.972 

)3,0(  2=a  743.888 732.300 738.777 736.080 -0.0201 0.994 

 8=a  783.669 773.330 776.231 777.225 -0.0995 0.994 

)1,1(  2=a  746.228 743.185 745.731 746.343 -0.0020 0.995 

 8=a  786.765 783.535 787.907 784.702 -0.1082 0.998 

)3,1(  2=a  752.232 759.681 751.409 770.731 -0.0229 0.985 

 8=a  784.119 787.141 791.712 786.279 -0.0731 1.001 

)1,2(  2=a  742.697 735.749 749.081 744.173 -0.0129 0.988 

 8=a  784.096 790.829 785.912 779.862 -0.0856 1.014 

)3,2(  2=a  744.671 743.750 740.998 736.727 -0.0477 1.009 

 8=a  777.763 793.051 777.577 793.779 -0.0771 0.999 

a 
Ratio > 1 corresponds to better performance of the antithetic variables method; 

 Ratio = (SD for Monte Carlo) / (SD for Antithetic variables). 

b 2=a  corresponds to 5.0=t . 

c 8=a  corresponds to 8.0=t . 
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Table 7  Monte Carlo values for the ARL under the Clayton copula with the marginal being

)1,( =smN . The UCL = +3 and LCL = -3 are fixed. The in-control state is 0=m  while 

the out-of-control states are 1=m  (1s  shift) and 2=m  (2s  shift). 

Kendall’s tau 

)2/( += aat  

In-control ARL 

No shift: 0=m  

Out-of-control ARL 

Shift: 1=m  

Out-of-control ARL 

Shift: 2=m  

0.9 ( 18=a ) 934.598 255.900 184.529 

0.8 ( 8=a ) 766.300 91.150 45.126 

0.5 ( 2=a ) 632.918 49.151 10.107 

0.3 ( 7/6=a ) 505.197 45.168 7.520 

0.1 ( 9/2=a ) 390.536 44.386 6.589 

0.0001( 0002.0=a ) 373.174 44.106 6.356 

 

 

Table 8 Monte Carlo values for the ARL under the Clayton copula, where UCL=+3 and 

LCL=-3 are known or they are estimated by the three methods.  

Kendall’s tau known 
Estimated by 

Joe’s method 

Estimated by Chen 

& Fan’s method 

Estimated by 

standard method 

The true model 

0.8 ( 8=a ) 766.656 748.436 501.773 502.175 

0.5 ( 2=a ) 627.335 690.920 736.589 738.521 

0.3 ( 7/6=a ) 500.518 545.310 579.958 581.683 

0.1 ( 9/2=a ) 383.470 412.027 413.103 414.137 

0.0001( 0002.0=a ) 365.957 385.332 385.056 385.496 

Misspecified model in Phase I 

0.8 ( 8=a ) 766.661 841.593 511.873 513.664 

0.5 ( 2=a ) 626.859 900.439 921.937 924.302 

0.3 ( 7/6=a ) 500.655 559.944 633.908 635.831 

0.1 ( 9/2=a ) 383.453 412.309 425.906 425.820 

0.0001( 0002.0=a ) 365.935 389.346 390.335 389.686 

In the case of known parameters, the ARL is calculated under 0=m  and 1=s  based on 

10000 repetitions. Hence, the LCL = -3 and UCL = 3 are fixed. In the estimated parameters 

case, we use three different methods to estimate the UCL and LCL based on Phase I samples. 

We simulate 100 Phase I control limits, and for each of them we calculate the ARL based on 

100 repetitions. The ARL in these estimated cases is the average of the 100 ARL’s. The 

misspecified models in Phase I uses the t-distribution with degree of freedom 10=n . 
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建立在 Copula 馬可夫鏈模型之下的管制圖的研究

龍庭軒 江村剛志1

國立中央大學統計研究所

摘 要

統計製程管制 (Statistical process control) 對於製成商品以及操作服務

品質而言, 是個非常重要且方便的品質管制工具。 傳統的休哈特管制圖 (She-

whart control chart) 僅是應用在獨立性的假設之下。 然而, 在現實生活中, 存

在著許多相關性假設的資料, 因此, 傳統的管制圖在現實生活中常常是不被接

受且不實用的。 在本文中, 我們提供一個以 Copula 建立在馬可夫鏈之下的模

型去衍生相關性資料分析。 此外, 我們提供三種方法估計管制圖上的未知參數,

分別為管制上限 (UCL) 以及管制下限 (LCL)。 本文以統計模擬的方式驗證這

些過程, 而喬 (Joe) 所提出的最大概似估計方法優於其餘兩者。 接著, 我們提

出了平均連串長度 (Average run length) 以用來表現出這些管制圖的性質。

最後我們利用活塞環數據來進行實例分析。

關鍵詞: 平均連串長度, 克萊頓 (Clayton) 模型, 相關性資料, 肯德爾塔 (Kendall’s tau), 馬可

夫鏈。

JEL classification: C13, C15, C18. C22.




