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Abstract Doubly-truncated data often appear in lifetime data analysis, where sam-
ples are collected under certain time constraints. Nonparametric methods for doubly-
truncated data have been studied well in the literature. Alternatively, this paper con-
siders parametric inference when samples are subject to double-truncation. Efron and
Petrosian (J Am Stat Assoc 94:824–834, 1999) proposed to fit a parametric family,
called the special exponential family, with doubly-truncated data. However, non-trivial
technical aspects, such as parameter space, support of the density, and computational
algorithms, have not been discussed in the literature. This paper fills this gap by pro-
viding the technical aspects, including adequate choices of parameter space as well as
support, and reliable computational algorithms. Simulations are conducted to verify
the suggested techniques, and real data are used for illustration.

Keywords Fixed point iteration · Newton–Raphson algorithm · Survival analysis ·
Truncated data

1 Introduction

Statistical inferences for doubly truncated data have been an active research areawith a
variety of applications.Apaper byEfron andPetrosian (1999) first developed inference
procedures for doubly truncated data, and analyzed the quasar luminosity data in
astronomy. In particular, due to the resolution of telescopes, the luminosity of starsmay
be undetected if it is either too dim or too bright, leading to double truncation (i.e., both
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lower and upper truncations). Moreira and de Uña-Álvarez (2010) considered doubly
truncated data, arising from the childhood cancer study of North Portugal. Other
examples of double-truncation can be found in medical settings, including Stovring
and Wang (2007), Zhu and Wang (2012) and Moreira et al. (2014). In general, double
truncation is very common in fields such as medical, astronomical, population ageing
and industrial studies.

Ignoring double-truncation effect leads to biased estimation. For i = 1, 2, . . . , N ,
let yi be random samples from a density f , and Ri = [ui , vi ] be random intervals,
where ui and vi are the left- and right-truncation limits, respectively. Due to some
sampling constraints, one can obtain a sample only if yi falls in the interval Ri . Hence,
our samples consist of {yi : yi ∈ Ri }; nothing is available for {yi : yi /∈ Ri } and the
number N . Standard statistics for the observable part {yi : yi ∈ Ri }, such as sample
mean and standard deviation, yield biased information about f due to the data loss in
the upper- and lower-tails of f . Any proper estimation procedure needs to recover the
original distribution f from the observable part.

Double-truncation includes the one-sided truncation (right- or left-truncation only)
as a special case. Under left-truncation, one obtains the samplewhen yi is large enough
compared to the left-truncation limit ui . In clinical survival analysis, left-truncation
is also called ‘delayed entry’; the age at disease onset yi becomes available only if it
exceeds the entry age ui (Andersen and Keiding 2002). Under right-truncation, one
obtains the samplewhen yi is smaller than the right-truncation limit vi . Right-truncated
data is especially relevant to studies of AIDS (Lagakos et al. 1988; Strzalkowska-
Kominiak and Stute 2013). However, double-truncation is essentially different from
double-censoring (i.e., both left- and right-censorings) and interval censoring. Double-
truncation yields inclusion/exclusion of samples while double-censoring and interval
censoring produce incomplete lifetimes for the included samples (Commenges 2002).

Nonparametric methods for doubly truncated data have been studied well in the
literature. Efron and Petrosian (1999) proposed the nonparametric maximum likeli-
hood estimator (NPMLE) of the distribution function. Shen (2010) gave an alternative
expression of the NPMLE based on inverse truncation probability weighting, and then
derived the uniform consistency and weak convergence of the NPMLE. Moreira and
de Uña-Álvarez (2010) developed interval estimation by bootstrapping the NPMLE.
Emura et al. (2014) derived an explicit standard error estimator of the NPMLE, which
is a computationally effective alternative to the bootstrap.Moreira and deUña-Álvarez
(2012) and Moreira and Van Keilegom (2013) considered a nonparametric methodol-
ogy that gives a smooth kernel density estimator.

Compared to the nonparametric methods, research is much scarcer on parametric
methods under double-truncation. Efron and Petrosian (1999) considered parametric
maximum likelihood estimation under the so-called special exponential family (SEF).
Stovring and Wang (2007) briefly indicated the use of parametric approaches for
doubly-truncated data. Emura and Konno (2012a) also mentioned an application of
their normal distribution approach under dependent double-truncation.

To the best of our knowledge, no simulation study has been conducted for the
aforementioned parametric approaches, and other parametric methods have not been
proposed. This paper fills this gap by developing technical details for implementing
parametric inference under the SEF that is originally proposed by Efron and Petrosian
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(1999). Due to double-truncation, this is not a straightforward application of the max-
imum likelihood inference. For instance, the likelihood of observed data depends on
both the truncation interval and the support of the SEF. Such complicated likelihood
functions also motivate reliable computational algorithms for finding the maximum
likelihood estimator.

This paper is organized as follows. Section 2 includes the in-depth review of
the special exponential family. Section 3 constructs the likelihood function and then
introduces numerical algorithms such as fixed-point iteration and Newton–Raphson
method. Section 4 performs simulations and Sect. 5 analyzes real data. Section 6
concludes the paper.

2 Special exponential family (SEF)

We revisit the SEF considered by Efron and Petrosian (1999) for fitting doubly-
truncated data. Unlike their paper, we explicitly discuss the choices of the parameter
space and support, which are necessary for the density to be well-defined.

We assume that the lifetime variable Y follows a continuous distribution with a
density

fη(y) = exp
{
ηT · t(y) − φ(η)

}
, y ∈ Y,

where η = (η1, η2, . . . , ηk)
T ∈ �, t(y) = (y, y2, . . . , yk)T,Y ⊂ � is the support of

Y , and� ⊂ �k is a parameter space. Here, φ(η) is chosen tomake
∫
Y fη(y) dy = 1. It

follows that φ(η) = log[∫Y exp{ηT · t(y)} dy], provided ∫Y exp{ηT · t(y)} dy < ∞.
For this integral to be finite, both Y and � need to be chosen carefully.

2.1 Example 1: One-parameter SEF (k = 1)

A one-parameter SEF corresponds to t (y) = y, η1 = η and η2 = · · · = ηk = 0. The
family yields two mutually exclusive cases; η > 0 and η < 0.

First, consider the case η > 0. The parameter space of η is � = {η : η > 0} =
(0,∞). If we let τ2 be the upper support of Y , then

fη(y) = η exp{η(y − τ2)}, y ∈ Y = (−∞, τ2].

This is a well-defined density since φ(η) = log{∫Y exp(ηy)} = − log η + ητ2 for all
η ∈ �. Figure 1 displays the density with η = 1 or 3. It shows that the upper support
τ2 is necessary such that

∫
Y exp(ηy) < ∞. The corresponding survival function is

Sη(y) =
∫ τ2

y
η exp{η(t − τ2)}dt = 1 − exp{η(y − τ2)}, y ≤ τ2.
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Fig. 1 The density fη(y) of the one-parameter SEF with parameter η ∈ {−3,−1, 1, 3}. For η > 0, we
choose the supportY = (−∞, τ2], where τ2 = 2.5. For η < 0, we choose the supportY = [τ1, ∞), where
τ1 = 0

Next, consider the case η < 0. Accordingly, the parameter space of η is � = {η :
η < 0} = (−∞, 0). Then the density becomes

fη(y) = −η exp{η(y − τ1)}, y ∈ Y = [τ1,∞),

This distribution is a two-parameter exponential distribution if τ1 is considered as
unknownorigin (Balakrishnan andAsit Basu 1996). The usual exponential distribution
is given by τ1 = 0 with the density shown in Fig. 1. The corresponding survival
function is

Sη(y) =
∫ ∞

y
−η exp{η(t − τ1)}dt = exp{η(y − τ1)}, y ≥ τ1.

2.2 Example 2: Two-parameter SEF (k = 2)

First, consider the case η2 < 0. A two-parameter SEF is obtained by setting t(y) =
(y, y2)T, η = (η1, η2)

T and η3 = · · · = ηk = 0. With μ = −η1/2η2 and σ 2 =
−1/2η2, a normal distribution is obtained (see also Castillo 1994). Then, the density
of Y is

fη(y) = exp

{
η1y + η2y

2 + η21

4η2
− log

(√−π

η2

)}
, y ∈ Y = (−∞,∞).

For φ(η) = log{∫Y exp(η1y + η2y2) dy} = log(
√−π/η2) − η21/4η2 to be well-

defined, the parameter space needs to be � = {(η1, η2) : η1 ∈ �, η2 < 0}. The
survival function is

Sη(y) =
∫ ∞

y
exp

{
η1t + η2t

2 + η21

4η2
− log

(√−π

η2

)}
dt
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Estimation under random double-truncation 1203

= 1 − �

⎛
⎝ y + η1

2η2√ −1
2η2

⎞
⎠ , y ∈ �.

The case η2 > 0 seems less useful in practice. In such a case, the density function is
convex, and so the support must be bounded from both below and above. Since such a
distribution makes inference complicated and is less practical, we do not discuss this
case in this paper.

2.3 Example 3: Cubic SEF (k = 3)

A cubic SEF is obtained by setting t(y) = (y, y2, y3)T, η = (η1, η2, η3)
T and η4 =

· · · = ηk = 0. The density of Y can be expressed as

fη(y) = exp
[
η1y + η2y

2 + η3y
3 − φ(η)

]
, y ∈ Y,

where φ(η) = log{∫Y exp(η1y + η2y2 + η3y3) dy}. For fη(y) to be well-defined, it
is necessary that

∫
Y exp(η1y + η2y2 + η3y3) dy < ∞. To make the integral finite,

we consider the parameter space as two mutually exclusive cases with different ranges
of Y .

First, if the parameter space is � = {(η1, η2, η3) : η1 ∈ �, η2 ∈ �, η3 > 0}, then
we set the range of Y as Y = (−∞, τ2], where τ2 is the upper support of Y . Figure 2a
displays fη(y) under η1 = 5, η2 = −0.5 and η3 ∈ {0, 0.005, 0.01, 0.015}. Clearly,
one needs to set τ2 such that

∫
Y exp(η1y + η2y2 + η3y3) dy < ∞. The corresponding

survival function is

Sη(y) =
∫ τ2

y
exp

{
η1t + η2t

2 + η3t
3 − φ(η)

}
dt, y ≤ τ2.

Second, if the parameter space is � = {(η1, η2, η3) : η1 ∈ �, η2 ∈ �, η3 <

0}, then we set the range of Y as Y = [τ1,∞), where τ1 is the lower sup-
port of Y . Figure 2b shows that one needs to set the lower bound τ1 such that∫
Y exp(η1y + η2y2 + η3y3) dy < ∞. The corresponding survival function is

Sη(y) =
∫ ∞

y
exp

{
η1t + η2t

2 + η3t
3 − φ(η)

}
dt, y ≥ τ1.

Remark 1 The cubic SEF yields a skewed truncated normal distribution, where η3
determines the degree of skewness. The skew normal density is often fitted for bio-
medical applications. For instance, Robertson and Allison (2012) fitted the US life
table with a negatively skewed distribution, which has an upper bound like τ2 and
hence similar to the cubic SEF with η3 > 0. See Mandrekar and Nandrekar (2003)
for other skewed data in biomedical studies.
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Fig. 2 a The density fη(y) of cubic SEF with parameters (η1, η2, η3). We set η1 = 5, η2 = −0.5,
η3 ∈ {0, 0.005, 0.01, 0.015}, and the support (−∞, τ2], where τ2 = 8. b The density fη(y) of cubic SEF
with parameters (η1, η2, η3). We set η1 = 5, η2 = −0.5, η3 ∈ {0,−0.005,−0.01,−0.05}, and the support
[τ1, ∞), where τ1 = 2

3 Method of estimation

3.1 Likelihood functions

We introduce the likelihood function with doubly truncated data originally proposed
by Efron and Petrosian (1999). Especially, we give explicit formulas for the likelihood
functions that are not available in Efron and Petrosian (1999).

Let Ri = [ui , vi ] be the truncation interval, where ui is the left-truncation limit
and vi is the right-truncation limit. We consider estimation under the SEF when the
random samples y1, y2, . . . , yn are subject to the constraints yi ∈ Ri , i = 1, 2, . . . , n.

The truncated density of yi , subject to yi ∈ Ri , is
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Estimation under random double-truncation 1205

fη(yi |Y ∈ Ri ) =
{
fη(yi )/Fi (η) if yi ∈ Ri ,

0 if yi /∈ Ri ,

where Fi (η) = ∫
Ri

fη(y)dy. Hence, the log-likelihood function for data
(y1, y2, . . . , yn) is

	(η) = log

{
n∏

i=1

fη(yi )

Fi (η)

}
=

n∑
i=1

{
log fη(yi ) − log Fi (η)

}
.

3.1.1 Example 1: One-parameter SEF (k = 1)

As in Sect. 2, we consider two mutually exclusive cases: η > 0 and η < 0.
First, consider the case η > 0. As discussed before, we need to set the upper support

τ2 of Y . Whether the right-truncation limit vi precedes the support τ2 influences the
likelihood for yi . Define the indicator

δi =
{
1 if vi < τ2,

0 if vi ≥ τ2.

Then, the log-likelihood function is given by

	(η) = log L(η) = n log η + η

n∑
i=1

yi−
n∑

i=1

δi [log{exp(ηvi ) − exp(ηui )}]

−
n∑

i=1

(1 − δi )[log{exp(ητ2) − exp(ηui )}]. (1a)

Next, consider the case η < 0. In this case, one needs to set the lower support τ1
of Y . Whether the left-truncation limit ui exceeds the lower support influences the
likelihood for yi . Define the indicator

δi =
{
1 if ui ≥ τ1,

0 if ui < τ1.

Then, the log-likelihood function is given by

	(η) = log L(η) = n log(−η) + η

n∑
i=1

yi−
n∑

i=1

δi [log{− exp(ηvi ) + exp(ηui )}]

−
n∑

i=1

(1 − δi )[log{− exp(ηvi ) + exp(ητ1)}]. (1b)
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3.1.2 Example 2: Two-parameter SEF (k = 2)

Let �(.) denote the cumulative distribution function of the standard normal distribu-
tion. Then, the log-likelihood function is given by

	(η) = log L(η) =
n∑

i=1

η1yi+
n∑

i=1

η2y
2
i +

nη21

4η2
+ n

2
log(−η2) − n

2
log(π)

−
n∑

i=1

log

⎧⎨
⎩�

⎛
⎝vi + η1

2η2√ −1
2η2

⎞
⎠− �

⎛
⎝ui + η1

2η2√ −1
2η2

⎞
⎠
⎫⎬
⎭. (2)

3.1.3 Example 3: Cubic SEF (k = 3)

Consider the case η3 < 0 with the parameter space � = {(η1, η2, η3) : η1 ∈ �, η2 ∈
�, η3 < 0}. Then we set the lower support of Y as τ1. Whether the left-truncation limit
ui exceeds the lower support influences the likelihood for yi . Define the indicator

δi =
{
1 if ui ≥ τ1,

0 if ui < τ1.

Then, the log-likelihood function is given by

	(η) =
n∑

i=1

(
η1yi + η2y

2
i + η3y

3
i

)
−

n∑
i=1

δi log

⎧⎨
⎩

vi∫

ui

exp
(
η1y + η2y

2 + η3y
3
)
dy

⎫⎬
⎭

−
n∑

i=1

(1 − δi ) log

⎧⎨
⎩

vi∫

τ1

exp
(
η1y + η2y

2 + η3y
3
)
dy

⎫⎬
⎭.

The case of η3 > 0 is similar.
To assure some numerical stability, we consider some approximate likelihood

derived under conditions: τ1 ≤ mini (ui ) when η3 < 0 and τ2 ≥ maxi (vi ) when
η3 > 0. With these conditions, both the left-truncation limit ui and right-truncation
limit vi are within the support. Then, the approximate log-likelihood function is given
by

	(η) = log L(η) =
n∑

i=1

(
η1yi + η2y

2
i + η3y

3
i

)

−
n∑

i=1

log

{∫ vi

ui
exp

(
η1y + η2y

2 + η3y
3
)
dy

}
. (3)

The other advantage of the approximate likelihood is that one can avoid the prior
choice of η3 > 0 or η3 < 0.
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Remark 2 If the imposed conditions do not satisfy, Eq. (3) is an approximation to the
exact log-likelihood. The data analysis of Sect. 5 will use the exact log-likelihood.
However, the development of the algorithms in Sect. 3.2 and the simulations of Sect. 4
will be done on the approximate log-likelihood in Eq. (3), which gives more stable
results over a large number of repetitions.

3.2 Newton–Raphson method

Efron and Petrosian (1999) suggested using the Newton–Raphson algorithm to obtain
themaximum likelihood estimator (MLE). In this section,we consider the details about
the Newton–Raphson algorithm, including the first- and second-order derivatives of
the log-likelihood with respect to the parameters. We also propose a modification of
the Newton–Raphson for the three-parameter case.

3.2.1 Example 1: One-parameter SEF

For the case η > 0, the first- and second-order derivatives of the log-likelihood are

∂

∂η
	(η) = n

η
+

n∑
i=1

yi −
n∑

i=1

δi

{
vi exp(ηvi ) − ui exp(ηui )

exp(ηvi ) − exp(ηui )

}

−
n∑

i=1

(1 − δi )

{
τ2 exp(ητ2) − ui exp(ηui )

exp(ητ2) − exp(ηui )

}
,

∂2

∂η2
	(η) = −n

η2
−

n∑
i=1

δi

[
v2i exp(ηvi ) − u2i exp(ηui )

exp(ηvi ) − exp(ηui )

−
{

vi exp(ηvi ) − ui exp(ηui )

exp(ηvi ) − exp(ηui )

}2]

−
n∑

i=1

(1 − δi )

[
τ 2 exp(ητ2) − u2i exp(ηui )

exp(ητ2) − exp(ηui )
−
{

τ2 exp(ητ2) − ui exp(ηui )

exp(ητ2) − exp(ηui )

}2]
.

Similarly, for the case η < 0, one has

∂

∂η
	(η) = n

η
+

n∑
i=1

yi −
n∑

i=1

δi

{−vi exp(ηvi ) + ui exp(ηui )

− exp(ηvi ) + exp(ηui )

}

−
n∑

i=1

(1 − δi )

{−vi exp(ηvi ) − τ1 exp(ητ1)

− exp(ηvi ) + exp(ητ1)

}
,

∂2

∂η2
	(η) = −n

η2
−

n∑
i=1

δi

[
−v2i exp(ηvi ) + u2i exp(ηui )

− exp(ηvi ) + exp(ηui )
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−
{−vi exp(ηvi ) + ui exp(ηui )

− exp(ηvi ) + exp(ηui )

}2]

−
n∑

i=1

(1−δi )

[
−v2i exp(ηvi )+τ 2 exp(ητ1)

− exp(ηvi )+exp(ητ1)
−
{−vi exp(ηvi ) + τ1 exp(ητ1)

− exp(ηvi ) + exp(ητ1)

}2]
.

Now, for both cases, we can obtain the MLE of η by the Newton–Raphson method.
At the (k + 1)th step of the iteration, the updated parameters are obtained as

η(k+1) = η(k) − S(η(k))/{∂S(η(k))/∂η},

for k = 0, 1, 2, . . ., where S(η) = ∂	(η)/∂η is the score function. The iteration
procedure then continues until convergence, i.e., until |η(k+1) − η(k)| < ε for some
small ε > 0.

3.2.2 Example 2: Two-parameter SEF

Let ϕ(.) and �(.) denote the probability density function and cumulative distribution
function of the standard normal distribution. Following Cohen (1991, pp. 32) we let

Hi1(η1, η2) =
ϕ

(
vi+ η1

2η2√ −1
2η2

)

�

(
vi+ η1

2η2√ −1
2η2

)
− �

(
ui+ η1

2η2√ −1
2η2

) ,

Hi2(η1, η2) =
ϕ

(
ui+ η1

2η2√ −1
2η2

)

�

(
vi+ η1

2η2√ −1
2η2

)
− �

(
ui+ η1

2η2√ −1
2η2

) ,

which are recognized as the hazard function of the normal distribution with doubly
truncated samples (Sankaran and Sunoj 2004).

The first derivatives of the log-likelihood are

∂

∂η1
	(η) =

n∑
i=1

yi + nη1

2η2
+ 1√−2η2

{
n∑

i=1

Hi1(η1, η2) −
n∑

i=1

Hi2(η1, η2)

}
,

∂

∂η2
	(η) =

n∑
i=1

y2i − nη21

4η22
+ n

2η2
−

n∑
i=1

{
Hi1(η1, η2) ·

(
−vi√−2η2

− η1

√−2η2
4η22

)}

+
n∑

i=1

{
Hi2(η1, η2) ·

(
−ui√−2η2

− η1

√−2η2
4η22

)}
.
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The second-order derivatives of the log-likelihood are

∂2

∂η21
	(η) = n

2η2

− 1

2η2

n∑
i=1

⎧⎨
⎩Hi1(η1, η2)

⎛
⎝vi + η1

2η2√ −1
2η2

⎞
⎠− Hi2(η1, η2)

⎛
⎝ui + η1

2η2√ −1
2η2

⎞
⎠
⎫⎬
⎭

− 1

2η2

n∑
i=1

{Hi1(η1, η2) − Hi2(η1, η2)}2,

∂2

∂η22
	(η) =

n∑
i=1

{
Hi1(η1, η2)

(
−vi√−2η2

− η1

√−2η2
4η22

)

− Hi2(η1, η2)

(
−ui√−2η2

− η1

√−2η2
4η22

)}2

+
n∑

i=1

Hi1(η1, η2)

⎧⎨
⎩

⎛
⎝vi + η1

2η2√ −1
2η2

⎞
⎠
(

−vi√−2η2
− η1

√−2η2
4η22

)2

−
⎛
⎝ −vi√

(−2η2)3
− 3η1√

(−2η2)5

⎞
⎠
⎫⎬
⎭

−
n∑

i=1

Hi2(η1, η2)

⎧⎨
⎩

⎛
⎝ui + η1

2η2√ −1
2η2

⎞
⎠
(

−ui√−2η2
− η1

√−2η2
4η22

)2

−
⎛
⎝ −ui√

(−2η2)3
− 3η1√

(−2η2)5

⎞
⎠
⎫⎬
⎭+ nη21

2η32
− n

2η22
,

∂2

∂η1∂η2
	(η) = −nη1

2η22
+ (−2η2)

−3
2

n∑
i=1

{Hi1(η1, η2) − Hi2(η1, η2)}

− 1√−2η2

n∑
i=1

⎡
⎣Hi1(η1, η2)

⎛
⎝vi + η1

2η2√ −1
2η2

⎞
⎠
{ −vi√−2η2 −(−2η2)

−3
2 η1

}⎤
⎦

+ 1√−2η2
n∑

i=1

⎡
⎣Hi2(η1, η2)

⎛
⎝ui + η1

2η2√ −1
2η2

⎞
⎠
{ −ui√−2η2

−(−2η2)
−3
2 η1

}⎤
⎦

− 1√−2η2

n∑
i=1

[{Hi1(η1, η2) − Hi2(η1, η2)}

×
⎡
⎣ Hi1(η1, η2)

{ −vi√−2η2
− (−2η2)

−3
2 η1

}

−Hi2(η1, η2)
{ −ui√−2η2

− (−2η2)
−3
2 η1

}
⎤
⎦
⎤
⎦ .
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Now, one can obtain the MLE by the two-dimensional Newton–Raphson method. For
k = 0, 1, 2, . . ., the (k + 1)th step of the iteration is

[
η

(k+1)
Y

η
(k+1)
2

]
=
[

η
(k)
1

η
(k)
2

]
− J−1

S (η
(k)
1 , η

(k)
2 )

⎡
⎣ S1(η

(k)
1 , η

(k)
2 )

S2(η
(k)
1 , η

(k)
2 )

⎤
⎦ ,

where S1(η1, η2) = ∂	(η1, η2)/∂η1, S2(η1, η2) = ∂	(η1, η2)/∂η2 and

JS(η1, η2) =
⎡
⎣

∂2

∂η21
	(η1, η2)

∂2

∂η1∂η2
	(η1, η2)

∂2

∂η1∂η2
	(η1, η2)

∂2

∂η22
	(η1, η2)

⎤
⎦

is the Hessian matrix. The iteration procedure then continues until convergence, i.e.,
until |η(k+1)

j − η
(k)
j | < ε for j = 1, 2 and for some small ε > 0.

3.2.3 Example 3: Cubic SEF

For η = (η1, η2, η3)
T, we define

Ek
i (η) =

vi∫

ui

yk exp
(
η1y + η2y

2 + η3y
3
)
dy, k = 0, 1, . . . , 6.

Since Ek
i (η) has no closed form, one need to use some routine for numerical integra-

tion, such as R integrate (R Development Core Team 2014). The first-order deriva-
tives of the log-likelihood are

∂

∂ηk
	(η) =

n∑
i=1

{
yki − Ek

i (η)/E0
i (η)

}
, k = 1, 2, 3.

The second-order derivatives of the log-likelihood are obtained as

∂2

∂η21
	(η) =

n∑
i=1

[
−E2

i (η)/E0
i (η) + {E1

i (η)/E0
i (η)}2

]
,

∂2

∂η22
	(η) =

n∑
i=1

[
−E4

i (η)/E0
i (η) + {E2

i (η)/E0
i (η)}2

]
,

∂2

∂η23
	(η) =

n∑
i=1

[
−E6

i (η)/E0
i (η) + {E3

i (η)/E0
i (η)}2

]
,

∂2

∂η2∂η1
	(η) =

n∑
i=1

[
−E3

i (η)/E0
i (η) + {E2

i (η)/E0
i (η)}{E1

i (η)/E0
i (η)}

]
,
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∂2

∂η3∂η1
	(η) =

n∑
i=1

[
−E4

i (η)/E0
i (η) + {E3

i (η)/E0
i (η)}{E1

i (η)/E0
i (η)}

]
,

∂2

∂η3∂η2
	(η) =

n∑
i=1

[
−E5

i (η)/E0
i (η) + {E3

i (η)/E0
i (η)}{E2

i (η)/E0
i (η)}

]
.

Now, one can obtain the MLE by a three-dimensional Newton–Raphson method. At
the (k + 1)th step of the iteration, the updated parameters are obtained as

⎡
⎢⎣

η
(k+1)
1

η
(k+1)
2

η
(k+1)
3

⎤
⎥⎦ =

⎡
⎢⎣

η
(k)
1

η
(k)
2

η
(k)
3

⎤
⎥⎦− J−1

S

(
η

(k)
1 , η

(k)
2 , η

(k)
3

)
⎡
⎢⎢⎣

S1(η
(k)
1 , η

(k)
2 , η

(k)
3 )

S2(η
(k)
1 , η

(k)
2 , η

(k)
3 )

S3(η
(k)
1 , η

(k)
2 , η

(k)
3 )

⎤
⎥⎥⎦ , (4)

for k = 0, 1, 2, . . ., and S j (η1, η2, η3) = ∂	(η1, η2, η3)/∂η j , j = 1, 2, 3, and

JS(η) =

⎡
⎢⎢⎢⎣

∂2

∂η21
	(η) ∂2

∂η1∂η2
	(η) ∂2

∂η1∂η3
	(η)

∂2

∂η2∂η1
	(η) ∂2

∂η22
	(η) ∂2

∂η2∂η3
	(η)

∂2

∂η3∂η1
	(η) ∂2

∂η3∂η2
	(η) ∂2

∂η23
	(η)

⎤
⎥⎥⎥⎦

The iteration continues until convergence, i.e., until |η(k+1)
j −η

(k)
j | < ε for j = 1, 2, 3

and for some small ε > 0.
It iswell-known that theNewton–Raphson algorithm is sensitive to the initial values,

especially in estimating three ormore parameters (Knight 2000). In our simulations, the
algorithm occasionally diverges when we choose initial values based on samples. To
stabilize the algorithm, we propose a modified version for Newton–Raphson method,
where the initial values are randomized. Such a randomization scheme is previously
used to stabilize a three-dimensional Newton–Raphson method in some other context
(Long and Emura 2014). The proposed algorithm is stated as follows.

3.2.4 Randomized Newton–Raphson (RNR) algorithm

Let D1, D2, D3, d1 and d2 be some positive tuning parameters.

1. Choose the initial value η = (η
(0)
1 , η

(0)
2 , η

(0)
3 )T.

2. For k = 0, 1, 2, . . ., continue the iteration of Eq. (4) until convergence, i.e.,
until |η(k+1)

j − η
(k)
j | < ε for j = 1, 2, 3 and for some small ε > 0. Then

(η
(k+1)
1 , η

(k+1)
2 , η

(k+1)
3 ) is the MLE.

3. If |η(k+1)
1 −η

(k)
1 | > D1,|η(k+1)

2 −η
(k)
2 | > D2 or |η(k+1)

3 −η
(k)
3 | > D3 occurs during

the iteration, stop the algorithm. Replace (η
(0)
1 , η

(0)
2 , η

(0)
3 )T with (η

(0)
1 +u1, η

(0)
2 +

u2, η
(0)
3 )T, where u1 ∼ U (−d1, d1) and u2 ∼ U (−d2, d2), and then return to

Step 1.
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1212 Y.-H. Hu, T. Emura

3.3 Fixed-point iteration method

In order to obtain theMLE of parameters, one can use the fixed-point iteration method
(Burden and Faires 2011), which is a very simple iteration algorithm. The algorithm
is performed as follows:

(i) One dimensional fixed-point iteration (Burden and Faires 2011, pp. 56–64)
To solve the score function S(η) = 0, we rewrite S(η) = 0 as η = g(η). Then,

1. Choose the initial value η(0).
2. Perform the recursive process η(k+1) = g(η(k)).

The iteration procedure continues until convergence, i.e., until |η(k+1) − η(k)| < ε for
k = 0, 1, 2, . . . and small ε > 0. Finally, η(k+1) is the solution.

(ii) Two dimensional fixed-point iteration (Burden and Faires 2011, pp. 630–638)
To solve the score functions S1(η1, η2) = 0 and S2(η1, η2) = 0, we rewrite them

as η1 = g(η1, η2)and η2 = p(η1, η2). Then,

1. Choose the initial values η
(0)
1 and η

(0)
2 .

2. Perform the recursive process η
(k+1)
1 = g(η(k)

1 , η
(k)
2 ) and η

(k+1)
2 = p(η(k)

1 , η
(k)
2 ).

The iteration continues until convergence, e.g. |η(k+1)
1 −η

(k)
1 | < ε and |η(k+1)

2 −η
(k)
2 | <

ε for small ε > 0. Finally, η(k+1)
1 and η

(k+1)
2 are the solutions.

The advantage of the fixed-point iteration is that it does not require the second
derivatives of the log-likelihood which are often complicated (e.g., Example 2 of
Sect. 3.2). The disadvantage is that the choice of g is not unique (Burden and Faires
2011, pp. 61). Fortunately, a good choice of g is available in one- and two-parameter
SEFs. There are many papers implicitly applying the fixed-point algorithm for finding
the MLE (e.g., Chen 2009).

3.3.1 Example 1: One-parameter SEF

First, consider the case η > 0. From the first-order derivative of the log-likelihood,
the (k + 1)th iteration step of the fixed-point iteration is

1

η(k+1)
= 1

n

n∑
i=1

δi

{
vi exp(η(k)vi ) − ui exp(η(k)ui )

exp(η(k)vi ) − exp(η(k)ui )

}

+ 1

n

n∑
i=1

(1 − δi )

{
τ2 exp(η(k)τ2) − ui exp(η(k)ui )

exp(η(k)τ2) − exp(η(k)ui )

}
− 1

n

n∑
i=1

yi .

The iteration continues until convergence, i.e., until |η(k+1) − η(k)| < ε for small
ε > 0.
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Similarly, for the case η < 0, one can obtain the MLE by the iteration

1

η(k+1)
= 1

n

n∑
i=1

δi

{
−vi exp(η(k)vi ) + ui exp(η(k)ui )

− exp(η(k)vi ) + exp(η(k)ui )

}

+ 1

n

n∑
i=1

(1 − δi )

{
−vi exp(η(k)vi ) − τ1 exp(η(k)τ1)

− exp(η(k)vi ) + exp(η(k)τ1)

}
− 1

n

n∑
i=1

yi .

The iteration continues until convergence, i.e., until |η(k+1) − η(k)| < ε for small
ε > 0.

3.3.2 Example 2: Two-parameter SEF

We rewrite the first-order derivatives of the log-likelihood as

− η1

2η2
= y + 1

n
√−2η2

n∑
i=1

{Hi1(η1, η2) − Hi2(η1, η2)},

− 1

2η2
= y2 − η21

4η22
− 1

n

n∑
i=1

{
Hi1(η1, η2)

(
−vi√−2η2

− η1

√−2η2
4η22

)}

+ 1

n

n∑
i=1

{
Hi2(η1, η2)

(
−ui√−2η2

− η1

√−2η2
4η22

)}
.

The re-parameterization (μ = −η1/2η2 and σ 2 = −1/2η2) gives

μ = y + 1√−2η2

1

n

n∑
i=1

{Hi1(η1, η2) − Hi2(η1, η2)},

σ 2 = y2 − μ2

− 1

n

n∑
i=1

{
Hi1(η1, η2)

(
−vi√−2η2

− η1

√−2η2
4η22

)}

+ 1

n

n∑
i=1

{
Hi2(η1, η2)

(
−ui√−2η2

− η1

√−2η2
4η22

)}
.

Now, we can obtain the MLE of μ and σ 2 by a slightly modified two-dimensional
fixed-point iteration method. The (k + 1)th step of the iteration becomes

μ(k+1) = y + 1√
−2η(k)

2

1

n

n∑
i=1

{
Hi1(η

(k)
1 , η

(k)
2 ) − Hi2(η

(k)
1 , η

(k)
2 )

}
,
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σ 2(k+1) = y2 − {μ(k+1)}2 − 1

n

n∑
i=1

⎧⎨
⎩Hi1(η

(k)
1 , η

(k)
2 )

⎛
⎝ −vi√

−2η(k)
2

− η
(k)
1

√
−2η(k)

2

4η2(k)2

⎞
⎠
⎫⎬
⎭

+ 1

n

n∑
i=1

⎧⎨
⎩Hi2(η

(k)
1 , η

(k)
2 )

⎛
⎝ −ui√

−2η(k)
2

− η
(k)
1

√
−2η(k)

2

4η2(k)2

⎞
⎠
⎫⎬
⎭.

By the invariance of MLE (Casella and Berger 2002, pp. 319–320), the MLE of
(η1, η2)

T is

[
η

(k+1)
1

η
(k+1)
2

]
=
[

μ(k+1)/σ 2(k+1)

−1/2σ 2(k+1)

]
.

The iteration continues until |η(k+1)
i − η

(k)
i | < ε, i = 1, 2 for small ε > 0.

4 Simulations

We conduct simulations by randomly drawing (ui , yi , vi ), subject to ui ≤ yi ≤ vi , for
i = 1, 2, . . . , n. The data come from the independent random vector (U,Y, V ) subject
to the inclusion criterionU ≤ Y ≤ V . Here, Y follows the SEF and the distribution of
(U, V ) is chosen such that P(U ≤ Y ≤ V ) ≈ 0.5. The details of the data generation
schemes are given in “Appendix”.

4.1 Simulation results for the one-parameter SEF

First, we consider the case η > 0, in particular the two cases η = 1 and 3. These
true values are used as initial value η(0) in the algorithms. Also, the data-driven initial
value for η of the form η(0) = 1/(τ2 − y) is considered, where y = ∑

i yi/n and
τ2 = y(n).

Table 1 compares the performance of the NR (Newton–Raphson) and FPI (fixed
point iteration) methods for η > 0. We observe that the NR and FPI give almost
identical estimates and that estimates are not affected by the initial values. For both
algorithms, estimates are almost unbiased and themean squared error (MSE) decreases
as the sample size increases. However, the average number of iterations of the NR is
much smaller than that of the FPI. Hence, the NR and FPI converges to the same
values, but only the speed is different.

The virtually same results are found for the case η > 0 (Table 2).

4.2 Simulation results for the two-parameter SEF

We use the true parameter values (η1, η2) = (30,−0.5) or (5,−0.5) as the ini-
tial value (η

(0)
1 , η

(0)
2 ). By the relationship (η1, η2) = (μ/σ 2,−1/2σ 2), we also
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Table 1 Simulation results under a one-parameter SEF with a parameter η > 0 based on 500 repetitions

True Initial value Method E(η̂) MSE (η̂) AI

n = 100 η = 3 η(0) = 3 FPI 3.0960 0.2041 12.6

NR 3.0960 0.2042 4.42

η(0) = 1
y(n)−y FPI 3.0960 0.2042 12.42

NR 3.0960 0.2042 4.3

n = 200 η = 3 η(0) = 3 FPI 3.0614 0.1035 12.14

NR 3.0618 0.1036 4.25

η(0) = 1
y(n)−y FPI 3.0619 0.1036 12.06

NR 3.0618 0.1036 4.1

n = 300 η = 3 η(0) = 3 FPI 3.0426 0.0652 11.86

NR 3.0426 0.0652 4.12

η(0) = 1
y(n)−y FPI 3.0426 0.0652 11.62

NR 3.0426 0.0652 4.0

n = 100 η = 1 η(0) = 1 FPI 1.0331 0.0226 10.92

NR 1.0331 0.0226 4.25

η(0) = 1
y(n)−y FPI 1.0331 0.0226 10.57

NR 1.0331 0.0226 4.1

n = 200 η = 1 η(0) = 1 FPI 1.0205 0.0114 10.46

NR 1.0205 0.0114 4.06

η(0) = 1
y(n)−y FPI 1.0206 0.0114 10.16

NR 1.0205 0.0114 3.94

n = 300 η = 1 η(0) = 1 FPI 1.0143 0.0072 10.18

NR 1.0143 0.0072 3.96

η(0) = 1
y(n)−y FPI 1.0144 0.0072 9.95

NR 1.0143 0.0072 3.89

FPI fixed point iteration, NR Newton–Raphson algorithm, MSE(η̂) = E(η̂ − η)2, AI the average number
of iterations until convergence

consider data-driven initial values (η
(0)
1 , η

(0)
2 ) = (y/s2,−1/2s2), where s2 =∑

i (yi − y)2/(n − 1).
We compare the performance of the FPI and NR methods in Table 3. It can be

seen that both the NR and FPI work well and they give almost identical estimates.
The estimates are not influenced by the choices of initial values. However, the average
number of iterations of the NR is remarkably smaller than that of the FPI. Hence, the
NR and FPI converge to the same solution, but the NR converges more quickly than
the FPI.

Next, we investigate how well the MLE performs under model misspecifications,
especially compared to the distribution-free method. For estimating a true survival
probability S(y) = 0.5 or 0.75, the parametric estimator Sη̂(y), where η̂ = (η̂1, η̂2),
and the NPMLE (Efron and Petrosian 1999) are compared. Data are generated from
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1216 Y.-H. Hu, T. Emura

Table 2 Simulation results under a one-parameter SEF with a parameter η < 0 based on 500 repetitions

True Initial value Method E(η̂) MSE(η̂) AI

n = 100 η = −3 η(0) = −3 FPI −3.0975 0.2337 12.68

NR −3.0975 0.2337 4.42

η(0) = 1
y(1)−y FPI −3.0976 0.2337 12.24

NR −3.0975 0.2337 4.27

n = 200 η = −3 η(0) = −3 FPI −3.0440 0.1057 12.24

NR −3.0440 0.1057 4.26

η(0) = 1
y(1)−y FPI −3.0440 0.1057 11.92

NR −3.0440 0.1057 4.13

n = 300 η = −3 η(0) = −3 FPI −3.0271 0.0646 11.98

NR −3.0271 0.0647 4.14

η(0) = 1
y(1)−y FPI −3.0272 0.0647 11.68

NR −3.0271 0.0647 4.03

n = 100 η = −1 η(0) = −1 FPI −1.0311 0.0256 11.09

NR −1.0311 0.0256 4.26

η(0) = 1
y(1)−y FPI −1.0311 0.0256 10.55

NR −1.0311 0.0256 4.08

n = 200 η = −1 η(0) = −1 FPI −1.0144 0.0116 10.55

NR −1.0144 0.0116 4.08

η(0) = 1
y(1)−y FPI −1.0144 0.0116 10.22

NR −1.0144 0.0116 3.96

n = 300 η = −1 η(0) = −1 FPI −1.0087 0.0071 10.3

NR −1.0087 0.0071 3.97

η(0) = 1
y(1)−y FPI −1.0088 0.0071 10.03

NR −1.0087 0.0071 3.89

FPI fixed point iteration, NR Newton–Raphson algorithm, MSE(η̂) = E(η̂ − η)2, AI the average number
of iterations until convergence

four different models, including the correct two-dimensional SEF, and three other
misspecified models. Note that the value of y to make S(y) = 0.5 or 0.75 depends on
the chosen model (Table 4).

Table 4 compares the parametric estimator with the NPMLE under the four model
alternatives. The NPMLE shows almost unbiased results for estimating the true sur-
vival function under all themodels considered. If the truemodel is the one-dimensional
SEF, the fitted model is misspecified and the parametric estimator exhibits some sys-
tematic bias that does not vanish with large samples. However, the MSE still tends to
be smaller than that of the NPMLE. This phenomenon is due to the small variance
under the one-parameter model. If the true model is the three-parameter SEF, the fitted
model is also misspecified, but the bias of the parametric estimator is quite modest. As
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Table 3 Simulation results under a two-parameter SEF with parameters (η1, η2) based on 500 repetitions

True (η1, η2) Initial (η01, η
0
2) Method E(η̂1) E(η̂2) MSE(η̂1) MSE(η̂2) AI

n = 100 (30, −0.5) (30, −0.5) FPI 31.329 −0.522 65.378 0.0181 34.6

NR 31.329 −0.522 65.382 0.0181 5.2

(
y
s2

, −1
2s2

) FPI 31.329 −0.522 65.380 0.0181 37.7

NR 31.329 −0.522 65.382 0.0181 6.2

n = 200 (30, −0.5) (30, −0.5) FPI 30.721 −0.512 31.135 0.0087 31.8

NR 30.721 −0.512 31.137 0.0087 5.0

(
y
s2

, −1
2s2

) FPI 30.721 −0.512 31.137 0.0087 35.9

NR 30.721 −0.512 31.137 0.0087 6.2

n = 300 (30, −0.5) (30, −0.5) FPI 30.731 −0.512 21.094 0.0059 30.5

NR 30.731 −0.512 21.096 0.0059 4.9

(
y
s2

, −1
2s2

) FPI 30.731 −0.512 21.096 0.0059 35.1

NR 30.731 −0.512 21.096 0.0059 6.1

n = 100 (5, −0.5) (5, −0.5) FPI 5.216 −0.522 1.851 0.0181 28.2

NR 5.216 −0.522 1.852 0.0181 5.0

(
y
s2

, −1
2s2

) FPI 5.217 −0.522 1.851 0.0181 31.3

NR 5.216 −0.522 1.852 0.0181 6.0

n = 200 (5, −0.5) (5, −0.5) FPI 5.115 −0.512 0.874 0.0087 25.9

NR 5.115 −0.512 0.875 0.0087 4.8

(
y
s2

, −1
2s2

) FPI 5.116 −0.512 0.875 0.0087 29.9

NR 5.115 −0.512 0.875 0.0087 6.0

n = 300 (5, −0.5) (5, −0.5) FPI 5.116 −0.512 0.592 0.0059 24.8

NR 5.116 −0.512 0.592 0.0059 4.7

(
y
s2

, −1
2s2

) FPI 5.117 −0.512 0.592 0.0059 29.3

NR 5.116 −0.512 0.592 0.0059 6.0

FPI fixed point iteration, NR Newton–Raphson algorithm,MSE(η̂1) = E(η̂1 − η1)
2,MSE(η̂2) = E(η̂2 −

η2)
2, AI the average number of iterations until convergence

a result, the MLE still perform better than the NPMLE in terms of the MSE. If the true
model is the two-dimensional SEF, then the fitted model is correct and the parametric
approach is superior to the NPMLE in terms of both the bias and MSE.

4.3 Simulation results for the cubic SEF

As mentioned in Sect. 3.1, we will perform our simulations on the basis of the approx-
imate log-likelihood in Eq. (3), which gives more stable results over large number
of repetitions. The chosen initial values of the NR algorithm are the true values
(η

(0)
1 , η

(0)
2 , η

(0)
3 ) = (5,−0.5, 0.005) or (5,−0.5,−0.005), and the data-driven initial

values (η
(0)
1 , η

(0)
2 , η

(0)
3 ) = (y/s2,−1/2s2, 0). In addition, we also test some wrong
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Table 4 Simulation results for comparing the MLE with the NPMLE based on 500 repetitions

True model True survival Sample size Fit by 2-parameter SEF Fit by NPMLE

Bias{Ŝ(y)} MSE{Ŝ(y)} Bias{Ŝ(y)} MSE{Ŝ(y)}
1-par SEF S(y) = 0.5 n = 100 0.0230 0.0029 0.0000 0.0056

η = −1 at y = 4.7 n = 200 0.0230 0.0017 0.0020 0.0040

τ1 = 4 n = 300 0.0230 0.0013 0.0010 0.0027

2-par SEF S(y) = 0.5 n = 100 −0.0030 0.0042 −0.0060 0.0052

(η1, η2) at y = 5.0 n = 200 −0.0020 0.0022 −0.0030 0.0026

= (5,−0.5) n = 300 −0.0030 0.0014 −0.0030 0.0017

3-par SEF S(y) = 0.5 n = 100 0.0050 0.0047 0.0040 0.0054

(η1, η2, η3) at y = 5.4 n = 200 0.0040 0.0022 0.0030 0.0025

= (5,−0.5, 0.005) n = 300 0.0060 0.0014 0.0050 0.0016

3-par SEF S(y) = 0.5 n = 100 0.0030 0.0038 0.0050 0.0046

(η1, η2, η3) at y = 4.7 n = 200 0.0020 0.0017 0.0030 0.0021

= (5,−0.5,−0.005) n = 300 0.0020 0.0012 0.0040 0.0013

1-par SEF S(y) = 0.75 n = 100 −0.0260 0.0023 −0.0010 0.0030

η = −1 at y = 4.3 n = 200 −0.0280 0.0016 0.0000 0.0018

τ1 = 4 n = 300 −0.0280 0.0014 0.0000 0.0012

2-par SEF S(y) = 0.75 n = 100 −0.0030 0.0037 −0.0050 0.0058

(η1, η2) at y = 4.3 n = 200 −0.0020 0.0018 −0.0030 0.0026

= (5,−0.5) n = 300 −0.0010 0.0012 −0.0010 0.0015

3-par SEF S(y) = 0.75 n = 100 0.0030 0.0026 0.0000 0.0034

(η1, η2, η3) at y = 4.7 n = 200 0.0010 0.0014 −0.0010 0.0017

= (5,−0.5, 0.005) n = 300 0.0030 0.0009 0.0020 0.0011

3-par SEF S(y) = 0.75 n = 100 0.0030 0.0035 0.0010 0.0047

(η1, η2, η3) at y = 4.0 n = 200 0.0020 0.0018 0.0010 0.0024

= (5,−0.5,−0.005) n = 300 0.0020 0.0012 0.0020 0.0016

Bias{Ŝ(y)} = E{Ŝ(y)} − S(y) for S(y) = 0.50 or 0.75
MSE{Ŝ(y)} = E{Ŝ(y) − S(y)}2 for S(y) = 0.50 or 0.75
For the 3-parameter SEF (3-par SEF), we choose τ2 = 8 for η3 = 0.005 and τ1 = 2 for η3 = −0.005

initial values (η
(0)
1 , η

(0)
2 , η

(0)
3 ) = (−3,−0.5, 0.005) or (−3,−0.5,−0.005) to exam-

ine the sensitivity. The randomized Newton-Raphson (RNR) is performed based on
the choices D1 = 20, D2 = 10, D3 = 1, d1 = 6 and d2 = 0.5.

Tables 5 compare the performance of the randomized Newton–Raphson (RNR) and
R optim routine (R Development Core Team 2014) with η3 > 0. The RNR always
converges to the solution without being influenced by the choices of initial values.
On the other hand, the R optim occasionally yields un-convergence (Table 5). This
happens when the data-driven initial value is used. If the initial value is the true value,
the RNR and R optim produce very similar results. However, the speed of convergence
is extremely faster for theRNR than that of theR optim. In average, theRNRconverges
within 5 to 7 iterations while the R optim takes nearly 200 iterations.
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Table 5 Simulations results under a cubic SEFwith parameters (η1, η2, η3) = (5, −0.5, 0.005) and τ2 = 8
based on 500 repetitions

Initial value
(η

(0)
1 , η

(0)
2 , η

(0)
3 )

Method E(η̂1) E(η̂2) E(η̂3) MSE(η̂1) MSE(η̂2) MSE(η̂3) AI

n = 100 (5, −0.5, 0.005) RNR 5.247 −0.501 0.0022 43.99 1.63 0.0066 5.8

Optim 5.247 −0.501 0.0022 43.99 1.63 0.0066 175.4

(
y
s2

, −1
2s2

, 0) RNR 5.247 −0.501 0.0022 43.99 1.63 0.0066 7.3

Optim Un-convergent

(−3, −0.5, 0.005) RNR 5.247 −0.501 0.0022 43.99 1.63 0.0066 7.0

Optim 3.499 −0.162 0.0192 49.77 1.90 0.0079 212.0

n = 200 (5, −0.5, 0.005) RNR 4.998 −0.478 0.0023 22.60 0.84 0.0034 5.5

Optim 4.994 −0.477 0.0023 22.59 0.84 0.0034 168.1

(
y
s2

, −1
2s2

, 0) RNR 4.998 −0.478 0.0023 22.60 0.84 0.0034 7.3

Optim Un-convergent

(−3, −0.5, 0.005) RNR 4.998 −0.478 0.0023 22.60 0.84 0.0034 7.0

Optim 3.253 −0.137 0.0194 33.65 1.29 0.0054 221.9

n = 300 (5, −0.5, 0.005) RNR 5.019 −0.487 0.0032 14.69 0.54 0.0022 5.2

Optim 5.018 −0.487 0.0032 14.69 0.54 0.0022 162.1

(
y
s2

, −1
2s2

, 0) RNR 5.019 −0.487 0.0032 14.69 0.54 0.0022 5.5

Optim Un-convergent

(−3, −0.5, 0.005) RNR 5.019 −0.487 0.0032 14.69 0.54 0.0022 5.5

Optim 2.566 −0.007 0.0272 30.36 1.17 0.0048 216.1

MSE(η̂1) = E(η̂1 − η1)
2,MSE(η̂2) = E(η̂2 − η2)

2 andMSE(η̂3) = E(η̂3 − η3)
2

RNR=Randomized Newton–Raphson algorithm (proposed method)
AI=The average number of iterations until convergence
Un-convergent=At least one repetition does not converge among 500 repetitions
Optim=R optim routine for maximizing the log-likelihood

Table 5 also demonstrates the performance of the estimators η̂i , i = 1, 2, 3. As
long as the algorithm converges, the estimators are roughly unbiased, and their MSE
vanishes as the sample size increase from n = 100 to 300.

Table 6 displays the results with η3 < 0. The results are virtually same as Table 5.

5 Data analysis

5.1 The childhood cancer data (Moreira and de Uña-Álvarez 2010)

We analyzed the childhood cancer data from Moreira and de Uña-Álvarez (2010).
Their data include the ages at onset of cancer at a young age within a recruitment
period of 5years (between January 1, 1999 and December 31, 2003). The onset ages
are considered as the ages at which children are diagnosed as cancer within the period.
However, they do not have any information on children who developed cancer outside
the period. Specifically, the data consists of 406 children with {(ui , yi , vi ) : i =
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Table 6 Simulations results under a cubic SEF with parameters (η1, η2, η3) = (5, −0.5,−0.005) and
τ1 = 2 based on 500 repetitions

Initial value
(η

(0)
1 , η

(0)
2 , η

(0)
3 )

Method E(η̂1) E(η̂2) E(η̂3) MSE(η̂1) MSE(η̂2) MSE(η̂3) AI

n = 100 (5, −0.5, −0.005) RNR 5.373 −0.521 −0.0074 50.59 2.20 0.010 5.9

Optim 5.361 −0.518 −0.0075 50.55 2.19 0.010 183.6

(
y
s2

, −1
2s2

, 0) RNR 5.373 −0.521 −0.0074 50.59 2.20 0.010 7.3

Optim Un-convergent

(−3, −0.5, −0.005) RNR 5.373 −0.521 −0.0074 50.59 2.20 0.010 7.1

Optim 4.640 −0.368 −0.0178 49.94 2.22 0.011 195.0

n = 200 (5, −0.5, −0.005) RNR 5.243 −0.523 −0.0052 24.70 1.09 0.005 5.5

Optim 5.245 −0.523 −0.0052 24.69 1.09 0.005 170.9

(
y
s2

, −1
2s2

, 0) RNR 5.243 −0.523 −0.0052 24.70 1.09 0.005 7.3

Optim Un-convergent

(−3, −0.5, −0.005) RNR 5.243 −0.523 −0.0052 24.70 1.09 0.005 7.2

Optim 4.935 −0.458 −0.0097 26.68 1.18 0.006 196.5

n = 300 (5, −0.5, −0.005) RNR 5.282 −0.539 −0.0036 16.87 0.73 0.003 5.3

Optim 5.338 −0.551 −0.0027 16.95 0.73 0.004 163.4

(
y
s2

, −1
2s2

, 0) RNR 5.282 −0.539 −0.0036 16.87 0.73 0.003 7.3

Optim Un-convergent

(−3, −0.5, −0.005) RNR 5.282 −0.539 −0.0036 16.87 0.73 0.003 7.3

Optim 5.080 −0.496 −0.0065 18.62 0.81 0.004 197.3

MSE(η̂1) = E(η̂1 − η1)
2,MSE(η̂2) = E(η̂2 − η2)

2 andMSE(η̂3) = E(η̂3 − η3)
2

RNR = Randomized Newton–Raphson algorithm (proposed method)
AI = The average number of iterations until convergence
Un-convergent = At least one repetition does not converge among 500 repetitions
Optim = R optim routine for maximizing the log-likelihood

1, . . . , 406} subject to double-truncation ui ≤ yi ≤ vi , where yi is the age (in days)
at diagnosis, ui is the age at the start of the recruitment (January 1, 1999), and vi =
ui + 1,825 is the age at the end of the recruitment (December 31, 2003). It is of
interest to make statistical inference for the survival function S(t) of the pre-truncated
age at diagnosis. The data have been analyzed by Moreira and de Uña-Álvarez (2010)
and Emura et al. (2014) based on the NPMLE. In this paper, we provide additional
inference results based on the MLE under the SEF.

5.2 Numerical results

The following models are fitted to the data:

Model (a): one-parameter SEF (η1 > 0),
Model (b): one-parameter SEF (η1 < 0),
Model (c): two-parameter SEF,
Model (d): cubic SEF (η3 < 0).
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To find the MLE, we apply the NR algorithm under the stopping criterion ε =
0.0001 for all the models.

For the one-parameter SEF with η1 > 0, we set τ2 = y(n) = 5,474 such that∫
Y exp(η1y) dy < ∞. The initial value of the NR method is η

(0)
1 = 1/(τ2 − y) =

0.0003215, and the resultant MLE becomes η̂1 = 0.0000874 at the 2nd iteration. For
the case η1 < 0, we set τ1 = y(1) = 6 such that

∫
Y exp(η1y) dy < ∞. The initial

value of the NR method is η
(0)
1 = 1/(τ1 − y) = −0.000424, and the MLE becomes

η̂1 = −0.000385 at the 1st iteration. Figure 3 shows that the NR method successfully
searches the global maximum of the log-likelihood function.

For the two-parameter SEF, we perform the NR method with an initial value
(η

(0)
1 , η

(0)
2 ) = (y/s2,−1/2s2) = (0.000875,−1.85 × 10−7). The resultant MLE

becomes (η̂1, η̂2) = (0.000771,−1.87 × 10−7) at the 2nd iteration. Accord-
ingly, (μ̂, σ̂ ) = (−η̂1/2η̂2,

√−1/2η̂2) = (2,065.1, 1,636.6). Figure 4 demon-
strates that that the MLE indeed attains the global maximum of the log-likelihood
function.

For the cubic SEF, we set the lower limit of the support as τ1 = y(1) = 6, and
work on the exact log-likelihood in Example 3 of Sect. 3.1. We appropriately modify
the NR steps of Sect. 3.2 to adapt to the exact likelihood. The NR algorithm starts
with (η

(0)
1 , η

(0)
2 , η

(0)
3 ) = (y/s2,−1/2s2, 0) = (0.000875,−1.85 × 10−7, 0). The

resultant MLE becomes (η̂1, η̂2, η̂3) = (−0.00079, 3.38 × 10−7,−4.87 × 10−11) at
the 3rd iteration. The MLE attains the global maximum of the log-likelihood function
(Fig. 5).

We select a suitable model among the four candidates in terms of Akaike informa-
tion criterion (AIC) (Akaike 1973), given by AIC = −2 log L + 2k, where L is the
maximized value of the likelihood function and k is the number of unknown parame-

Fig. 3 The log-likelihood under the one-parameter SEF based on the childhood cancer data. The vertical
lines signify the MLEs η̂1 = 0.0000874 (left) and η̂1 = −0.000385 (right)
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Fig. 4 The log-likelihood under the two-parameter SEF based on the childhood cancer data. The MLEs
η̂1 = 7.71 × 10−4 and η̂2 = −1.87 × 10−7 are indicated by vertical lines

Fig. 5 The log-likelihood under the cubic SEF based on the childhood cancer data. The MLEs η̂1 =
−7.90 × 10−4, η̂2 = 3.38 × 10−7, and η̂3 = −4.87 × 10−11 are signified by the vertical lines

ters under the fitted model. The preferred model is the one with the minimum AIC
value. Table 7 summarizes the results of model selection. The best AIC is attained by
the cubic SEF (k = 3) with η3 < 0. Note that the likelihood ratio test may not work
since the candidate models are not nested.

Figure 6 compares the fitted survival curves for the four candidate models with the
survival curve of the NPMLE. Unlike the AIC-based comparison, such a comparison
gives a graphical way to examine the goodness-of-fit. Here, the survival curves for the
parametric estimators are calculated as Sη̂(y), where Sη(y) is defined in Sect. 2. To
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Table 7 The maximum likelihood inference for the childhood cancer data

Model η̂1 η̂2 η̂3 log L AIC K–S
statistic

(a) 1 par. SEF (η1>0) 8.74×10−5 0 0 −3,013.6 6,029.2 0.206

(b) 1 par. SEF (η1<0) −3.85×10−4 0 0 −2,999.6 6,001.1 0.121

(c) 2 par. SEF 7.71×10−4 −1.87×10−7 0 −3,027.6 6,059.2 0.132

(d) Cubic SEF (η3<0) −7.90×10−4 3.38×10−7 −4.87×10−11 −2,991.6 5,989.2 0.084

Model (a)=The one-parameter SEF (η1 > 0)
Model (b)=The one-parameter SEF (η1 < 0)
Model (c)=The two-parameter SEF
Model (d)=The cubic SEF (η3 < 0); log L = The maximized log-likelihood
AIC=Akaike information criterion, defined as AIC = −2 log L + 2k; (smaller AIC corresponds to better
fit)
K–S statistic=The Kolmogorov–Smirnov distance between the MLE and the NPMLE of the survival
function (smaller K–S statistic corresponds to better fit)

Fig. 6 The survival functions for the childhood cancer data. Five survival curves are calculated using the
one-parameter SEF (1-dim SEF η1 > 0 and 1-dim SEF η1 < 0), two-parameter SEF (2-dim SEF), cubic
SEF (3-dim SEF η3 < 0) and the NPMLE. The vertical line signifies the value mini (yi ) = y(1) = 6

measure the goodness-of-fit, we use the Kolmogorov–Smirnov (K–S) statistic, which
is the maximum vertical distance between fitted survival curve and the NPMLE. We
find that the minimum K–S statistic is achieved by the cubic SEF with η3 < 0. This
is also clear from Fig. 6 that the survival curve for the cubic SEF is quite close to that
obtained by the NPMLE.

Since both the AIC and K–S statistic select the cubic SEF with η3 < 0 as the best
model, we suggest this model for estimating the survival function of the pre-truncated
age at diagnosis for childhood cancer.

Figure 7 depicts the estimated density under the cubic SEF with η3 < 0, giving a
highly skewed density with the lower limit of the support at τ1 = mini (yi ) = 6. This
figure reminds the important point that one needs to set the finite supportY = [τ1,∞)

for the density to be well-defined. As mentioned in Remark I, such a skewed truncated
normal density is often used for fitting lifetime data.
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Fig. 7 The estimated density function under the cubic SEF with η3 < 0 for the childhood cancer data. The
vertical line signifies the lower support τ1 = mini (yi ) = y(1) = 6

6 Conclusion and discussion

While the present researchmay be framed as a typical application of theMLE,we have
demonstrated that the adequate implementation requires careful set-ups of parameter
space, support, and computational algorithms, especially under double-truncation.
For practitioners, such information should not be ignored or simply treated as minor
technical matters. In particular, we emphasize that the adequate choice of the support
of the density is essential for the SEF to be well-defined and to be fitted with doubly-
truncated data. Concretely, whether truncation limits exceed/precede the support of the
density would influence the likelihood for observed lifetimes. This paper has clarified
these technical aspects of parametric inference under double-truncation, which has
not been explicitly discussed in the literature.

As for computational contributions, we have developed the Newton–Raphson algo-
rithm and fixed-point iteration to implement the MLE under the SEF. In particular,
we give explicit formulations of the Newton–Raphson and fixed-point iteration algo-
rithms, and compare the performance of the algorithms using simulations. For the
three-parameter SEF, the computation is more involved and the convergence of the
Newton–Raphson algorithm becomes unstable. In light of these results, we consider
an approximated log-likelihood under certain assumptions on the support, and also
developed the randomized version of the Newton–Raphson methods. Our simulations
demonstrate that the proposed randomized Newton–Raphson always converge to the
MLE without influenced by the choice of initial values. Moreover, we see that the
proposed algorithm outperforms an existing R package for optimization in terms of
both the speed and stability of convergence.

We propose to fit the cubic SEF model to the childhood cancer data after model
selection.An important advantage of the estimatorwith the cubicSEFover theNPMLE
is to offer a smooth survival curve. Moreover, it is also possible to obtain the density
estimator. On the other hand, the density does not directly follow from the discrete dis-
tribution of the NPMLE. An alternative is a smooth kernel density estimator developed
by Moreira and de Uña-Álvarez (2012) and Moreira and Van Keilegom (2013).
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Goodness-of-fit procedures are clearly important when the present SEF models
and other parametric models are fitted to doubly-truncated data. In our data analysis,
we assess the goodness-of-fit based on the Kolmogorov–Smirnov distance between
the model-based and the model-free survival functions. This approach can be further
formalized by developing a hypothesis test to check the fitted model. One needs to
be careful for directly applying the goodness-of-fit test for doubly-truncated data
by Emura et al. (2014) in which the null hypothesis is completely fixed. That is,
this approach does not take into account for the variability of estimating unknown
parameters. One straightforward but computationally demanding way is to apply a
parametric bootstrap procedure as in Stute et al. (1993). The derivation of asymptotic
distribution and the numerical validity (type I error and power) of the bootstrap test
remain to be done. A more elaborate but computationally fast method follows the
line of Emura and Konno (2012b). More studies on goodness-of-fit procedures under
double-truncation are warranted.
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Appendix: The data generations for simulations

Data generations for one-parameter SEF

First, consider the case η > 0. We let

U ∼ fU (u) = ηu exp{ηu(u − τ2)},−∞ < u < τ2, ηu > 0,

V ∼ fV (v) = ηv exp{ηv(v − τ2)},−∞ < v < τ2, ηv > 0,

Y ∼ fY (y) = η exp{η(y − τ2)},−∞ < y < τ2, η > 0.

In this case, data are generated by using inverse transformations

U = τ2 + 1

ηu
log(W1), V = τ2 + 1

ηv

log(W2), Y = τ2 + 1

η
log(W3),

where W1,W2,W3 ∼ U (0, 1). Then, the inclusion probability is

P(U ≤ Y ≤ V )=
τ2∫

−∞

v∫

−∞

y∫

−∞
fY (y) fV (v) fU (u)dudydv = η · ηv

(η + ηu)(η + ηu + ηv)
.

ηu = 0 yields P(−∞ < Y ≤ V ) = ηv/(ηv + η) and ηv = ∞ yields P(U ≤ Y <

τ2) = η/(η + ηu). One can get P(U ≤ Y ≤ V ) ≈ 0.5 by making P(U ≤ Y ) = 0.75
and P(Y ≤ V ) = 0.75.

For instance, with fixed η = 3, we find ηu and ηv as follows:

1. Set P(U ≤ Y ) = η/(η + ηu) = 0.75, and then obtain ηu = 1.
2. Set P(Y ≤ V ) = ηv/(ηv + η) = 0.75, and then obtain ηv = 9.
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Accordingly, the inclusion probability becomes P(U ≤ Y ≤ V ) = 0.5031447.
Another case is η < 0, where the range of Y is y ∈ [τ1,∞). We consider

U ∼ fU (u) = −ηu exp{ηu(u − τ1)}, τ1 < u < ∞, ηu < 0,

V ∼ fV (v) = −ηv exp{ηv(v − τ1)}, τ1 < v < ∞, ηv < 0,

Y ∼ fY (y) = −η exp{η(y − τ1)}, τ1 < y < ∞, η < 0.

In this case, data are generated by using inverse transformations

U = τ1 + 1

ηu
log(1 − W1), V = τ1 + 1

ηv

log(1 − W2), Y = τ1 + 1

η
log(1 − W3),

where W1,W2,W3 ∼ U (0, 1). Then, the inclusion probability is

P(U ≤ Y ≤ V ) =
∞∫

τ

∞∫

u

∞∫

y

fY (y) fV (v) fU (u)dvdydu = η · ηu

(η + ηv)(η + ηu + ηv)
.

ηu = ∞ yields P(0 ≤ Y ≤ V ) = η/(η + ηv) and ηv = 0 yields P(U ≤ Y < ∞) =
ηu/(η + ηu). One can get P(U ≤ Y ≤ V ) ≈ 0.5 by making P(U ≤ Y ) = 0.75 and
P(Y ≤ V ) = 0.75.

For instance, with fixed η = −1, we find ηu and ηv as follows:

1. Set P(U ≤ Y ) = ηu/(η + ηu) = 0.75, and then obtain ηu = −3.
2. Set P(Y ≤ V ) = η/(η + ηv) = 0.75, and then obtain ηv = −1/3.

Accordingly, the inclusion probability becomes P(U ≤ Y ≤ V ) = 0.5235602.

Data generation for two-parameter SEF

We consider U ∼ N (μu, 1), V ∼ N (μv, 1) and Y ∼ N (μ, 1). One can obtain
P(U ≤ Y ≤ V ) ≈ 0.5 bymaking left-truncated percentage is equal to right-truncated
percentage. Since the normal distribution is symmetric, we set μu = μ − � and
μv = μ + �. Then,

P(U ≤ Y ≤ V ) =
∞∫

−∞
ϕ(y − μ) · �(y − μ + �) · {1 − �(y − μ − �)} dy.

The desired value � > 0 is chosen numerically. For instance, with fixed μ = 5, the
desired value is �= 0.91, which makes P(U ≤ Y ≤ V ) ≈ 0.5 (Fig. 8). Then, we
choose μu = 4.09 and μv = 5.91. With this setting, we have P(U ≤ Y ≤ V ) =
0.5076142.
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Fig. 8 An example for how to choose the value � under the two-parameter SEF

Fig. 9 An example for how to choose the value � under the cubic SEF

Data generations for cubic SEF

For the cubic SEF with η3 > 0, we consider U ∼ N (μu, 1), V ∼ N (μv, 1) and

Y ∼ fη(y) = exp[η1y + η2y
2 + η3y

3 − φ(η)], y ∈ Y = (−∞, τ2],

where φ(η) = log{∫Y exp(η1y + η2y2 + η3y3) dy}. Data are generated by using an
inverse transformation, which numerically solves 1 − Sη(y) = W , where W ∼
U (0, 1). One can get P(U ≤ Y ≤ V ) ≈ 0.5 by making left-truncated and right-
truncated percentages equal by setting μu = η1 − �, μv = η1 + �. Then,
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P(U ≤ Y ≤ V ) =
τ2∫

−∞
{1 − �(y − η1 − �)}�(y − η1 + �) fη(y) dy.

The desired value � > 0 is chosen numerically. For instance, for fixed η1 = 5,
η2 = −0.5, η3 = 0.005 and τ2 = 8, the value of � is 1.01 (Fig. 9). Hence, we
choose μu = 3.99 and μv = 6.01. Accordingly, the inclusion probability becomes
P(U ≤ Y ≤ V ) = 0.5035228.

The other case η3 < 0 is similar. Under η1 = 5, η2 = −0.5, η3 = −0.005, and
τ1 = 2, the desired value is � = 0.91 (see Fig. 9). Hence, we choose μu = 4.09
and μv = 5.91. Accordingly, the inclusion probability becomes P(U ≤ Y ≤ V ) =
0.5027334.
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