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ABSTRACT

Investigating serial dependence is an important step in statistical
process control (SPC). One recent approach is to fit a copula-based
Markov chain model to perform SPC, which provides an attractive
alternative to the traditional AR1T model. However, methodologies for
model diagnostic have not been considered. In this paper, we
develop two different approaches for model diagnostic procedures
for copula-based Markov chain models. The first approach employs a
formal test based on the Kolmogorov-Smirnov or the Cramér-von
Mises statistics with aid of a parametric bootstrap. The second
approach employs the second-order Markov chain model to examine
the Markov property in the model. This second approach itself is a
new SPC method. We made all the computing methodologies avail-

ARTICLE HISTORY
Received 4 February 2019
Accepted 28 March 2019

KEYWORDS

Control chart; Copulas;
goodness-of-fit tests;
Markov chain; serial
dependence; Statistical
process control; Time series

MATHEMATICS SUBJECT
CLASSIFICATION

62M10; 62H12;

62H20; 60J20

able in the R Copula.Markov package, and check their performance
by simulations. We analyze three datasets for illustration.

1. Introduction

Observed data collected in daily manufacturing process are often dependent in the sense
that the present sampling condition depends on the past ones. Thus, modeling depend-
ence in the data plays a crucial role in statistical process control (SPC)
(Montgomery 2009).

Let {Y;:t=1,...,n} be data collected on n different time points. In some cases, an
unusually high (or low) value of Y,_; may influence the next value of Y; (Bisgaard and
Kulahci 2007). While the major goal of SPC is to monitor the marginal process parame-
ters (mean and SD of Y;), the dependence parameter (e.g. cor(Y;_;,Y;)) largely influen-
ces long-term performance of SPC, such as the average run length (ARL).

A solid overview of serial dependence models in SPC is found in Wieringa (1999)
and Knoth and Schmid (2004), while a concise review is seen in Box and Narasimhan
(2010). The literature focuses on the first order (Markov) models, including a first order
autoregressive AR(1), a first order moving average MA(1), and a first order integrated
moving average IMA(1) or IMA(L,1). These traditional models can only deal with linear
dependence between two observations. For instance, the AR(1) model applies a linear
structure
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Y = é—i_th—l +é&, t=1,..,n,

where ¢~"N(0,1%), —1<p<1, and 2>0.

Long and Emura (2014) considered a copula-based Markov chain model to perform
SPC for serially correlated data. In their model, serial dependence between a pair of
consecutive observations (Y;_j, Y;) is modeled as

Pr(Y: <y, Y1 <yr1) = C(G()’t); G(}’t—l))a (1)

where C:[0,1)> — [0,1] is a copula (Nelsen 2006) and G(y) = Pr(Y; < y) is the mar-
ginal (stationary) distribution function. Note that the model (1) itself was originally pro-
posed by Darsow, Nguyen, and Olsen (1992), and subsequently applied to different
statistical problems by Joe (1997), Chen and Fan (2006); Abegaz and Naik-Nimbalkar
(2008); Domma, Giordano, and Perri (2009); Huang, Chen, and Emura (2019); and
Erkal Sonmez and Baray (2019). The computer tools were only recently available
through the R package Copula.Markov (Emura, Long, and Sun 2017). The package has
been applied to a number of recent studies (Kim and Baik 2018; Kim, Baik, and Reller
2018; Kim, Baik, and Reller 2019; Sun, Lee, and Emura 2018).

Applying the package to the data {Y;:t =1,...,n}, one can estimate process param-

eter (u,0), where p = E(Y;) and o = \/Var(Y;), as well as a copula parameter. Since
the models of Long and Emura (2014) and Emura, Long, and Sun (2017) are fully para-
metric, the package requires strong distributional assumptions of the normal marginal
model G(y) = ®{(y—u)/c}, where @ is the distribution function of N(0,1), and a cop-
ula function (Clayton copula or Joe copula). The effect of violating the normality
assumption for independent data has been noticed by Albers and Kallenberg (2007).
Under the copula-based model for correlated data, the model assumptions are even
more stringent. We have three model assumptions to be addressed:

i. Markov property: Pr(Y, < y|Yi1 =y, Yio1 = Yeay...) = Pr(Yy < p|Yiy =
)’t—l) vt
iil. Marginal distribution: G(y) = ®{(y—un)/c} I(u,0)
iti. Copula form: Pr(Y; <y, Yio1 < y1-1) = Co(G(yt), G(y4—1)) Tt

None of these assumptions were examined when fitting the data to the copula-based
Markov chain model since the model diagnostic methods are unavailable in soft-
ware packages.

Therefore, the main goal of this paper is to present model diagnostic procedures to
examine (i)-(iii). To examine (ii), we propose significance tests based on the
Kolmogorov-Smirnov and the Cramér-von Mises statistics with aid of a parametric
bootstrap. This examine (i), we propose a model comparison approach with the 2"
order Markov chain model. As a byproduct, we also propose a new SPC method under
the 2"%-order Markov chain model. We propose to check (iii) by comparing the good-
ness-of-fit between the Clayton and Joe copulas (Joe 1993), and chose the better one to
perform SPC. We made all the computing codes available a user-friendly manner in the
R Copula.Markov package. We illustrate the proposed model diagnostic methods
through three datasets needing SPC methods with serial dependence.
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The paper is organized as follows. Section 2 reviews existing methods. Section 3 pro-
poses goodness-of-fit tests. Section 4 proposes SPC under the 2"¥-order model, which
can be used for a model comparison. Section 5 analyses three datasets. Section 6 con-
cludes. Appendices A and B provide the definitions of the R functions in the R package.
Appendix C provides the derivations of the likelihood function. Appendix D provides
the R codes for the data analyses.

2. Parameter estimation and control chart

In this section, we review parameter estimation and SPC methods under a copula-based
Markov chain model as previously proposed by Long and Emura (2014) and Emura,
Long, and Sun (2017).

For observations {Y; : t = 1, ..., n}, we assume the Markov property

Pr(Yt < }’t’Yt—l =Yt-1, Vi1 = Y2, ) = Pr(Yt < )’t‘Yt—l :)’t—l) vt,

and a bivariate copula Markov model

Pr(Y, <y, Yio1 < yier) = Co(G(r), G(re-1)) s (2)
where C, is a copula (Nelsen 2006), « € R is a dependence parameter, and
G(y) = @{p—n)/o}. (3)

We have marginal mean p = E(Y;) and SD ¢ = /Var(Y;). The reason of choosing
the normal margins is due to its remarkable popularity of the three-sigma rule of u*3¢
in SPC.

We mainly focus on the one-parameter Clayton copula defined as:

Cy (1, u2) = (" + w, 1),

where >0 is related to Kendall’s tau between Y;_; and Y;, through © = o/(x + 2). Our
choice of the Clayton copula is due to its popularity. Many statistical models and soft-
ware packages in biostatistics focus on the Clayton copula due to its ease of conducting
simulation (e.g. Rotolo, Legrand, and Van Keilegom 2013), estimation (e.g. Emura,
Long, and Sun 2017; Emura et al. 2017; Rotolo, Paoletti, and Michiels 2018; Emura,
Matsui, and Rondeau 2019), feature selection (Emura and Chen 2016; Emura, Matsui,
and Chen 2019) and prediction (e.g. Emura et al. 2018). The simplicity and usefulness
of the Clayton copula are also true in SPC, but its goodness-of-fit to real data is not
always true. The issue of the goodness-of-fit shall be examined in details.
Under the models (2) and (3), the log-likelihood function given {Y; : t =1,...,n} is

1 & 1 (Yi—pu 1 & Yi1—u Y —u
=33 e {7o(E) 3 o () o102 |
t=1 =2

where ¢, (uy, uy) = *C,(uy, up)/OuO0uy. For any chosen copula, the MLE that maxi-
mizes the preceding formula is denoted by (i, &, ).

The Copula.Markov package provides two options for copulas, the Clayton copula via
Clayton.Markov.MLE () and Joe copula via Joe.Markov.MLE (). Note that the
Clayton copula has the lower tail dependence while the Joe copula has the upper tail
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Figure 1. Diagnostic plots made by the correct data (left hand) and 10% contaminated data (center),
and 20% contaminated data (right hand). We generated the correct data from the Clayton model
with the normal margins under u =1, ¢ =1, and @ = 2 (t = 0.5). For the contaminated data, we
randomly replace 10% (or 20%) of the data by the outlier 4 + 36 = 4.

dependence. Hence these two copulas capture quite different dependence structures and
supplement each other in modeling serial dependence. Comparison of the log-likelihood
values between the Clayton and Joe copulas leads to a very simple but effective strategy
for model selection.

Control charts provide a tool to detect out-of-control signals in observations {Y; :
t =1,...,n}. The three-sigma control chart consists of the center u = E(Y;) and the
control limits pu*+30, where ¢ = \/Var(Y;). If the parameters (u,o) are unknown, one
can use the MLE to obtain the estimators of LCL and UCL, as jt—36 and i + 30,
respectively. Out-of-control points are detected by Y;>UCL, or Y,<LCL. Control charts
usually display the plot of {Y;:t=1,...,n} together with the control limits. The
Copula.Markov package provides functions Clayton.Markov.MLE () and Joe copu-
las via Joe .Markov.MLE () to draw control charts.

3. Goodness-of-fit test

Since the validity of the MLE and control limits relies heavily on the model assump-
tions, we propose a goodness-of-fit test procedure. We are interested in testing a
hypothesis

Hy:Pr(Y, <y)= (I)()/_T'u) for (1, 0),

against an alternative hypothesis
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Hy :Pr(Y, <y) # (D<y—7,u> for  V(u,0).

Let G,(y) = >/, I{Y: < y}/n be the empirical distribution function. If the model is
correct, the parametric estimator ®{(y—t)/6} and the nonparametric estimator G,(y)
converges to the true value (Chen and Fan 2006; Long and Emura 2014). If the model
is wrong, the two estimators converge to different values. Thus, we propose a

—f
Gu(y) — @ —
0 -o(%)
and a Cramér-von Mises type statistic

N S )

J

Kolmogorov-Smirnov statistic

K = sup

)

to detect the departure of the model from the underlying model.
We suggest a parametric bootstrap method to obtain the P-value of the tests:

The goodness-of-fit test with parametric bootstrap

Step 1: Generate Markov time series {Y” :¢#=1,...,n} under H, with estimated parameters

(,[l, o, d’) for each b=1,2,...,B,

_ 0

Step 2: Compute the MLE ( 2, 6", &), the parametric estimator (D[ b4 A(‘L:) J, and the
)

nonparametric estimator G”’( y ) from the data {¥” :¢#=1,...,n } .Then, compute the

corresponding statistic K or C” for each b=12,..., B.

B B
Step 3: The P-value of the test is calculated as ZI(K*(Z’) >K)/B or ZI(C*“’) >C)/B.

b=1 b=1

Reject H, if the P-value is less than a specified significance level P, Otherwise, accept /.

We suggest B = 500 as the number of the bootstrap replications.

In conjunction with the test results, a graphical diagnostic procedure is useful by
plotting (D(%) against G,(Y;). If the plot bends away from the diagonal line, this indi-
cates evidence that the fitted model is not a good choice. Figure 1 shows three plots,
one for correct data, and other two for contaminated data. We see that the plot almost
perfectly lines on the diagonal for the correct data while the plots bend away from the
diagonal line for the contaminated data.

We implemented computation of the goodness-of-fit tests as well as the diagnostic
plot under the Clayton copula (by Clayton.Markov.GOF) and Joe copula (by
Joe.Markov.GOF).

We conducted simulations to examine the type I error rates and power for the pro-
posed goodness-of-fit test. First, we generated data from the Clayton model with the
normal margins under u =1, ¢ =1, and o =2 (7t = 0.5). For each data generated, we
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Table 1. The rejection rates of the goodness-of-fit tests based on 200 repetitions under u =1, o =
1, and a« = 2; K=Kolmogorov-Smirnov statistic; C=Cramér-von Mises statistic.

. Without Outliners with rate = Outliners with rate = Outliners with rate =
Nominal outliers 10% size=u + 3¢ 10% size=u + 60 20% size=p + 30
Significance

Sample size level P K C K C K C K C
n =300 0.01 0.01 0.00 0.00 0.00 0.56 0.53 0.27 0.27
0.05 0.03 0.04 0.00 0.01 0.93 0.89 0.86 0.88
0.10 0.10 0.10 0.17 0.15 0.98 0.97 0.92 0.92

n =600 0.01 0.00 0.00 0.02 0.01 0.87 0.88 0.74 0.81
0.05 0.03 0.01 0.21 0.19 0.99 1.00 0.97 0.93
0.10 0.12 0.14 0.41 0.53 1.00 1.00 0.99 0.94
n = 1000 0.01 0.01 0.00 0.08 0.10 0.98 0.98 0.92 0.92
0.05 0.04 0.04 0.54 0.66 1.00 1.00 0.99 0.95
0.10 0.10 0.10 0.84 0.91 1.00 1.00 1.00 0.97

performed the parametric bootstrap tests, and then examined the number of rejections
among 200 repetitions (empirical rejection rates) under three nominal significance lev-
els, P=0.01, 0.05, and 0.10.

Table 1 shows that the empirical rejection rates. If the model is correct, the rejection
rates are close to the nominal levels. However, if the model is contaminated by ran-
domly replacing 10% of the data by the outlier 4 + 30 = 4, the rejection rates increased.
The rejection rates further increased by increasing the location of outliers to u + 60 =7
or increasing the contamination rates to 20%. In conclusion, the proposed goodness-of-
fit test has a desirable type I error and reasonable power rates.

4, The second-order Markov model

This section develops estimation and SPC methods under the 2™-order Markov chain
model, which has not been considered in the literature. The 2"%-order Markov chain
model is more difficult to interpret for SPC users, but it can fit well to some real data-
set. Consequently, the 2"¥-order model is an attractive alternative to the 1%-order
(Markov) model, and it even provides a tool for checking a Markov property.

4.1. Model and data-generation

In this sub-section we introduce a data generation algorithm for the 2"%-order
Markov model.
For asequence {Y; : t = 1, ..., n}, the conditional densities under the 2™*-order model is

0
g()’t|)/t—1; "'7)’1) = g(ytlyt_l,yt_z) = 8—%PI‘(Yt < yt|Yt—1 =Y-1, Y1 = )’t—z)-

Hence, the probabilistic model for the sequence is specified by the joint distribution
of three adjacent variables. We propose to impose a tri-variate copula function

F()’t;)’t—l;)’t—z) = PI’(Yt <y, Y1 <yq,Y 2 < )’t—z) = C, [G()’t)a G(yt—l); G(yt—Z)]a

where C, : [0,1] — [0,1] is a tri-variate copula, o € R is a dependence parameter, and

G(y) = ®{(y—u)/o}. Note that u = E(Y;) and ¢ = y/Var(Y;).
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For instance, the tri-variate Clayton copula is defined as
- _ - -1
Co(ur, g, u3) = (uy *+ ™"+ us™*=2) &

where >0 describes the correlation between Y, , and Y;_;, the correlation between
Y;—, and Y;, and, the correlation between Y; ; and Y,. While the model imposes a
strong symmetric correlation structure, one important reason of using the tri-variate
Clayton copula is its simple mathematical form allowing an explicit data-generation
scheme (e.g. Rotolo, Legrand, and Van Keilegom 2013).

We develop an R function Clayton.Markov2.DATA () to generate data as well
as an R function Clayton.Markov2.MLE () to compute (f,d,4) from the data (see
Section 4.2, Appendices A and B for the definitions). After installing the Copula.Markov
package, one can easily obtain the plot by typing:

set.seed (1)
Y=Clayton.Markov2.DATA (n=1000,mu=0, sigma=1, alpha=8)

Clayton.Markov2.MLE (Y, plot=TRUE)

4.2. Maximum likelihood estimation

To derive the MLE (1,6, 4&), we use the conditional densities

C[I’LH [ (yt>7 G(yt71)7 G()/tfz)]
[011] [1 G(i-1), G(ytfz)}

g()’tb’t—la)’t—z) =

~
~
~—

for t > 3, and

g(yalyr) = VUL, G(2), Gn)] 8 (72)
where

63 C%(uh U1, ut—Z)
6ut8ut,18ut,2

2
8 Ca(utu U1, ut—Z)
Ous_10u;_»

CLLL”(W, U1, Up2) =

0,1,1 _
7C¢[x ]<ut7ut717ut72) —

The log-likelihood based on Clayton copula can be expressed as

Up,0,0) = (n—2) log (1 +2a) + log (1 + o)

( “)Zlog (0i-1) " + Gyia) ™ — 1]
—(o+ I)Z_:log G(ye) + Z_:logg(yt)

where g(y;) = 0dG(y;)/y:. Appendix C provides the derivation of ¢(u,o,a), and the

. 11,1 0,1,1
expressions of CL ](ut, Ur_1,Us—5) and CL }(ut, U1, Ur—3).
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Figure 2. The plot of the 2"%-order Markov chain {Y;: t =1,...,1000} under the tri-variate Clayton
copula with =8 and the marginal distribution G~N(0, 1).

In Appendix B, we provide the definition of the R Clayton.Markov2.MLE ()
function that can numerically obtain (jt,d,4). The function applies the subroutine
nlm() to maximize the log-likelihood with the data-driven initial values

_ 1 1 <& L 21
)’—n;)’ta n_IZ()’t )’)71_10

t=1

where

ﬁzsgn{(yt = Vo) (V1 — Yeer1) }

t<tx

To =

and where sgn(x) = —1 for x<0, sgn(x) = 0 for x =0 and sgn(x) = 1 for x>0. If the
algorithm diverges, then it restarts after adequate randomization from Unif(—D, D) in
the initial values with a user specific value D>0. This scheme is called the randomized
Newton-Raphson algorithm that has been applied to various statistical models with
many parameters (Achim and Emura 2019; Emura and Pan 2017; Shih and Emura
2018; He and Emura 2019). Note that 7, is Kendall's tau after transforming the time
series data to the paired data:

(}’1,)’2), ()’27)’3)7 ce0y (yn—layn)

The following example calculates the MLE:
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> set.seed(1l)
> Y=Clayton.Markov2.DATA (n=1000,mu=0, sigma=1, alpha=8)
> Clayton.Markov2.MLE (Y, plot=TRUE)
Sestimates

mu sigma alpha UCL LCL
0.3512133 0.8471141 4.8640316 2.8925557 -2.1901291

$out of control
[1] 530

Sgradient
[1] -4.348635e-05 -9.454880e-05 -9.170452e-06

Shessian

[,1] [,2] [,3]
[1,] 754.1947 -887.7274 813.1771
[2,] -887.7274 2207.5784 -1331.2615
[3,] 813.1771 -1331.2615 1013.3597

SCM.test
[1] 0.2583273

SKS.test
[1] 0.03049542

$log likelihood
[1] -170.0381

Here, we use the same data {Y; : t = 1,...,1000} as appearing in Figure 2. In the out-
put, $estimates gives the MLE (jt,6,4), the lower control limit (LCL=ft—36) and the
upper control limit (UCL=/ + 36). Whether the MLE attains the maximum of the like-
lihood function or not can be confirmed by checking Sgradient and shessian. In
the example, the gradients are quite close to zero, which means that the likelihood func-
tion gives a proper solution. In addition, the output shows that the Hessian matrix is
negative definite since the minimum eigenvalue of the Hessian matrix is negative. This
guarantees that the MLE attains the local maximum of the log-likelihood (see p. 284,
Theorem 7.7.1 of Khuri 2003).

Even though n=1000 is quite large, the MLEs of jt =0.351 and ¢ =0.847 are not
close to the true values of u =0 and ¢ =1. This is due to a large sampling variation
caused by the strong serial correlation (r = 0.8), a reasonable phenomenon suggested

Table 2. The MSEs of estimating parameters under the 1%-order and 2"%-order Markov models. The
data was generated by the Clayton copula and N(z = 1,6 = 1).

n =300 n =600 n =1000

True model  Fitted model =02 <¢=0.5 1=075 =02 1=05 =075 1=02 =05 =075

1 1%-order 0.0067 0.0265 0.1319 0.0034 0.0126  0.0805 0.0020 0.0077  0.0397
2"-order 0.0071 0.0662 03896 0.0036 0.0420 03009 0.0022 0.0314 0.2347
1*-order 0.0027  0.0071 0.0197 0.0012 0.0030 0.0120 0.0007 0.0018 0.0068
2"-order 0.0027 0.0092  0.0404 0.0013 0.0047  0.0220 0.0007 0.0030 0.0150
1*-order 0.0142 0.2474  6.0668 0.0064 0.1089 55584 0.0040 0.0671 2.6455
2"-order 0.5353 04777 21397 0.0494 03548 10.165  0.0477 03219 3.8345
1*-order 0.0112 0.0697 03192 0.0058 0.0356  0.2021 0.0035 0.0199 0.1234
2"-order 0.0111  0.0636  0.2466 0.0057 0.0315  0.1544 0.0034 0.0182 0.0716
1*-order 0.0037 0.0134 0.0470 0.0018 0.0063  0.0226 0.0011 0.0037 0.0147
2"-order 0.0035 0.0113  0.0612 0.0017 0.0055  0.0350 0.0010 0.0030 0.0133
1*-order 0.0208 0.5146 54581 0.0096 0.2458 54641 0.0061 0.1300 5.5815
2"order 0.0142 04871 28.042 0.0069 0.2176 20.802  0.0043 0.1172 5.5723

-order
o 1*"-order
o 1*"-order
u 2"-order
¢ 2"-order

o 2™-order
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Table 3. The rate of choosing the model between the 1%%-order and 2"%-order Markov models. The
data was generated by the Clayton copula and N(z =1, = 1).

n =300 n =600 n =1000
True model  Chosen model =02 =05 =075 1=02 =05 11=075 11=02 1=05 1=0.75
1°“order 1*“order 0.964 1.000 0.988 0.994 1.000 0.999 1.000 1.000 1.000
2" order 0.036 0.000 0.012 0.006 0.000 0.001 0.000 0.000 0.000
2"9order 1*“-order 0.014 0.001 0.000 0.002 0.000 0.000 0.000 0.000 0.000
2" order 0.986 0.999 1.000 0.998 1.000 1.000 1.000 1.000 1.000

The rate of choosing the 1*-order model is 101% LO?O I(¢; > ¢,), and the rate of choosing the 2"%order model is
1 1000

To06 2im1 1€ < £2), where £y is the log-likelihood under the k-th order model.

from a plot in Figure 2. However, in the long run, the bias vanishes (see the simulation
results of Section 4.4).

The function Clayton.Markov2.MLE() draws a control chart, including
UCL=jt + ko, LCL= i—ko and the center line jt (Figure 2). The default is k =3 (3-
sigma control limit), but the user can specify any value k>0. In the output, only one
observation falls outside the interval [LCL, UCL]. This out-of-control signal is indeed
identified from Figure 2. The value k = 3 means that the rate of out-of-control signals
is specified at 0.27% at each time point.

4.3. Model selection

We propose a model selection method by comparing the 1¥-order and 2"-order mod-
els, and then, choosing one that fits better (higher value in the maximized log-likeli-
hood). From the simulations below, we see that the method has a high probability to
select the true model (higher log-likelihood value) if either the 1%-order or 2™-order
model is correct. In particular, we observe Pr(¢;>¢,|1st—order model) > 0.95, where ¢
is the maximized log-likelihood under the k-th order Markov model. Even if both mod-
els are incorrect, the model with higher log-likelihood would be regarded as a bet-
ter model.

4.4. Simulations

We compare the performance for the 1¥-order model and 2™!-order model via a simu-
lation study. We consider three cases: weak dependence (t = 0.2), medium dependence
(t = 0.5) and strong dependence (t = 0.75) for the bivariate or tri-variate Clayton cop-
ula with marginal distribution N(u = 1,6 =1) or N(uu = 1,0 = 3). The sample sizes
are set to be n =300, 600 and 1000. We generated data and estimated (ji,6,4a) under
the 1%-order model and the 2"%-order model. We then compared their mean squared
errors (MSEs) with respect to the true values. We also checked the ability of selecting
the correct model.

Table 2 shows the MSEs for (ji,6,4). The MSEs are smaller under the correct model
than those under the incorrect model, which are reasonable results. The difference of
the MSEs between the correct and incorrect models are larger for stronger dependence.
Under weak dependence, the MSEs are quite small even if the model is incorrect. The
MSEs decrease as the sample size increases, meaning the consistency of the estimates.
We should notice that the 2"-order model occasionally produce an unusually large
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Figure 3. A control chart for chemical concentrations {Y;:t=1,...,197} measured every 2 hours.
The UCL and LCL are computed under the 2"%-order Markov model.

MSE for a even when the data are generated from thecorrect model. This is because
strong dependence makes estimating « more difficult and unstable. Although the
expectation is close to the true value, the fluctuation of the estimates produces the
unusually large MSE.

Table 3 shows the performance of the proposed model selection method (Section
4.3). Tt reports the rate of choosing the model between the 1%-order and 2™%-order
Markov models. The method has nearly 100% of selecting the correct model for
n =1000. Even if the sample size is n =300, the rate of choosing the correct model is
more than 95%. This results imply the model selection consistency of the pro-
posed method.

5. Data analysis

This section analyses three datasets for illustration. The R codes for the analysis are
given in Appendix D.

5.1. Chemical process data

We consider the chemical process data (Box and Jenkins 1976; Bisgaard and Kulahci
2007). The data consists of a series of chemical concentrations {Y;:t=1,...,197}
measured every 2hours. Engineers use SPC to judge if the concentration level is kept
within a reasonable range.

First, ~we  applied the 1%-order Clayton  Markov  model  (by
Clayton.Markov.MLE), and obtained the MLE i = 17.0732223, 6 = 0.4213754,
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and & = 1.1777489 (Kendall’s tau 7 = a/(& + 2) = 0.37). Control limits were LCL =
fti—36 = 15.8090961 and UCL = j1 + 36 = 18.3373486.
Next, we fitted the data to the 2"%-order Clayton Markov model (by using

Clayton.Markov2.MLE):

> Clayton.Markov2.MLE (Y)
Sestimate’

mu sigma alpha UCL LCL
17.0709442 0.4123265 0.8238138 18.3079236 15.8339648

Sout of control
[1] "NONE"

Sgradient
[1] 1.453098e-07 1.649880e-07 3.694822e-09

Shessian

[,1] [,2] [,3]
[1,] 406.403140 -1.151078 70.29312
[2,1] -1.151078 448.117257 -111.99199
[3,] 70.293122 -111.991989 53.19120
SCM.test
[1] 0.148302
SKS.test

[1] 0.07591838

S$log likelihood

[1] -59.32751

The outputs show ji = 17.0709442, 6 = 0.4123265, and & = 0.8238138 (Kendall’s tau
T =a/(a +2) =0.29). Control limits are LCL = i—36 = 15.8339648 and UCL = ji +
36 = 18.3079236.

Finally, we compared the log-likelihood for the two models: ¢/;,=—60.07602 (1*"-order)
and ¢,=—59.32751 (2"%-order). Hence, we choose the 2°d-order model for SPC. This
results suggest that there may be some residual dependence that is not captured by the
1*-order model. Hence, the current chemical concentration may depend on those on
previous two hours.

Figure 3 depicts a control chart drawn under the 2™-order model. It shows that all
the points are between the LCL and UCL, which implies that the process is in-control.
The data clearly exhibits positive serial correlation.

5.2. Financial data

We analyze the weekly returns of S&P 500 index consisting of 500 leading companies
in leading industries of the U.S. economy. Data were downloaded from FRED (Federal
Reserve Economic Data) https://research.stlouisfed.org/fred2/series/SP500/downloaddata.
We extracted weekly data from Jan 1% 2010 to Jan 3" 2014 (weekly, ending Friday) and
write them as {Y; : t = 1,...,210}. The goal is to show that weekly returns stay within a
reasonable range.

We first applied the 1%-order Clayton Markov model (by using
Clayton.Markov.MLE), and obtained the MLE i = 3.28241124, 6 = 27.45415699,
and & =0.04422089 (Kendall’s tau 7 = &/(& + 2) =0.02). Consequently, control limits
were LCL=j1—36=—79.08005974 and, UCL= + 36=85.64488222. Since Kendall’s tau
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Figure 4. A control chart for weekly S&P 500 index from Jan 1% 2010 to Jan 3™ 2014 {V;:t=
1,...,210}. The UCL and LCL are computed under the 2"%-order Markov model.
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Figure 5. Goodness-of-fit test for the 1°

-order Markov model under Clayton copula.
is almost zero, there is some possibility that the 1%-order Clayton Markov model cannot
capture dependence structure of the data.

Next, we applied the 1*"-order Joe Markov model (by using Joe .Markov.MLE) and
obtained the MLE j =3.31300, & =27.61220, and & =2.00000 (Kendall’s tau

t=1-4/6% ["s(1—e* )24 225 s =0.36). Consequently,  control  limits  are
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Figure 6. A control chart for BA in MLB annually returns from 1980 to 2016 {Y;:t =1,...,37}. The
UCL and LCL are computed under the 1*-order Markov model under Clayton copula.

LCL=—36=-79.52359 and, UCL=j + 36=86.14959. It is interesting to see that
Kendall’s tau is now much larger than that under the Clayton copula.
Next, we fit the data to the 2"9-order model (by using Clayton.Markov2.MLE):

S estimates’
mu sigma alpha UCL LCL
3.27853834 27.23464482 0.09224491 84.98247281 -78.42539612

Sout _of control
[1] 84 91 101

Sgradient
[1] 5.548172e-07 -5.036709e-05 5.247140e-07

Shessian
[,1] [,2] [,3]
[1,] 0.2235298 1.011451 0.1203988
[2,] 1.0114510 398.420392 -5.1577411
[3,] 0.1203988 -5.157741 3.3218271

SCM.test
[1] 0.1317453

SKS.test
[1] 0.06562425

$log likelihood

[1] -991.992

The outputs show j1 =3.27853834, ¢ =27.23464482, and %=0.09224491 (Kendall’s tau
T =a/(a +2) =0.29). Consequently, control limits are LCL=/1—36=—78.42539612 and
UCL=[1 + 36=84.98247281. Again, it is interesting to see that the see that Kendall’s tau
is now much larger than that under the 1*-order Clayton model.

Finally, we compared the log-likelihood for the three models: ¢;(Clayton)=
—993.8922, /,(Clayton) = —991.992 and /¢, (Joe)= —1064.618. Hence, we chose the ond
order Clayton model for SPC.

Figure 4 depicts a control chart drawn under the 2"%-order Clayton Markov model. It
shows that three points are outside the range between the LCL and UCL. Hence the
process is out-of-control. The data exhibits positive but weak serial correlation.
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5.3. Baseball data

A set of baseball data was analyzed as an example. The data is available on open data
website: https://www.baseball-reference.com/leagues/MLB/bat.shtml. Following Kim,
Baik, and Reller (2019), we extract annual records of batting average (BA) in Major
League Baseball (MLB) from 1980 to 2016 and write them as {Y;:¢=1,...,37}. The
goal is to detect if there is a large and unusual variation of MLB statistics by fitting our
method (Kim, Baik, and Reller 2019).

We first apply the 1*-order Clayton Markov model (by using Clayton .Markov .MLE):

> Clayton.Markov.MLE (Y)
S estimates”

mu sigma alpha UCL LCL
0.261812672 0.005793249 1.825540748 0.279192419 0.244432926

Sout of control
[1] "NONE"

SGradient
[1] 6.102218e-12 -4.089577e-11 1.525716e-13

SHessian

[ 15 [, 2] [, 31
[1,] -15875.94978 8634.3361 -35.5368485
[2,1] 8634.33614 -73289.4719 84.3591025
3,1 -35.53685 84.3591 -0.1677149

S$Mineigenvalue Hessian
[1] -74559.97

SCM.test
[1] 0.1554252

SKS.test
[1] 0.150176

$log likelihood
[1] 153.8685

The outputs show the MLE i = 0.261812672, ¢ = 0.005793249, and & =1.825540748
(Kendall’s tau 7 = & /(& + 2) =0.48). Control limits are LCL=1—36=0.244432926 and,
UCL=/t + 36=0.279192419.

Next, we fitted the 1%-order Joe Markov model (by using Joe.Markov.MLE), we
obtained [t =0.260683403, ¢ = 0.006095821, and & = 2.390078566 (Kendall’s tau
t=1-4/6> [~ s(l—e‘s)z/&_ze_zsds =0.43). Control limits are
LCL=i1—36=—0.242395939 and, UCL=j + 36=0.278970867.

Lastly, we fitted the data to the 2"™%-order Clayton Markov model (by using
Clayton.Markov2.MLE) and obtained: jt = 0.261049293, 6 = 0.005741486, and a=
1.368885059 (Kendall's tau 7 = &/(& + 2) =0.40). Consequently, control limits are
LCL=/—36= 0.243824833 and UCL=j + 30= 0.278273752.

We compared the log-likelihood for the three models: ¢;(Clayton)= 153.8685, ¢{,=
152.4118 (2™-order Clayton) and ¢;(Joe)= 150.7123. Obviously, the 1%-order Clayton
Markov model is chosen for SPC.

To confirm the 1%*-order Clayton Markov model as a suitable model for the dataset, we per-
formed model diagnostic and goodness-of-fit tests. The model diagnostic plot does not give
graphical evidence of rejecting the model (Figure 5). Indeed, bootstrap goodness-of-fit tests (by
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Clayton.Markov.GOF) show little evidence for rejecting the model under the Kolmogorov-
Smirnov statistics (P-value = 0.59) and Cramér-von Mises statistics (P-value = 0.61).

Figure 6 depicts a control chart drawn under the 1*-order Clayton Markov model. It
shows that none of the points are outside the control limit, which implies that the pro-
cess is in-control. The data exhibits positive serial correlation.

6. Conclusion and future work

In this paper, we introduce methodologies and computer algorithms to assess the good-
ness-of-fit of the copula-based Markov model for serially dependent time series.
Proposed methods are implemented through our R package Copula.Markov so that
users can readily perform their analysis. The package can be used to fit the data to the
copula model, perform model diagnostic/goodness-of-fit analyses, select a suitable
model, and perform SPC (in both 1*-order and 2" order models). We have demon-
strated the use of the proposed methods through three data examples, including chem-
ical data, financial data, and sports data. We believe that our new techniques in our
package can greatly facilitate SPC under copula-based Markov models.

While the simulations show that the parametric bootstrap goodness-of-fit test has a desir-
able type I error and reasonable power rates, the asymptotic theory behind the tests remain
unclear. Under independent observations, Genest and Rémillard (2008) mathematically veri-
fied the parametric bootstrap goodness-of-fit tests. Their theory cannot be applied for serially
correlated observations. The derivation of the asymptotic theory often makes it possible to
derive a resampling scheme based on the multiplier central limit theorem, which reduces the
computational time of the usual parametric bootstrap (Emura and Konno 2012).

More complex copula models could be considered, including 3™-order model, other
copula functions, and multi-parameter copulas. To avoid unnecessary burden in practice,
these complex copula models should be used only when their practical usefulness is clear
in SPC. For instance, the Gaussian copula model may not be an attractive choice since the
functional form of the copula is more complex than the Clayton copula and it reduces to
the usual AR(1) model under the normal margin. Also, the FGM copula has a limited
range of dependence, though the functional form is very simple. This is a reason why we
chose the one-parameter Clayton copula model for the 1%~ and 2"%-order Markov models.

This article focuses fitting the normal margins since it is the most commonly used model
for SPC and is the basis of the three-sigma control limit. Nonetheless, other marginal distribu-
tions can be considered since. Sun, Lee, and Emura (2018) considers a Bayesian inference
method for the ¢t-marginal distribution under the copula-based Markov chain model moti-
vated by heavy tailed financial data. They did not consider SPC. Under independent data,
Albers and Kallenberg (2007) suggested the so-called normal power family as it is suitable for
modeling and estimating control limits. Huang, Chen, and Emura (2019) proposes an np-con-
trol chart for the binomial marginal model, which requires a much more complex likelihood
function than the normal marginal model even under the 1*-order Clayton copula.
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Appendix A: R functions clayton.Markov2 .DATA

e  Description

The R function Clayton.Markov2.DATA () generates the datasets under a copula-based
Markov chain model. The serial dependence follows the Clayton copula and the marginal (sta-
tionary) distribution follows the normal distribution.

e Usage
Clayton.Markov2 .DATA(n,mu,sigma,alpha)

e  Arguments

n: sample size
mu: mean
sigma: standard deviation (sigma > 0)
alpha: association parameter (alpha > 0)

e Definition

FHEH AR S S S
Clayton.Markov2.DATA = function (n,mu, sigma,alpha) {

U = numeric (n)
U[l] = runif(l, min = 0, max = 1)
Ul2] = ((runif (1, min = 0, max = 1)"(-alpha/(l+alpha))-1)*U[1]"(-

alpha)+1) "~ (-1/alpha)
for(i in c(3:n)) {

U[i] = ( runif(l, min = 0, max = 1)"(-alpha/(l+2*alpha))*(U[i-1]1"(-
alpha)+U[i-2]" (-alpha)-1) -

U[i-1]"(-alpha)-U[i-2]" (-alpha)+2 )~ (-1/alpha)

}
Y = gnorm(p = U, mean = mu, sd = sigma)
return (Y)

Appendix B: R function copula.Markov2 .MLE
e  Description
The R function Clayton.Markov2.MLE () produces the maximum likelihood estimates and

draws the Shewhart chart with k-sigma control limits (e.g., 3-sigma). The dependence model follows
the Clayton copula and the marginal (stationary) distribution follows the normal distribution

e Usage
Clayton.Markov2.MLE (Y, k=0.3, D=1, plot=TRUE)

e  Arguments
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Y: vector of datasets

k: constant determining the length between LCL and UCL (k=3 corresponds to
sigma limit)

D: diameter for U(-D, D) used in randomized Newton-Raphson

plot: boolean variable whether to plot the control chart

e Values

$estimates: Estimates of (ft,d,4), UCL and LCL.

$out_of_control: Indices for out-of-control signals.

$gradient: The gradient of the log-likelihood at the solution. They should be close to zero.
$hessian: The Hessian matrix of the log-likelihood at the solution.

$CM.test: Cramer-von Mises test statistics

$KS.test: Kolmogorov-Smirnov test statistics

$log_likelihood: The value of log-likelihood

e Definition

HHAHE AR A R R R
Clayton.Markov2.MLE = function(Y, k = 3, D = 1, plot = TRUE, GOF=FALSE) {

n = length(Y)
rec = NA

###log-likelihood
logL = function (par) {

mu = par[1l]

sigma = exp(par[2])
alpha = exp(par[3])

Z = (Y - mu)/sigma

G.yt = pnorm(g = Z, mean = 0, sd = 1)

g.ty = 1/sigma * dnorm(x = Z, mean = 0, sd = 1)
1l = (n-2)*log(l+2*alpha) + log(l+alpha) -

(1/alpha+3) *sum(log(G.yt[3:n]" (-alpha)+G.yt[2: (n-1)]" (-alpha)+G.yt[1l: (n-
2)1” (-alpha)-2)) +

(1/alpha+2) *sum(log(G.yt[3: (n=-1)]1" (-alpha)+G.yt[2: (n-2) ]~ (-alpha)-1)) -

(alpha+l) *sum(log (G.yt)) + sum(log(g.ty))

return(-1)

}

###initial value and randomize
tau 0 = cor(Y[2:n],Y[1:(n-1)],method="kendall")
initial = c(mean(Y),log(sd(Y)), log(ifelse(tau 0 < 0, 1, 2*tau_0/(1—tau_0))))

count = 0
repeat {
count = count + 1
res = try(nlm(logL, initial , hessian = TRUE))
if( class(res) !="try-error" ) {
break;
telse(
initial = initial + runif(n = 3, min = -D, max = D)

}
if (count>100) {
return (warning ("error"))
break;
}
}
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###result

mu.hat = resSestimate[1l]
sigma.hat = exp(res$estimate([2])
alpha.hat = exp(resSestimate[3])
UCL = mu.hat+k*sigma.hat

LCL = mu.hat-k*sigma.hat

###plot
if (plot==TRUE) {
par (mar=c(4,5,2,5))
plot (Y~c(l:n), type = "b", ylim = c(1.1*LCL-0.1*UCL, 1.1*UCL-0.1*LCL),
ylab = "Y", xlab = "Time", cex = 1, cex.lab = 1)

abline (h=UCL, 1lty = 3, lwd = 2)
abline (h=LCL, 1ty = 3, 1lwd = 2)
abline (h=mu.hat, lty = 1, lwd = 1)
axis (4, at = c¢(UCL, LCL, mu.hat),
labels = c("UCL", "LCL", "mu"), cex = 1, las = 1)
}

###out of control

OC = which((Y < LCL) | (UCL < Y))
if (length(OC) == 0) {
OC = "NONE"

}

### Goodness-of-fit ###
F par=pnorm( (sort(Y)-mu.hat)/sigma.hat )
F emp=1:n/n

CM.test=sum( (F emp-F par)”"2 )
KS.test=max( abs( F_emp-F par ) )

if (GOF==TRUE) {
plot (F_emp,F par,xlab="F empirical",ylab="F parametric",xlim=c(0,1),ylim=c(0,1)

lines(x = c(0,1), y = c(0,1)
}

##output
MLE = c(mu.hat, sigma.hat, alpha.hat, UCL, LCL)
names (MLE) = c("mu", "sigma", "alpha", "UCL", "LCL")
return(list( estimates = MLE, out of control = OC,
gradient = resS$gradient, hessian = resS$hessian,
CM.test=CM.test, KS.test=KS.test,log likelihood = -

logL (resS$estimate)))

install.packages ("Copula.Markov")
library (Copula.Markov)

Appendix C: Derivation of £(u, 0, a),

The likelihood function is

L(.ua o, OC) :f(Yn = Vny s Y1 :)/1)
:f(Yn :)/n|Yn—1 :}/n—h eeey Yl :)’1) Xf(Yn—l :yn—1|Yn—2 :yn_z, ceey Yl :)/1)
X“'Xfua:yﬂn::%)XfOH:yﬂ

n

= Hf(Yt =y Y1 = ye1, Yieo Z)’H) X f(Ya =y|Y1=n) xf(Y1 =)

t=3

n PTG, G, Giyee n
_ . 1[1] (yt) (yt 1) (yt 2)] % CLOJ?I] |:17 G(y2)7 G(}’l)} X Hg(yt)
=3 Gy [1, G(}’t—l), G(}’t—z)] t=1
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then the log-likelihood function is
Up,0,2) = ) _log G [G(y), Gyir), G(1-2) ZlogC" L Gi), G
=3

+1og " [1,G(12), G| + D logg ()
t=1

[1,1,1

where the expressions of C; ](ut, U1, u—) and C (ut, U1, Us—) under are

111] o

[1,
C; (Ltt,ut 1 U 2) W

= (1+ ) (1+200) (7 + w2 + w5 —2) *Pur !

Co(Ur, U1, Us—2)

and
9
Oup_10uy_, .
=(1+ “)(”t +u” + “;—&2_2)71/0C 2“t 1 lut 2 -

0,1,1
C[ %Uum 1, U2) = Co(Ue, U1, Ur—2)

Thus the log-likelihood function is

U(p,0,0) = (n—2)log (1 + 2a) + log (1 4 o)— (é + S)ilog[G(yt)—a +G) F+Gia) = 1]

+ G + 2) Z log[G(ye-1)™" + G(ye—2) " — 1] = (e + 1>§j:10g Ge) + Z logg(y1)

Appendix D: R codes for the data analyses

##

set.seed (1)
Y=Clayton.Markov2.DATA (n=1000,mu=0, sigma=1, alpha=8)
Clayton.Markov2.MLE (Y, plot=TRUE)

#Chemical

=c(17.0, 16.6, 16.3, 16.1, 17.1, 16.9, l6.8, 17.4, 17.1, 17.0, le6.7,
17.4, 17.2, 17.4, 17.4, 17.0, 17.3, 17.2, 17.4, 16.8, 17.1, 17.4,
17.4, 17.5, 17.4, 17.6, 17.4, 17.3, 17.0, 17.8, 17.5, 18.1, 17.5,
17.4, 17.4, 17.1, 17.6, 17.7, 17.4, 17.8, 17.6, 17.5, 16.5, 17.8,
17.3, 17.3, 17.1, 17.4, 16.9, 17.3, 17.6, 16.9, 1l6.7, 16.8, 16.8,
17.2, 16.8, 17.6, 17.2, l6.6, 17.1, 16.9, 16.6, 18.0, 17.2, 17.3,
17.0, 16.9, 17.3, l1le6.8, 17.3, 17.4, 17.7, 1l6.8, 16.9, 17.0, 16.9,
17.0, 16.6, 16.7, 16.8, 16.7, 16.4, l1l6.5, 16.4, 16.6, 16.5, lo6.7,
l6.4, 16.4, 16.2, 1l60.4, 16.3, l1l6.4, 17.0, 16.9, 17.1, 17.1, le6.7,
16.9, 16.5, 17.2, l16.4, 17.0, 17.0, 16.7, 16.2, 16.6, 16.9, lo6.5,
le.6, 16.6, 17.0, 17.1, 17.1, 1l6.7, 16.8, 16.3, 1l6.6, 16.8, 16.9,
17.1, 1le.8, 17.0, 17.2, 17.3, 17.2, 17.3, 17.2, 17.2, 17.5, 16.9,
16.9, 16.9, 17.0, 16.5, 16.7, 16.8, 16.7, 16.7, 16.6, 1l6.5, 17.0,
le¢.7, 1l6.7, 1l6.9, 17.4, 17.1, 17.0, le6.8, 17.2, 17.2, 17.4, 17.2,
16.9, 16.8, 17.0, 17.4, 17.2, 17.2, 17.1, 17.1, 17.1, 17.4, 17.2,
16.9, 16.9, 17.0, 1l6.7, 16.9, 17.3, 17.8, 17.8, 17.6, 17.5, 17.0,
1.9, 17.1, 17.2, 17.4, 17.5, 17.9, 17.0, 17.0, 17.0, 17.2, 17.3,
17.4, 17.4, 17.0, 18.0, 18.2, 17.6, 17.8, 17.7, 17.2, 17.4)

#Finacial

=c(-11.38, 29.88, -8.95, -44.27,-17.89, -7.68, 9.32, 33.66, -4.68, 34.21, 11.29,
9.91, 6.69, 11.51, 6.27, -2.24, 25.15, -30.59, -75.81, 24.80, -47.99, 1.72, -
24.53, 26.72, 25.91, -40.75, -54.18, 55.38, -13.08, 37.78, -1.06, 20.04, -42.39, -
7.56, -7.10, 39.92, 5.04, 16.04, 23.08, -2.43, 18.91, 11.04, 6.89, 0.18, 42.59, -
26.64, 0.52, -10.33, 35.31, 15.69, 3.51, 12.86, 0.87, 13.86, 21.74, -9.89, -7.01,
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34.53, 18.28, 13.86, -23.13, 1.27, -16.87, -25.08, 34.60, 18.61, -4.24, -8.49,
17.70, 26.23, -23.41, -2.43, -4.50, -2.17, -30.94, -29.18, 0.52, -3.05, 71.22,
4.13, -27.66, 28.88, -52.74, -92.09, -20.57, -55.28, 53.25, -2.83, -19.74, 61.78,
-79.58, -5.01, 24.04, 69.12, 13.67, 46.84, -31.86, 10.62, -48.20, -56.98, 85.61,
10.91, -35.53, 45.67, -7.73, 20.21, 11.28, 26.29, 0.95, 28.57, -2.26, 18.59, 4.51,
3.89, 1.24, 33.30, -7.06, 11.36, -10.39, -27.82, 8.27, 24.83, -34.26, -15.71, -
58.17, 22.60, -39.78, 47.62, 17.18, -7.82, 27.14, -7.48, 2.10, 5.88, 23.31, 5.02,
14.88, 12.29, -7.03, -4.55, 31.34, 27.85, -5.62, -19.48, 20.26, -32.34, 4.60, -
21.25, 2.26, -34.35, -19.97, 49.27, 7.03, 1.89, -4.49, 16.57, -27.72, 64.04, 5.58,
13.93, 16.98, 10.21, 4.76, 1.86, -4.19, 2.60, 32.98, 9.52, -3.81, 12.30, -15.91,
35.57, -33.60, 26.99, 32.18, 19.28, 33.77, -17.87, -18.86, 12.64, -16.65, -34.30,
13.85, 25.61, 48.30, 11.90, -0.44, 18.02, -18.2, -35.59, 7.67, -30.53, 22.20,
32.82, 21.92, -18.16, -1.25, 12.70, 41.30, 15.27, 1.87, 8.97, 27.57, 6.58, 1.05, -
0.72, -29.77, 43.00, 23.08, -10.03)

#BA data

Y = ¢(0.265, 0.256, 0.261, 0.261, 0.260, 0.257, 0.258, 0.263, 0.254, 0.254,
0.258, 0.256, 0.256, 0.265, 0.270, 0.267, 0.270, 0.267, 0.266, 0.271,
0.270, 0.264, 0.261, 0.264, 0.266, 0.264, 0.269, 0.268, 0.264, 0.262,
0.257, 0.255, 0.255, 0.253, 0.251, 0.254, 0.255)

Clayton.Markov.MLE (Y=Y)
Clayton.Markov2.MLE (Y=Y)
Joe.Markov.MLE (Y=Y)

joe.int = function (x) {
alpha = 2.39

return (
x* (l-exp (-x)) " (2/alpha-2) *exp (-2*x) /alpha”2
)

}
intres = integrate(joe.int, 0, Inf)
1-4*intres$value

Clayton.Markov.GOF (Y = Y)
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