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ABSTRACT

The Conway-Maxwell-Poisson (COM-Poisson) distribution is useful to account for

a cure proportion in survival data. With this model, two computational approaches for

calculating maximum likelihood estimates have been developed in the literature: one

based on the method in the gamlss R package that employs the first-order derivatives of

the log-likelihood, and the other based on the EM algorithm that employs the complete-

data likelihood. In this paper, we propose a robust version of the Newton-Raphson (NR)

algorithm, where the robustness is introduced by random perturbations to the initial

values and by log-transformations to positive parameters. We provide the expressions

of the derivatives of the log-likelihood under the Bernoulli cure model and computer

codes for implementation. Since the NR algorithm employs the first- and second-

derivatives of the log-likelihood, it converges more quickly than the method of the

gamlss R package. We also review the EM algorithms and compare the computational

performance between the NR and EM algorithms via simulations. We also include a

novel data to be fitted to the COM-Poisson cure model, and discuss the consequence

of performing the two algorithms.
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1. Introduction
Cure rate models are models for analyzing survival data containing a cured proportion.

For instance, during the treatment of a disease, a patient can be cured, which means

he/she shows no recurrence of the disease. In such a case, researchers are interested in

how covariates (e.g., treatment type and gender) influence the occurrence of cure.

Patients who do not experience recurrence of a disease are called long-term sur-

vivors (Maller and Zhou 1996). Patients who experience the recurrence of a disease

are called susceptibles. Standard statistical models for survival analysis assume that all

the patients are susceptibles after a long follow-up, which mean that they eventually

experience a failure event. This assumption is often not correct.

In the theory of competing risks, event time of a subject is determined by several

different causes of the event (Cox and Oakes 1984). This implies that the observed

event time of a subject is determined by the first-occurring cause among several different

causes. In this respect, Rodrigues et al. (2009) adopted a Conway-Maxwell Poisson

(COM-Poisson) distribution to describe the number of causes, where the occurrence

of cure is accounted by the zero value of the distribution. Note that the Bernoulli

distribution is a special case of the COM-Poisson distribution, representing the binary

(cure vs. non-cure) setting.

Lifetime models under the COM-Poisson cure model require some parametric mod-

els for failure times for all the causes. Rodrigues et al. (2009) and Balakrishnan and

Pal (2016) suggested the Weibull distribution. Balakrishnan and Pal (2015) suggested

the generalized gamma (G-gamma) distribution that includes the Weibull, lognormal,

and gamma distributions as special cases.

Different computational algorithms exist for finding the maximum likelihood esti-

mator (MLE) under the COM-Poisson cure model. Rodrigues et al. (2009) and de

Castro et al. (2010) proposed an iteration algorithm based on the gamlss R package,

to maximize the log-likelihood by utilizing its first-order derivatives. However, such an

approach typically needs a larger number of iterations than approaches that utilize both

the first- and second-order derivatives. Balakrishnan and Pal (2015, 2016) developed
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the EM algorithm that utilizes the first- and second-order derivatives. However, EM

algorithms are complicated algorithms that iterate between E-step and M-step, where

M-step has “inside” iterations.

In general, the convergence speed (say, the number of iterations) of the EM algo-

rithm is slower than the Newton-Raphson (NR) algorithm. On the other hand, the EM

algorithm is less sensitive to the initial values than the NR algorithm. Such compara-

tive studies between the EM and NR algorithms can be found in a variety of contexts

(e.g., MacDonald 2014; Meng 2014; Emura and Shiu 2016). However, the study of this

type has not been conducted under the COM-Poisson cure lifetime models since the

NR algorithm has not been considered. The reason might be that the NR algorithm is

sensitive to the initial values.

In this paper, we develop a robust version of the NR algorithm and compare the two

computational algorithms (NR and EM) under the COM-Poisson cure model. We derive

the first- and second-order derivatives of the log-likelihood for the NR algorithm under

the Bernoulli cure model, a special case of the COM-Poisson cure model. We compare

the convergence properties between the NR and EM algorithms via simulations. We

also compare the two algorithms through the analysis of patients with uveal cancer

that are new data in the context of cure models. We provide the R codes to implement

the proposed NR algorithm and conduct simulations.

The paper is organized as follows. Section 2 reviews the COM-Poisson cure model.

Section 3 introduces the likelihood, MLE, and EM algorithm. Section 4 develops the

NR algorithm. Section 5 conducts simulations and Section 6 analyzes real data. Section

7 concludes. Appendices include the detailed mathematical expressions and R codes.

2. COM-Poisson cure model for survival data
This section reviews the cure model for survival data based on the COM-Poisson dis-

tribution.
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2.1 The Conway-Maxwell-Poisson (COM-Poisson) distribution

The Conway-Maxwell-Poisson (COM-Poisson) distribution is a family of discrete dis-

tributions introduced by Conway and Maxwell (1962). Let M be the number of failure

causes following the COM-Poisson distribution

P (M = m; η, φ) =
1

Z(η, φ)

ηm

(m!)φ
, m = 0, 1, 2, . . . ; η > 0, φ ≥ 0,

where

Z(η, φ) =

∞∑
j=0

ηj

(j!)φ
.

If the preceding sum is infinite, the distribution is undefined. For instance, when φ = 0,

the infinite sum is finite only when 0 < η < 1. When φ = 1, the Poisson distribution

is defined for any η > 0. By setting a proper parameter space for η > 0 and φ ≥ 0,

the COM-Poisson distribution yields the three discrete distributions, namely Bernoulli,

Poisson, and Geometric distributions (Table 1).

The distributional characteristics (e.g., moments and distribution function) of the

COM-Poisson distribution are well-developed (Nadarajah 2009). In addition, applica-

tions of the COM-Poisson distribution can be seen in both engineering (Sellers 2012)

and biomedical studies.

Table 1: Three different cases of the COM-Poisson distribution.

Distribution Z(η, φ) Cured proportion

φ = 0 and η < 1 Geometric 1

(1− η)
p0 = 1− η

φ = 1 Poisson exp(η) p0 =
1

exp(η)

φ → ∞ Bernoulli 1 + η p0 =
1

(1 + η)

4



THE COM-POISSON CURE RATE MODEL FOR SURVIVAL
DATA - COMPUTATIONAL ASPECTS

2.2 Cure proportion

To account for the cured proportion in a population, Rodrigues et al. (2009) assumed

that the cure proportion (no failure cause) is

p0 = P (M = 0; η, φ) =
1

Z(η, φ)
.

For instance, the Bernoulli distribution corresponds to

lim
φ→∞

Z(η, φ) = lim
φ→∞

∞∑
j=0

ηj

(j!)φ
= lim

φ→∞

[
1

1
+

η

1
+

η2

(2!)φ
+ . . .

]
= 1 + η.

Therefore,

p0 = P (M = 0; η,∞) =
1

1 + η
, P (M = 1; η,∞) =

η

1 + η
,

This model implies that the population is a mixture of the cured patients and non-cured

patients, yielding the traditional cure model, called a mixture cure model (Boag 1949).

Hence, the COM-Poisson cure model is a generalization of the traditional cure mdoel.

2.3 Lifetime distributions

Given M = m, let Wj(j = 1, 2, . . .m) denote the time-to-event due to the j-th

cause of failure. Assume that Wj ’s are iid, with a common distribution function

F (y) = Pr(Wj ≤ y) and survival function S(y) = 1 − F (y), and that Wj ’s and M

are independent. The lifetime is defined as the time at which at least one failure causes

occur,

Y = min{W0,W1,W2, . . . ,WM},

where W0 = ∞. This leads to the cure proportion p0 = Pr(Y = ∞) = Pr(M = 0).

Note that, if Wj ’s follow the exponential distribution, then, the resultant distribution of

Y | M > 0 is called the exponential COM-Poisson distribution (Cordeiro et al. 2012).
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Example 1. The Weibull distribution

The Weibull model (Balakrishnan and Pal 2016) is specified as the survival function

S(ω; γ) = P (Wj > ω) = exp[−(γ2ω)
1
γ1 ], ω > 0

for γ = (γ1, γ2), where γ1 > 0 is the shape parameter and γ2 > 0 is the scale parameter.

The probability density function (pdf) is

f(ω; γ) = − d

dω
S(ω; γ) =

1

γ1ω
(γ2ω)

1
γ1 S(ω; γ), ω > 0.

Example 2. The generalized gamma (G-gamma) distribution

The G-gamma model (Balakrishnan and Pal 2015) is specified as the pdf

f(ω; γ) =


q{q−2(λω)

q
σ }q−2

exp{−q−2(λω)
q
σ }/{Γ(q−2)σω}, if q > 0;

(
√
2πσω)−1 exp[−{log(λω)}2/(2σ2)], if q = 0,

for γ = (q, σ, λ), where q ≥ 0 and σ > 0 are the shape parameters, and λ > 0 is the

scale parameter.

The case q = 1 gives the Weibull model ( γ1 = σ and γ2 = λ ) with the pdf

f(ω; 1, σ, λ) =
1

σω
(λω)

1
σ exp{−(λω)

1
σ }.

The case q → 0 gives the lognormal model with the pdf,

f(ω; 0, σ, λ) =
1√

2πσω
exp

[
−{log(λω)}2

2σ2

]
.

The case q = σ gives the gamma model ( α=σ−2 and β = σ2/λ ) with the pdf

f(ω;σ, σ, λ) =
1

Γ(σ−2)

(
λ

σ2

)σ−2

(ω)σ
−2−1 exp

(
− λ

σ2
ω

)
.

The survival function of the G-gamma distribution is

S(ω; γ) =


Γ(q−2, q−2(λω)

q
σ )/Γ(q−2), if q > 0;

1− Φ

(
log(λω)

σ

)
, if q = 0,
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where Γ(a, b) =
∫∞
b xa−1e−xdx is the upper incomplete gamma function and Φ(·) is the

cumulative distribution function (cdf) of N(0, 1).

2.4 Long-term survival function

Rodrigues et al. (2009) showed that the survival function of Y is given by

Sp(y) = Pr(Y > y) =
Z(ηS(y), φ)

Z(η, φ)
,

where S(y) = Pr(Wj > y). Note that Sp(y) is not a proper survival function in the

sense of lim
y→∞

Sp(y) 6= 0. For this reason, we call Sp(y) as long-term survival function.

Indeed,

lim
y→∞

Sp(y) = lim
y→∞

Z(ηS(y), φ)

Z(η, φ)
=

Z(0, φ)

Z(η, φ)
=

1

Z(η, φ)
= p0 > 0.

The last expression is the cured proportion.

The derivative of Sp(y) yields the improper density function of Y ,

fp(y) =
1

Z(η, φ)

f(y)

S(y)

∞∑
j=0

j{ηS(y)}j

(j!)φ
.

One has an alternative expression for Sp(y) by considering the population as a mixture

of cured and non-cured populations, namely,

Sp(y) = P (M > 0)P (Y > y|M > 0) + P (M = 0)P (Y > y|M = 0)

= (1− p0)S1(y) + p0,

where S1(y) = P (Y > y|M > 0) denotes the survival function of the non-cured popu-

lation. Note that S1(y)is a proper survival function in that lim
y→∞

S1(y) = 0.

3. Likelihood and MLE
We introduce the likelihood function and define the maximum likelihood estimator

(MLE). We also discuss the complete-data likelihood function to be used for the EM

algorithm.
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3.1 Right-censored data with cure

Let Yi be the lifetime variable, Ci be the right-censored time, and Ti = min{Yi, Ci} be

the observed lifetime for a subject i. Define the censoring indicator and cure indicator

δi = I(Yi ≤ Ci) =

0 if the observation is censored,
1 if the observation is not censored .

; Ii =

1 if not cure,
0 if cure.

What we observe are Ti and δi. We know Ii=1 when δi = 1. However, we are uncertain

about Ii when δi = 0. We also observe covariates x′
i = (1, xi1, . . . , xik), where the first

element is the intercept.

Figure 1 displays three observation patterns. In Case 1 (δi = 1, Ii = 1), the failure

event is observed. In Case 2 (δi = 0, Ii = 1), the failure event is not observed due

to censoring. In Case 3 (δi = 0, Ii = 0) the failure event is not observed due to cure.

One cannot distinguish between Case 2 and Case 3 from observation as the value Ii is

missing.

Figure 1: Three observation patterns under censoring and cure.
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3.2 Likelihood construction and MLE

Balakrishnan and Pal (2016) relates the cure proportion p0 to covariates x′
i = (1, xi1, . . . , xik)

by the logistic link function

p0(xi;β) =
1

1 + exp(x′
iβ)

, i = 1, 2, . . . , n,

where β = (β0, β1, . . . , βk)
′ denote the vector of regression coefficients. In the Bernoulli

cure case of φ → ∞ , one has Z(η, φ) = 1 + η , and hence η = exp(x′
iβ) .

Based on the observed data, Rodrigues et al. (2009) obtained the likelihood function

L(θ) =

n∏
i=1

fp(ti,xi;θ)
δiSp(ti,xi;θ)

1−δi ,

where θ = (β,γ), t = (t1, . . . , tn), δ = (δ1, . . . , δn), and γ is the parameter related to

the distribution of Y . The log-likelihood function is

`(θ) =

n∑
i=1

δi log fp(ti,xi;θ) +

n∑
i=1

(1− δi) logSp(ti,xi;θ).

The MLE is then defined as θ̂ = argmax
θ

`(θ).

Under the Bernoulli case of φ → ∞ , we have Z(η, φ) = 1 + η , η = exp(x′
iβ) .

Thus, the log-likelihood function can be computed by the expressions

Sp(y,xi;θ) =
1 + exp(x′

iβ)S(y;γ)

1 + exp(x′
iβ)

, fp(y,xi;θ) =
exp(x′

iβ)f(y;γ)

1 + exp(x′
iβ)

Example 3. Weibull lifetime with Bernoulli cure

Let n1 =
n∑

i=1

δi be the number of uncensored subjects. The log-likelihood function

becomes

`(θ) =

n∑
i=1

δix
′
iβ − n1 log γ1 −

n∑
i=1

δi log ti +
n1 log γ2

γ1
+

1

γ1

n∑
i=1

δi log ti −
n∑

i=1

δi(γ2ti)
1
γi

+
n∑

i=1

(1− δi) log[1 + exp{x′
iβ − (γ2ti)

1
γ1 }]−

n∑
i=1

log
{
1 + exp(x′

iβ)
}
,

(1)
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where θ = (β, γ1, γ2) .

Example 4. G-gamma lifetime with Bernoulli cure

We assume that q is a fixed value in γ = (q, σ, λ) . Then, the log-likelihood becomes

`(θ) =

n∑
i=1

δix
′
iβ +

n∑
i=1

δi log f(ti;σ, λ)

+
n∑

i=1

(1− δi) log{1 + exp(x′
iβ)S(ti;σ, λ)} −

n∑
i=1

log{1 + log(x′
iβ)},

(2)

where θ = (β, σ, λ) .

3.3 Complete-data likelihood and EM-algorithm

Balakrishnan and Pal (2015, 2016) re-expressed the likelihood function as

L(θ) =

n∏
i=1

{fp(ti,xi;θ)}δi
n∏

i=1

{p0(xi;β) + (1− p0(xi;β))S1(ti,xi;θ)}1−δi .

Assuming that Ii is observable, they considered the complete data likelihood function

Lc(θ) =
n∏

i=1

{fp(ti,xi;θ)
δi}Ii

n∏
i=1

{p0(θ1,xi)
1−δi}1−Ii{(1−p0(θ1,xi))

1−δiS1(ti,xi;θ)
1−δi}Ii .

The log of the complete-data likelihood function is given by

`c(θ) =

n∑
i=1

Iiδi log fp(ti,xi;θ) +

n∑
i=1

(1− Ii)(1− δi) log p0(θ1,xi)

+
n∑

i=1

Ii(1− δi) log{(1− p0(θ1,xi))S1(ti,xi;θ)}.

The idea of the EM algorithm (McLachlan and Krishman 2008) is to remove miss-

ing values (Ii’s) by taking their conditional expectation given observed data O = {

observed I ′is, (ti, δi), i = 1, 2, . . . , n}. Given observed data, the I ′is follow the indepen-

dent Bernoulli random variables with success rate π∗
i = E(Ii|θ∗,O), i = 1, 2, . . . , n,

where θ∗ = (β∗′ ,γ∗′)′ are the initial guess for parameters. It follows that

π∗
i = Pθ∗ [Ii = 1|Ti > ti] =

Pθ∗ [Ti > ti|Ii = 1]Pθ∗ [Ii = 1]

Pθ∗ [Ti > ti]
=

(1− p0(β
∗,xi))S1(ti,xi;θ

∗)

Sp(ti,xi;θ
∗)

.

10



THE COM-POISSON CURE RATE MODEL FOR SURVIVAL
DATA - COMPUTATIONAL ASPECTS

If δi = 1 , we set π∗
i = Ii = 1 .

The EM-algorithm of Balakrishnan and Pal (2015, 2016) is stated as follows.

E-Step: Given θ∗, calculate the conditional expectation of the complete-data log-

likelihood Q(θ,π∗) = E[`c(θ)|θ∗,O], where π∗ is the vector of π∗
i ’s.

M-Step: Obtain the updated value θ∗∗ = argmax
θ∈Θ

Q(θ,π∗) .

The EM algorithm repeats between E-step and M-step until θ∗∗ ≈ θ∗. More details

are given in Balakrishnan and Pal (2016) for the Weibull model and Balakrishnan and

Pal (2015) for the G-gamma model.

It is important to notice that M-Step requires an iteration algorithm to maxi-

mize Q(θ,π∗). Balakrishnan and Pal (2015, 2016) used the one-step Newton-Raphson

method to approximate θ∗∗. This approximation method, known as the EM-gradient

algorithm (Lange 1995), does not strictly maximize Q(θ,π∗). Since it is not clear how

this approximation affects the final estimate, we use a strict maximization algorithm

in our numerical studies.

4. Newton-Raphson algorithm
This section introduces a robust version of the NR algorithm to find the MLE under the

Weibull and G-gamma models. Given the initial values θ∗ , the NR algorithm iteration

is defined as

θ∗∗ = θ∗ −
{

∂2

∂θ∂θ′ `(θ)

}−1
∂

∂θ
`(θ)

∣∣∣∣
θ=θ∗

.

This iteration continues until θ∗∗ ≈ θ∗. Under the Bernoulli cure model, we derive the

expressions of the first- and second-derivatives in Appendix A (Weibull) and Appendix

B (G-gamma).

An important advantage of the NR algorithm over the algorithm of Rodrigues et

al. (2009) is the use of the Hessian matrix ∂2`(θ)/∂θ∂θ′. The Hessian matrix not only

accelerates the convergence speed, but also facilitates the calculations of standard errors

(SEs). The SE of a parameter estimate is a diagonal element of
[
−∂2`(θ)/∂θ∂θ′∣∣

θ=θ̂

]−1

that is immediately available from the converged step of the NR algorithm.

A potential disadvantage of the NR algorithm is its sensitivity to the choice of initial
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values (Knight 2000). However, this drawback can be easily remedied by adopting two

strategies:

• One must use the transformation to avoid the parameter constraints (MacDonald

2014). For instance, to ensure the constraint γ1 > 0 , the NR algorithm should

be performed for the unconstraint parameter γ̃1 = log(γ1).

• One should try the NR algorithm under several different choices of initial values.

For instance, the NR algorithm can be tried with random initial values. This

approach is called the randomized NR algorithm (Hu and Emura 2015; Emura

and Pan 2017).

In our experiences, a claim “Newton-Raphson fails to converge” is mostly avoided by

the above remedies. Of course, if the likelihood itself has a problem (e.g., does not have

a peak), this problem is nothing to do with the NR algorithm. It is most interesting

to read the letter of MacDonald (2014) and its reply (Meng 2014) on the arguments

between the NR and EM algorithms.

In the following, we provide the concrete algorithms of implementing the parameter

transformations and the randomized NR algorithm under the Weibull model.

Algorithm 1: The randomized NR algorithm under the Weibull model

Let γ̃j = log(γj), j = 1, 2, be transformed parameters.

Step 1: Set initial values (β
(0)
0 , β

(0)
1 ,γ̃(0)1 , γ̃

(0)
2 ). We also set some positive

tuning parameters B0 and B1 , corresponding to β0 and β1 .

Step 2: Repeat the following iteration, for h = 0, 1, 2, . . .

β
(h+1)
0

β
(h+1)
1

γ̃
(h+1)
1

γ̃
(h+1)
2


=



β
(h)
0

β
(h)
1

γ̃
(h)
1

γ̃
(h)
2


−



∂2`

∂β2
0

∂2`

∂β0∂β1

∂2`

∂β0∂γ1

∂2`

∂β0∂β2

∂2`

∂β0∂β1

∂2`

∂β2
1

∂2`

∂β1∂γ1

∂2`

∂β1∂γ2

∂2`

∂β0∂γ1

∂2`

∂β1∂γ1

∂2`

∂γ2
1

∂2`

∂γ1∂γ2

∂2`

∂β0∂γ2

∂2`

∂β1∂γ2

∂2`

∂γ1∂γ2

∂2`

∂γ2
2



−1 

∂`

∂β0

∂`

∂β1

∂`

∂γ1

∂`

∂γ2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣β0 = β
(h)
0 , β1 = β

(h)
1 ,

γ1 = exp(γ̃
(h)
1 ),

γ2 = exp(γ̃
(h)
2 )
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• if max{|β(h+1)
0 −β

(h)
0 |, |β(h+1)

1 −β
(h)
1 |, |γ̃(h+1)

1 − γ̃
(h)
1 |, |γ̃(h+1)

2 − γ̃
(h)
2 |} < 10−3

, then stop the algorithm and (β
(h+1)
0 , β

(h+1)
1 , γ̃

(h+1)
1 , γ̃

(h+1)
2 ) is the MLE of

(β0, β1, γ̃1, γ̃2).

• if |β(h+1)
0 | > B0 , replace β

(0)
0 with β

(0)
0 + u1, where u1 ∼ U(−1, 1). Return

to Step 2.

• if |β(h+1)
1 | > B1 , replace β

(0)
1 with β

(0)
1 + u2, where u2 ∼ U(−1, 1). Return

to Step 2.

Appendix C provides the R codes for implementing Algorithm 1 in the simulation

studies. In the codes, we set initial values β
(0)
0 = β

(0)
1 = 0 and γ̃

(0)
1 = γ̃

(0)
2 = −2. The

choice “−2” means that initial values γ
(0)
1 and γ

(0)
2 are near zero. However, the choice

“−3” is too close to zero that yields a Hessian matrix that is singular (not invertible).

This phenomenon yields a condition that the parameter space for γj is (ε,∞) for a

small value ε > 0. The tuning parameters in Step 1 are chosen to be B0 = B1 = 3

in the simulations and data analysis. However, the choice is somewhat arbitrary and

depends on the scale of β0, β1, γ̃1, and γ̃2. Therefore, we examine the robustness of

B0 = B1 = 3 under different parameter settings in the simulations.

5. Simulation
We conducted Monte Carlo simulations to compare the performance between the NR

and EM algorithms. We adopt the same design as Balakrishnan and Pal (2015, 2016)

that used a discrete covariate (x = 1, 2, 3, or 4). We focus our simulations on the

Bernoulli cure model with the Weibull or the G-gamma models. Model parameters were

chosen to control the cure proportion and censoring proportion (heavy vs. moderate)

at each x. Table 2 summarizes the parameter configuration.

We generated data by following the schemes of Balakrishnan and Pal (2015, 2016),

and then calculated the parameter estimates by using the NR and EM algorithms. For

each algorithm, we counted the number of iterations to achieve convergence. Note that
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Table 2: Parameter configurations for simulations.

i) Weibull model: β0 = −1.192, β1 = 0.573, γ1 = 0.316, γ2 = 0.179

Covariate x 1 2 3 4
Cure proportion p0(x;β0, β1) 0.65 0.51 0.37 0.25
Heavy censoring proportion p 0.80 0.65 0.50 0.35

ii) Weibull model: β0 = −0.038, β1 = 0.443, γ1 = 0.316, γ2 = 0.179

Covariate x 1 2 3 4
Cure proportion p0(x;β0, β1) 0.40 0.30 0.22 0.15

Moderate censoring proportion 0.50 0.40 0.30 0.20

iii) G-gamma model: β0 = −1.192, β1 = 0.573, σ = 0.871, λ = 4.632, q = 0.5

Covariate x 1 2 3 4
Cure proportion p0(x;β0, β1) 0.65 0.51 0.37 0.25
Heavy censoring proportion 0.80 0.65 0.50 0.35

iv) G-gamma model: β0 = −0.038, β1 = 0.443, σ = 0.871, λ = 4.632, q = 0.5

Covariate x 1 2 3 4
Cure proportion p0(x;β0, β1) 0.40 0.30 0.22 0.15

Moderate censoring proportion 0.50 0.40 0.30 0.20

the EM algorithm has two different counts of iterations, “Outside iteration” between

E-step and M- steps and “Inside iteration” within M-step. We also calculated the SE

and the 95% confidence interval (CI) to see the performance of interval estimation. The

estimates and coverage rates (CRs) of the CIs are assessed based on 200 repetitions.

The R codes for the simulation studies are available in Appendix C.

Results under the Weibull model

Results are given in Table 3 (NR) and Table 4 (EM).

The NR and EM algorithms produced nearly identical estimation performances

(Tables 3 and 4). The NR and EM gave unbiased estimates for the true values for all

the configurations, irrespective of censoring percentages and cure proportions. Both

algorithms achieved the CRs close to the nominal levels in most configurations. One

remarkable exception is the CR for γ2 which is slightly below the nominal level. The
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NR algorithm has especially worth performance (coverage rate=0.845 for the nominal

90%), which is somehow improved by the EM (coverage rate=0.870). While the reason

is not clear, we used the log-transformed CI intervals for both γ1 and γ2 . Perhaps,

other transformations may improve the coverage performance since SE is still close to

SD.

The main difference between the NR and EM algorithms is the number of iterations

until convergence. The NR requires about 30 iterations. This represents the total

number of iterations including the steps of random initial values. The EM algorithm

requires about 5 outside iterations (between E- and M- steps) and 8 inside iterations

within M-step, thus, 5×8=40 iterations in total. Hence, there seems no big difference

in their actual iteration numbers and thus their computing times.

Recall that the NR algorithm (Algorithm 1) employs the tuning parameters B0 and

B1. For instance, if |β(h+1)
0 | > B0 in the h-th iteration, the NR algorithm restarts

after replacing the initial values by β
(0)
0 + u1, where u1 ∼ U(−1, 1). We shall examine

the robustness of our chosen values B0 = B1 = 3 under different parameter settings

than those of Tables 3 and Tables 4. Table 5 shows the simulation results by replacing

γ1 = 0.316 and γ2 = 0.179 with γ1 = γ2 = 1.2. Estimates are still unbiased and the

CIs have accurate CRs for the true parameters.

Results under the G-gamma model

Results are given in Table 6 (NR) and Table 7 (EM).

The NR and EM algorithms produced similar estimation performances (Estimate,

SD, SE are very similar but CR is not). The NR and EM algorithms gave unbiased

estimates for the true values for all the configurations, irrespective of censoring per-

centages and cure proportions. Both algorithms achieved the CRs reasonably close to

the nominal levels in most configurations. An exception is the CR for γ2 , where the

worst case is seen in both the NR and EM algorithms (CR=0.845 for the nominal 90%

in n=400). However, this is improved by increasing the sample size (CR=0.890 for the

nominal 90% in n=600).

The main difference between the NR and EM algorithms is the number of iterations

15
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Table 3: Simulation results on the NR algorithm with Weibull lifetime (200 repeti-
tions).

n
Censoring

AI Parameter Estimate Bias SD SE
CR

proportion 90% 95%

200 High 30.5 β0 =-1.192 -1.236 -0.044 0.411 0.393 0.895 0.960
β1 = 0.573 0.584 0.011 0.163 0.156 0.900 0.945
γ1 = 0.316 0.314 -0.002 0.025 0.025 0.895 0.940
γ2 = 0.179 0.179 0.000 0.007 0.006 0.870 0.935

Low 30.6 β0 =-0.038 -0.038 0.000 0.401 0.394 0.905 0.950
β1 = 0.443 0.446 0.003 0.167 0.167 0.915 0.945
γ1 = 0.316 0.314 -0.002 0.021 0.021 0.885 0.935
γ2 = 0.179 0.178 -0.001 0.006 0.005 0.845 0.910

400 High 30.5 β0 =-1.192 -1.236 -0.044 0.266 0.277 0.915 0.955
β1 = 0.573 0.588 0.015 0.107 0.110 0.900 0.965
γ1 = 0.316 0.314 -0.002 0.017 0.018 0.915 0.950
γ2 = 0.179 0.179 0.000 0.005 0.004 0.860 0.910

Low 30.6 β0 = -0.038 -0.044 -0.006 0.281 0.278 0.890 0.945
β1 = 0.443 0.448 0.005 0.120 0.117 0.900 0.945
γ1 = 0.316 0.314 -0.002 0.016 0.015 0.900 0.930
γ2 = 0.179 0.179 -0.000 0.004 0.004 0.845 0.925

600 High 30.5 β0 =-1.192 -1.197 -0.005 0.226 0.225 0.900 0.960
β1 = 0.573 0.574 0.001 0.089 0.089 0.885 0.945
γ1 = 0.316 0.315 -0.001 0.014 0.015 0.925 0.970
γ2 = 0.179 0.179 0.000 0.004 0.004 0.905 0.950

Low 30.6 β0 =-0.038 -0.055 -0.017 0.241 0.227 0.910 0.955
β1 = 0.443 0.458 0.015 0.101 0.096 0.870 0.920
γ1 = 0.316 0.315 -0.001 0.013 0.012 0.885 0.955
γ2 = 0.179 0.179 0.000 0.003 0.003 0.870 0.940

Note: AI=the average number of iterations, Estimate=the average of estimates,
SD=standard deviation, SE=the average of standard errors, CR=coverage rate of
confidence intervals.
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Table 4: Simulation results on the EM algorithm with Weibull lifetime (200 repeti-
tions).

n p
AI

Parameter Estimate Bias SD SE
CR

outside inside 90% 95%

200 High 5.58 7.6 β0 =-1.192 -1.236 -0.044 0.411 0.393 0.895 0.960
β1 = 0.573 0.584 0.011 0.163 0.156 0.900 0.945
γ1 = 0.316 0.314 -0.002 0.025 0.025 0.905 0.940
γ2 = 0.179 0.179 0.000 0.007 0.006 0.870 0.940

Low 4.3 8.7 β0 =-0.038 -0.037 -0.001 0.401 0.394 0.905 0.950
β1 = 0.443 0.446 0.003 0.167 0.167 0.915 0.945
γ1 = 0.316 0.315 -0.001 0.021 0.021 0.890 0.935
γ2 = 0.179 0.179 0.000 0.006 0.005 0.880 0.930

400 High 5.6 7.6 β0 =-1.192 -1.235 -0.043 0.266 0.277 0.915 0.955
β1 = 0.573 0.588 0.015 0.107 0.110 0.900 0.965
γ1 = 0.316 0.315 -0.001 0.017 0.018 0.915 0.955
γ2 = 0.179 0.179 0.000 0.005 0.004 0.870 0.920

Low 4.2 8.8 β0 = -0.038 -0.044 -0.006 0.281 0.278 0.890 0.945
β1 = 0.443 0.448 0.005 0.120 0.117 0.900 0.945
γ1 = 0.316 0.315 -0.001 0.016 0.015 0.915 0.935
γ2 = 0.179 0.179 0.000 0.004 0.004 0.880 0.935

600 High 5.6 7.6 β0 =-1.192 -1.197 -0.005 0.226 0.225 0.900 0.960
β1 = 0.573 0.574 0.001 0.089 0.089 0.885 0.945
γ1 = 0.316 0.316 -0.000 0.014 0.015 0.925 0.970
γ2 = 0.179 0.179 0.000 0.004 0.004 0.915 0.950

Low 4.1 9.0 β0 =-0.038 -0.055 -0.017 0.241 0.227 0.910 0.955
β1 = 0.443 0.458 0.015 0.101 0.096 0.870 0.920
γ1 = 0.316 0.316 -0.000 0.012 0.012 0.890 0.955
γ2 = 0.179 0.179 0.000 0.003 0.003 0.870 0.935

Note: p =censoring proportion, Estimate=the average of estimates, AI=the aver-
age number of iterations (Outside for E-steps, Inside for Q-function), SD=standard
deviation, SE=the average of standard errors, CR=coverage rate of confidence in-
tervals.
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Table 5: Simulation results on the NR algorithm with Weibull lifetime (200 repeti-
tions).

n
Censoring

AI Parameter Estimate Bias SD SE
CR

proportion 90% 95%

200 High 22.9 β0 =-1.192 -1.225 -0.033 0.381 0.368 0.910 0.955
β1 = 0.573 0.580 0.007 0.150 0.147 0.910 0.965
γ1 = 1.2 1.193 -0.007 0.091 0.093 0.910 0.955
γ2 = 1.2 1.218 0.018 0.165 0.153 0.880 0.940

Low 22.7 β0 =-0.038 -0.033 0.005 0.366 0.378 0.935 0.955
β1 = 0.443 0.445 0.002 0.152 0.161 0.915 0.965
γ1 = 1.2 1.195 -0.005 0.075 0.079 0.910 0.940
γ2 = 1.2 1.212 0.012 0.142 0.129 0.870 0.930

400 High 22.5 β0 =-1.192 -1.222 -0.030 0.252 0.259 0.920 0.960
β1 = 0.573 0.582 0.009 0.102 0.103 0.915 0.965
γ1 =1.2 1.194 -0.006 0.062 0.066 0.915 0.960
γ2 = 1.2 1.215 0.015 0.120 0.108 0.855 0.915

Low 22.5 β0 = -0.038 -0.035 -0.003 0.263 0.266 0.890 0.945
β1 = 0.443 0.444 0.001 0.114 0.113 0.875 0.955
γ1 = 1.2 1.196 -0.004 0.057 0.056 0.895 0.945
γ2 = 1.2 1.215 0.015 0.098 0.092 0.860 0.920

600 High 22.4 β0 =-1.192 -1.193 -0.001 0.213 0.211 0.910 0.950
β1 = 0.573 0.572 -0.001 0.085 0.084 0.890 0.940
γ1 = 1.2 1.199 -0.001 0.050 0.054 0.925 0.960
γ2 = 1.2 1.213 0.013 0.086 0.088 0.900 0.945

Low 22.4 β0 =-0.038 -0.050 -0.012 0.229 0.218 0.895 0.940
β1 = 0.443 0.456 0.013 0.095 0.093 0.885 0.955
γ1 = 1.2 1.199 -0.001 0.046 0.046 0.895 0.945
γ2 = 1.2 1.214 0.014 0.080 0.075 0.860 0.935

Note: AI=the average number of iterations, Estimate=the average of estimates,
SD=standard deviation, SE=the average of standard errors, CR=coverage rate of
confidence intervals.
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Table 6: Simulation results on the NR algorithm with the G-gamma model (200
repetitions).

n
Censoring

AI Parameter Estimate Bias SD SE
CR

proportion 90% 95%

200 High 13.8 β0 =-1.192 -1.231 -0.039 0.107 0.399 0.925 0.965
β1 = 0.573 0.585 0.012 0.164 0.159 0.910 0.960
σ = 0.871 0.869 -0.002 0.072 0.070 0.870 0.945
λ =4.632 4.635 0.003 0.461 0.447 0.885 0.950

Low 14.0 β0 =-0.038 -0.049 -0.011 0.424 0.403 0.895 0.945
β1 = 0.443 0.455 0.011 0.174 0.171 0.910 0.950
σ = 0.871 0.869 -0.002 0.053 0.057 0.915 0.960
λ = 4.623 4.674 0.015 0.399 0.366 0.865 0.940

400 High 13.8 β0 =-1.192 -1.221 -0.029 0.274 0.280 0.915 0.960
β1 = 0.573 0.583 0.010 0.112 0.112 0.890 0.945
σ = 0.871 0.865 -0.006 0.047 0.049 0.890 0.960
λ = 4.632 4.635 0.003 0.353 0.314 0.870 0.925

Low 13.5 β0 = -0.038 -0.046 -0.008 0.291 0.283 0.905 0.940
β1 = 0.443 0.451 0.008 0.126 0.120 0.865 0.920
σ = 0.871 0.866 -0.005 0.039 0.040 0.915 0.935
λ = 4.632 4.622 -0.010 0.285 0.256 0.845 0.905

600 High 13.6 β0 =-1.192 -1.188 0.004 0.230 0.228 0.905 0.950
β1 = 0.573 0.570 -0.003 0.091 0.091 0.895 0.945
σ = 0.871 0.869 -0.002 0.037 0.040 0.910 0.960
λ = 4.632 4.612 -0.020 0.261 0.256 0.920 0.950

Low 14.1 β0 =-0.038 -0.051 -0.013 0.247 0.231 0.880 0.955
β1 = 0.443 0.456 0.013 0.103 0.098 0.890 0.945
σ = 0.871 0.869 -0.002 0.032 0.033 0.900 0.945
λ = 4.632 4.618 -0.014 0.228 0.209 0.880 0.930

Note: AI=the average number of iterations, Estimate=the average of estimates,
SD=standard deviation, SE=the average of standard errors, CR=coverage rate of
confidence intervals.
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Table 7: Simulation results on the EM with the G-gamma model (200 repetitions).

n p
AI

Parameter Estimate Bias SD SE
CR

outside inside 90% 95%

200 High 6.2 13.5 β0 =-1.192 -1.231 -0.039 0.407 0.399 0.925 0.965
β1 = 0.573 0.585 0.012 0.164 0.159 0.910 0.960
σ = 0.871 0.869 -0.002 0.072 0.070 0.880 0.945
λ = 4.632 4.635 0.003 0.460 0.447 0.890 0.940

Low 4.9 14.7 β0 = -0.038 -0.049 -0.011 0.424 0.403 0.895 0.945
β1 = 0.443 0.454 0.011 0.174 0.171 0.910 0.950
σ = 0.871 0.869 -0.002 0.053 0.057 0.910 0.960
λ = 4.632 4.648 0.016 0.399 0.366 0.865 0.940

400 High 6.1 13.8 β0 =-1.192 -1.221 -0.029 0.274 0.280 0.915 0.960
β1 = 0.573 0.584 0.011 0.112 0.112 0.890 0.945
σ = 0.871 0.865 -0.006 0.047 0.0494 0.890 0.960
λ = 4.632 4.635 0.003 0.353 0.314 0.870 0.925

Low 4.7 14.5 β0 = -0.038 -0.046 -0.008 0.291 0.283 0.905 0.940
β1 = 0.443 0.451 0.008 0.126 0.120 0.865 0.920
σ = 0.871 0.866 -0.005 0.039 0.004 0.915 0.935
λ = 4.632 4.622 -0.010 0.285 0.256 0.845 0.905

600 High 6.1 13.7 β0 =-1.192 -1.188 0.004 0.230 0.228 0.905 0.955
β1 = 0.573 0.570 -0.003 0.091 0.091 0.895 0.945
σ = 0.871 0.869 -0.002 0.037 0.040 0.910 0.960
λ = 4.632 4.611 -0.021 0.260 0.256 0.920 0.950

Low 4.6 14.6 β0 =-0.038 -0.051 -0.013 0.247 0.231 0.880 0.955
β1 = 0.443 0.456 0.013 0.102 0.098 0.885 0.945
σ = 0.871 0.869 -0.002 0.032 0.033 0.900 0.945
λ = 4.632 4.618 -0.014 0.228 0.209 0.890 0.925

Note: p=censoring proportion, AI=the average number of iterations (Outside for
E-steps, Inside for Q-function), Estimate=the average of estimates, SD=standard
deviation, SE=the average of standard errors, CR=coverage rate of confidence in-
tervals.
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to achieve convergence. The NR algorithm requires about 14 iterations to achieve

convergence. The EM algorithm also requires 14 inside iterations within M-step. Since

the EM requires about 5 outside iterations between E- and M-steps, the actual iteration

number is 5×14=70. Therefore, the NR algorithm converges much faster than the EM

algorithm.

6. Data analysis
We consider the uveal cancer data to illustrate the methods.

6.1 Uveal cancer data

We use the uveal cancer data available from European Molecular Biology Laboratory-

European Bioinformatics Institute (EMBL-EBI). The data are obtained from EMBL-

EBI’s website (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-22138/),

which were released on December 2010 and updated on March 2012.

Uveal melanoma is a cancer of eyes, occurring in left or right eye. Uveal cancer

patients may develop metastasis frequently occurring in the liver. Therefore, time-to-

metastasis is the event time of interest.

Table 8 shows the profile of n = 63 patients. The event time is time-to-metastasis

(in months, denoted as Y ). The event time is censored by follow-up time (in months,

denoted as C). The gender is a binary covariate of interest. There are 39 males and 24

females.

6.2 Model fitting

In the Bernoulli cure model, the cure proportion is related to a covariate xi by

p0(xi;β0, β1) =
1

1 + exp(β0 + β1xi)
, i = 1, 2, . . . , n.

where xi is the gender (set xi = 1 for males) and (set xi = 2 for females). Under this

model, the improper survival function is

Sp(y, xi;θ) =
1 + exp(β0 + β1xi)S(y;γ)

1 + exp(β0 + β1xi)
,
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where the form of the survival function S(y;γ) depends on the lifetime model. The

estimates of these quantities are obtained by replacing the parameters by their MLEs

(calculated by either the EM or the NR algorithm). The SEs are estimated by the

delta method, and 95% CIs are computed by the normal approximation under the

usual assumption of the asymptotic normality of the parameter estimates.

1) Weibull lifetime model:S(y;γ) = exp{−(γ2y)
1
γ1 }

Table 9 shows the parameter estimates obtained from the NR and EM algorithms.

The two algorithms produce similar estimates. Although the numerical values are not

identical, the NR and EM algorithms essentially produce the same conclusion: Females

have a higher cure rate (38%) than males (30%). This is confirmed by the fitted

improper survival curves (Figure 2).

2) The G-gamma lifetime model:S(y;γ) = Γ(q−2, q−2(λy)
q
σ )/Γ(q−2)

Table 10 shows the estimates and the likelihood values in the range of q ∈ [0.5, 2] based

on the NR algorithm. At the row of q = 1 (the Weibull model), estimates are identical

to those in Table 9, meaning that the NR algorithm developed under the G-gamma

model reduces to its special case. Table 10 shows that the likelihood value is maximized

at q = 1.8. Hence, we use this value for the subsequent analysis.

Table 11 shows the parameter estimates obtained from the NR and EM algorithms.

The two algorithms produce very similar estimates, showing no practical difference.

The conclusion from this data analysis is that females have a higher cure rate (42%)

than males do (35%). The same conclusion was seen under the Weibull model, but

their cure rates are slightly smaller (38% for female and 30% for male). This is the

effect of having the flat tails of the gamma-based survival function (Figure 3).
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Table 8: The uveal cancer data (http://www.ebi.ac.uk/arrayexpress/experiments /E-
GEOD-22138/ ).

Number Source Name Event time Event status Gender
(months) (yes=metastasis)

1 GSM550623 1 73 no female
2 GSM550624 1 32.13 yes male
3 GSM550625 1 0.39 yes male

...
...

...
...

...

63 GSM550685 1 7.59 yes male

NOTE: Censored percentage is 46% and the event time has median=32.13 (months)
and IQR=50.79 (months). The full data is available in Appendix D of He (2017).

Table 9: Results for fitting the Weibull model to the uveal cancer data.

Parameter Estimate 95 %CI

NR β0 1.236 (-1.168, 3.641)
β1 -0.367 (-1.740, 1.005)
γ1 1.002 (0.616, 1.387)
γ2 0.028 (0.008, 0.047)

Cure rate Male 0.295 (0.059, 0.556)
Female 0.377 (0.138, 0.634)

EM β0 1.162 (-1.073. 3.398)
β1 -0.349 (-1.667, 0.969)
γ1 0.987 (0.627, 1.348)
γ2 0.030 (0.011, 0.049)

Cure rate Male 0.307 (0.080, 0.534)
Female 0.386 (0.159, 0.613)
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Figure 2: Results for fitting the Weibull model to the uveal cancer data (gender as a
covariate). Kaplan-Meier curves and fitted parametric survival curves are shown.

Figure 3: Results for fitting the G-gamma model to the uveal cancer data (gender as
a covariate). Kaplan-Meier curves and fitted parametric survival curves are shown.
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Table 10: Results for fitting the G-gamma model to the uveal cancer data.

β0 β1 σ λ likelihood value

q =0.5 9.345 3.903 1.596 0.015 -179.9056
q =0.6 2.606 -0.724 1.372 0.022 -179.5428
q =0.7 1.932 -0.529 1.252 0.025 -179.3688
q =0.8 1.582 -0.443 1.152 0.027 -179.1908
q =0.9 1.371 -0.396 1.070 0.028 -179.0193

q =1.0 (Weibull) 1.233 -0.367 1.001 0.029 -178.8632
q =1.1 1.139 -0.347 0.944 0.029 -178.7283
q =1.2 1.073 -0.334 0.894 0.029 -178.6174
q =1.3 1.025 -0.325 0.851 0.029 -178.5306
q =1.4 0.990 -0.318 0.812 0.028 -178.4662
q =1.5 0.963 -0.313 0.777 0.028 -178.4215
q =1.6 0.944 -0.309 0.746 0.027 -178.3934
q =1.7 0.930 -0.307 0.716 0.027 -178.3786

q =1.8 (Maximized) 0.919 -0.306 0.689 0.026 -178.3741
q =1.9 0.912 -0.305 0.664 0.025 -178.3773
q =2.0 0.907 -0.304 0.640 0.025 -178.3857

Table 11: Results for fitting the G-gamma model (q = 1.8 ) to the uveal cancer data.

Parameter Estimate 95 %CI

NR β0 0.919 (-0.900, 2.738)
β1 -0.306 (-1.471, 0.860)
γ1 0.689 (0.469, 0.910)
γ2 0.026 (0.017, 0.035)

Cure rate Male 0.351 (0.175, 0.527)
Female 0.424 (0.248, 0.600)

EM β0 0.918 (-0.980, 2.815)
β1 -0.305 (-1.474, 0.863)
γ1 0.689 (0.430, 0.948)
γ2 0.026 (0.016, 0.036)

Cure rate Male 0.351 (0.149, 0.554)
Female 0.424 (0.221, 0.626)
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7. Conclusion and discussion
The main objective of this paper was to study the computational aspects of the COM-

Poisson cure rate models for survival data. We developed the NR algorithm that is a

simple, but has not been considered for the COM-Poisson cure models. We proposed

a robust version of a NR algorithm, which is robust against the choice of the initial

values. We also revisited the EM algorithms of Balakrishnan and Pal (2015, 2016).

According to our numerical studies, the NR and EM algorithms show similar per-

formance in terms of estimates. This is because the two algorithms are intended to

maximize the same likelihood. However, we still feel the need to check this agreement

due to the remarkable difference in their mathematical derivations. To the best of our

knowledge, no paper has yet checked this important issue.

Our conclusion is that the NR algorithm is faster to converge than the EM algo-

rithm, which agrees with the accepted wisdom. This is due to the fact that the EM

algorithm requires two different iterations (i.e., inside iterations and outside iterations).

However, in the present context, the speed is not significant enough to speak out for the

superiority of the NR algorithm. If one uses the EM-gradient algorithm, as suggested

in Balakrishnan and Pal (2015, 2016), one can shorten the M-step iterations. However,

the EM-gradient algorithm is an approximation technique, so it may not truly max-

imize the likelihood. It is not clear for us if this approximation technique should be

applied only for the purpose to reduce the computational speed.

In the real data analysis, we concluded that the Bernoulli cure model with the G-

gamma model is a suitable model for the uveal cancer data. Interestingly, we found

that the G-gamma model yielded flatter survival curves at the tails than the Weibull

did. In this respect, the G-gamma model developed by Balakrishnan and Pal (2015) is

an appealing choice since the primary role of the cure model is to detect “flat” tails in

the survival curves.

In the literature, it is assumed that competing event times Wj(j = 1, 2, . . . ,m) are

iid with a common distribution F (y) = Pr(Wj ≤ y). Since m event types may be asso-

ciated in many cancer examples, the independence assumption may be questionable. To

relax the independence assumption, one may consider the shared frailty model, where
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dependence among event times is accounted by an unobserved frailty term (Duchateau

and Janssen 2007). Alternatively, dependence among event times is modeled via a

copula function (Nelsen 2006). In either case, careful consideration of identifiability

(Tsiatis 1975) is required since one can only observe the event time T = min(Y,C) ,

where Y = min{W1,W2, . . . ,Wm} .

The independent censoring assumption between Y and C is another questionable

assumption to be examined. The independence assumption can often be relaxed by

copulas (Emura and Chen 2018). Since the dependence structure between Y and C is

usually asymmetric, it is interesting to study the “directional dependence” via asym-

metric copulas (Kim et al. 2009). So far, copula models have not been considered

under the COM-Poisson cure model and are interesting topics for future developments.

The cancer data we analyzed contain genomic information but we did not use them.

Then, it is an important computational issue to develop a method to incorporate high-

dimensional genetic information into the model. To reduce the dimension of the genetic

data, one can perform univariate feature selection based on significance tests with the

Cox models (Emura et al. 2019). Penalized Cox regression methods, such as the ridge

regression and Lasso, and tree-based ensemble methods can also be considered (van

Wieringen et al. 2009). However, these methods developed for Cox regression should

be modified to the logistic regression for the COM-Poisson cure rate model.
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Appendix A: Derivatives of the log-likelihood under the Weibull model

Recall from Equation (1) that the log-likelihood function is

`(θ; t, δ) =

n∑
i=1

δi(x
′
iβ)− n1 log(γ1)−

n∑
i=1

δi log(ti) +
n1 log(γ2)

γ1
+

1

γ1

n∑
i=1

δi log(ti)

−
n∑

i=1

δi(γ2ti)
1
γ1 +

n∑
i=1

(1− δi) log{1 + exp((x′
iβ)− (γ2ti)

1
γ1 )}

−
n∑

i=1

log{1 + exp(x′
iβ)}

where n1 =
n∑

i=1

δi. Let Di(θ) = (x′
iβ)− (γ2ti)

1
γ1 . Then,

∂Di(θ)

∂β0
= 1,

∂Di(θ)

∂β1
= xi,

∂Di(θ)

∂γ1
= (γ2ti)

1
γ1 log(γ2ti)

1

γ21
,

∂Di(θ)

∂γ2
= − 1

γ1γ2
(γ2ti)

1
γ1 ,

∂2Di(θ)

∂γ21
= (γ2ti)

1
γ1 log(γ2ti)

1

γ31

{
− log(γ2ti)

1

γ1
− 2

}
,

∂2Di(θ)

∂γ1∂γ2
=

1

γ21γ2
(γ2ti)

1
γ1

{
1 +

1

γ1
log(γ2ti)

}
,
∂2Di(θ)

∂γ22
=

1

γ1γ22
(γ2ti)

1
γ1

(
1− 1

γ1

)
.

The 1st derivatives:

∂`(θ; t, δ)

∂β0
= n1 +

n∑
i=1

(1− δi)
exp(Di(θ))

1 + exp(Di(θ))
−

n∑
i=1

exp(x′
iβ)

1 + exp(x′
iβ)

.

∂`(θ; t, δ)

∂β1
=

n∑
i=1

δixi +
n∑

i=1

(1− δi)xi
exp(Di(θ))

1 + exp(Di(θ))
−

n∑
i=1

exp(x′
iβ)xi

1 + exp(x′
iβ)

.

∂`(θ; t, δ)

∂γ1
= −n1

γ1
− n1 log(γ2)

γ21
− 1

γ21

n∑
i=1

δi log(ti)

+

n∑
i=1

δi
∂Di(θ)

∂γ1
+

n∑
i=1

(1− δi)
exp(Di(θ))

1 + exp(Di(θ))

∂D(θ)

∂γ1
.
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∂`(θ; t, δ)

∂γ2
= − n1

γ1γ2
+

n∑
i=1

δi
∂Di(θ)

∂γ2
+

n∑
i=1

(1− δi)
exp(Di(θ))

1 + exp(Di(θ))

∂Di(θ)

∂γ2
.

The 2nd derivatives:

∂2`(θ; t, δ)

∂β2
0

=

n∑
i=1

(1− δi)
exp(Di(θ))

{1 + exp(Di(θ))}2
−

n∑
i=1

exp(x′
iβ)

{1 + exp(x′
iβ)}2

.

∂2`(θ; t, δ)

∂β0∂β1
=

n∑
i=1

(1− δi)
exp(Di(θ))xi

{1 + exp(Di(θ))}2
−

n∑
i=1

exp(x′
iβ)xi

{1 + exp(x′
iβ)}2

.

∂2`(θ; t, δ)

∂β0∂γ1
=

n∑
i=1

(1− δi)
exp(Di(θ))

{1 + exp(Di(θ))}2
∂Di(θ)

∂γ1
.

∂2`(θ; t, δ)

∂β0∂γ2
=

n∑
i=1

(1− δi)
exp(Di(θ))

{1 + exp(Di(θ))}2
∂Di(θ)

∂γ2
.

∂2`(θ; t, δ)

∂β2
1

=
n∑

i=1

(1− δi)
exp(Di(θ))x

2
i

{1 + exp(Di(θ))}2
−

n∑
i=1

exp(x′
iβ)x

2
i

{1 + exp(x′
iβ)}2

.

∂2`(θ; t, δ)

∂β1∂γ1
=

n∑
i=1

(1− δi)xi
exp(Di(θ))

{1 + exp(Di(θ))}2
∂Di(θ)

∂γ1
.

∂2`(θ; t, δ)

∂β1∂γ2
=

n∑
i=1

(1− δi)xi
exp(Di(θ))

{1 + exp(Di(θ))}2
∂Di(θ)

∂γ2
.

∂2`(θ; t, δ)

∂γ21
=

n1

γ21
+

2n1

γ31
log(γ2) +

2

γ31

n∑
i=1

δi log(ti) +

n∑
i=1

∂2Di(θ)

∂γ21

+
n∑

i=1

(1− δi)

exp(Di(θ))

{(
∂Di(θ)

∂γ1

)2

+
∂2Di(θ)

∂γ21
+

∂2Di(θ)

∂γ21
exp(Di(θ))

}
{1 + exp(Di(θ))}2

.
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∂2`(θ; t, δ)

∂γ1∂γ2
=

−n1

γ21γ2
+

n∑
i=1

δi
∂2Di(θ)

∂γ1∂γ2

+
n∑

i=1

(1− δi)

exp(Di(θ))

{
∂Di(θ)

∂γ1

∂Di(θ)

∂γ2
+

∂2Di(θ)

∂γ1∂γ2
+ exp(Di(θ))

∂2Di(θ)

∂γ1∂γ2

}
{1 + exp(Di(θ))}2

.

∂2`(θ; t, δ)

∂γ22
=

−n1

γ1γ22
+

n∑
i=1

δi
∂2Di(θ)

∂γ22

+
n∑

i=1

(1− δi)

exp(Di(θ))

{(
∂Di(θ)

∂γ2

)2

+
∂2Di(θ)

∂γ22
+

∂2Di(θ)

∂γ22
exp(Di(θ))

}
{1 + exp(Di(θ))}2

.

Appendix B: Derivatives of the log-likelihood under the G-gamma

model

Recall from Equation (2) that the log-likelihood function is

`(θ) =
n∑

i=1

δix
′
iβ +

n∑
i=1

δi log f(ti;σ, λ)

+

n∑
i=1

(1− δi) log{1 + exp(x′
iβ)S(ti;σ, λ)} −

n∑
i=1

log{1 + exp(x′
iβ)},

where θ = (β, σ, λ). We shall provide the derivative of `(θ) under β = (β0, β1).

The 1st derivatives:

∂`

∂β0
=

n∑
i=1

δi +

n∑
i=1

(1− δi)
exp(x′

iβ)S(ti; γ)

{1 + exp(x′
iβ)S(ti; γ)}

−
n∑

i=1

exp(x′
iβ)

1 + exp(x′
iβ)

,

∂`

∂β1
=

n∑
i=1

δixi +

n∑
i=1

(1− δi)xi
exp(x′

iβ)S(ti; γ)

{1 + exp(x′
iβ)S(ti; γ)}

−
n∑

i=1

xi
exp(x′

iβ)

1 + exp(x′
iβ)

,
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∂`

∂σ
=

n∑
i=1

δi

∂f(ti; γ)

∂σ
f(ti; γ)

+
n∑

i=1

(1− δi)
exp(x′

iβ)
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∂σ
{1 + exp(x′
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,

∂`

∂λ
=
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i=1

δi
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∂λ
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+

n∑
i=1

(1− δi)
exp(x′

iβ)
∂S(ti; γ)

∂λ
{1 + exp(x′

iβ)S(ti; γ)}
,

where with q = 0.5

∂f(ti; γ)

∂σ
=

64(λti)
2
σ

(
log(λti)

−2

σ
− 1)

)
3σ2ti

exp{−4(λti)
1
2σ }

+
128(λti)

5
2σ

3σ3ti
exp{−4(λti)

1
2σ } log(λti),
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=

−1

2σ2Γ(4)
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0.5
σ }4 exp{−4(λti)

0.5
σ },
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1
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2
σ−1

3σ2
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1
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=

1
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128ti
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2
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The 2nd derivatives:

∂2`

∂β2
0

=

n∑
i=1

(1− δi)
exp(x′

iβ)S(ti; γ)

{1 + exp(x′
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,

∂2`
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=
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i=1

(1− δi)xi
exp(x′

iβ)S(ti; γ)

{1 + exp(x′
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−
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,
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∂2`

∂β0∂σ
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∂σ2
=
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where with q = 0.5
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Algorithm 2: The NR algorithm with the G-gamma lifetime

Instead of writing the primitive NR algorithm, one can use the R routine ‘nlm’

to maximize the log-likelihood. This routine performs a robust version of the

NR algorithm (MacDonald 2014) with initial values, given by users. Since we

could not find the universally good randomization schemes for the initial values,

we arbitrary set the initial values β(0)
0 =β

(0)
1 = 0, γ̃(0)1 = −0.4, γ̃(0)2 = −1.3, where

γ
(0)
1 = exp(γ̃

(0)
1 ), γ(0)2 = exp(γ̃

(0)
2 ) in our numerical studies. Under this setup, the

nlm always ascertain the MLE without randomization to the initial values.
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Appendix C: R codes for simulations (Weibull model, NR algorithm)
D = function(Beta,Gam){ (Beta[1]+Xi*Beta[2])-(Gam[2]*Ti)^(1/Gam[1]) }
#### log-likelihood
WB_l_func = function(Beta,Gam){
sum(d*(Beta[1]+Xi*Beta[2]))-n1*log(Gam[1])-sum(d*log(Ti))+(log(Gam[2])/Gam[1])*n1+(1/Gam[1])*sum
(d*log(Ti))+sum(d*(-(Gam[2]*Ti)^(1/Gam[1])))+sum((1-d)*log(1+exp(D(Beta,Gam))))-sum(log(1+exp
(Beta[1]+Xi*Beta[2])))
}
#### 1 st derivatives
WB_l_1st_Beta0_func = function(Beta,Gam){
n1+sum((1-d)*exp(D(Beta,Gam))/(1+exp(D(Beta,Gam))))-sum(exp(Beta[1]+Xi*Beta[2])/(1+exp(Beta[1]+
Xi*Beta[2])))
}
WB_l_1st_Beta1_func = function(Beta,Gam){
sum(d*Xi)+sum((1-d)*Xi*exp(D(Beta,Gam))/(1+exp(D(Beta,Gam))))-sum(Xi*exp(Beta[1]+Xi*Beta[2])/(1+
exp(Beta[1]+Xi*Beta[2])))
}

D_1_Gam1 = function(Beta,Gam){ (Gam[2]*Ti)^(1/Gam[1])*log(Gam[2]*Ti)/(Gam[1]^2) }
### 1 st derivatives
WB_l_1st_Gam1_func = function(Beta,Gam){
-n1/Gam[1]-n1*log(Gam[2])/(Gam[1]^2)-sum(d*log(Ti))/(Gam[1]^2)+sum(d*D_1_Gam1(Beta,Gam))+sum
((1-d)*exp(D(Beta,Gam))*D_1_Gam1(Beta,Gam)/(1+exp(D(Beta,Gam))))
}

D_1_Gam2 = function(Beta,Gam){ -(1/(Gam[1]*Gam[2]))*(Gam[2]*Ti)^(1/Gam[1]) }
### 1 st derivatives
WB_l_1st_Gam2_func = function(Beta,Gam){
n1/(Gam[1]*Gam[2])+sum(d*D_1_Gam2(Beta,Gam))+sum((1-d)*exp(D(Beta,Gam))*D_1_Gam2(Beta,Gam)
/(1+exp(D(Beta,Gam))))
}
### 2nd derivatives
WB_l_2nd_Beta0_func = function(Beta,Gam){
sum((1-d)*exp(D(Beta,Gam))/(1+exp(D(Beta,Gam)))^2)-sum(exp(Beta[1]+Xi*Beta[2])/(1+exp(Beta[1]+Xi
*Beta[2]))^2)
}
WB_l_2nd_Beta0Beta1_func = function(Beta,Gam){
sum(Xi*(1-d)*exp(D(Beta,Gam))/(1+exp(D(Beta,Gam)))^2)-sum(Xi*exp(Beta[1]+Xi*Beta[2])/(1+exp(Beta
[1]+Xi*Beta[2]))^2)
}
WB_l_2nd_Beta0Gam1_func = function(Beta,Gam){ sum((1-d)*exp(D(Beta,Gam))*D_1_Gam1(Beta,Gam)/(1+
exp(D(Beta,Gam)))^2) }
WB_l_2nd_Beta0Gam2_func = function(Beta,Gam){ sum((1-d)*exp(D(Beta,Gam))*D_1_Gam2(Beta,Gam)/(1+
exp(D(Beta,Gam)))^2) }
WB_l_2nd_Beta1_func = function(Beta,Gam){
sum(Xi^2*(1-d)*exp(D(Beta,Gam))/(1+exp(D(Beta,Gam)))^2)-sum(Xi^2*exp(Beta[1]+Xi*Beta[2])/(1+exp(
Beta[1]+Xi*Beta[2]))^2)
}
WB_l_2nd_Beta1Gam1_func = function(Beta,Gam){

sum(Xi*(1-d)*exp(D(Beta,Gam))*D_1_Gam1(Beta,Gam)/(1+exp(D(Beta,Gam)))^2)
}
WB_l_2nd_Beta1Gam2_func = function(Beta,Gam){

sum(Xi*(1-d)*exp(D(Beta,Gam))*D_1_Gam2(Beta,Gam)/(1+exp(D(Beta,Gam)))^2)
}
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D_2_Gam1 = function(Beta,Gam){
(Gam[2]*Ti)^(1/Gam[1])*log(Gam[2]*Ti)/(Gam[1]^3)*(-log(Gam[2]*Ti)/Gam[1]-2)

}
WB_l_2nd_Gam1_func = function(Beta,Gam){
n1/(Gam[1]^2)+2*n1/(Gam[1]^3)*log(Gam[2])+2/(Gam[1]^3)*sum(d*log(Ti))+sum(d*D_2_Gam1(Beta,Gam))+
sum((1-d)*exp(D(Beta,Gam))*(D_1_Gam1(Beta,Gam)^2+D_2_Gam1(Beta,Gam)+D_2_Gam1(Beta,Gam)*
exp(D(Beta,Gam)))/(1+exp(D(Beta,Gam)))^2)
}
D_2_Gam1Gam2 = function(Beta,Gam){ (Gam[2]*Ti)^(1/Gam[1])/(Gam[1]^2*Gam[2])*(1+log(Gam[2]*Ti)/
Gam[1]) }
WB_l_2nd_Gam1Gam2_func = function(Beta,Gam){
-n1/(Gam[1]^2*Gam[2])+sum(d*D_2_Gam1Gam2(Beta,Gam))+sum((1-d)*exp(D(Beta,Gam))*(D_1_Gam1
(Beta,Gam)*D_1_Gam2(Beta,Gam)+D_2_Gam1Gam2(Beta,Gam)+D_2_Gam1Gam2(Beta,Gam)*exp(D(Beta,Gam)))/
(1+exp(D(Beta,Gam)))^2)
}
D_2_Gam2 = function(Beta,Gam){ (1-1/Gam[1])*(Gam[2]*Ti)^(1/Gam[1])/(Gam[1]*Gam[2]^2) }
WB_l_2nd_Gam2_func = function(Beta,Gam){
-n1/(Gam[1]*Gam[2]^2)+sum(d*D_2_Gam2(Beta,Gam))+sum((1-d)*exp(D(Beta,Gam))*(D_1_Gam2(Beta,Gam)^2
+D_2_Gam2(Beta,Gam)+D_2_Gam2(Beta,Gam)*exp(D(Beta,Gam)))/(1+exp(D(Beta,Gam)))^2)
}
# score function
WB_Score_l_func = function(Beta,Gam){

S_B0 = WB_l_1st_Beta0_func(Beta,Gam)
S_B1 = WB_l_1st_Beta1_func(Beta,Gam)
S_G1 = WB_l_1st_Gam1_func(Beta,Gam)
S_G2 = WB_l_1st_Gam2_func(Beta,Gam)
matrix(c(S_B0,S_B1,S_G1,S_G2),ncol = 1,byrow = T)

}
# hessian matrix
WB_Hess_l_func = function(Beta,Gam){

H_B0 = WB_l_2nd_Beta0_func(Beta,Gam)
H_B0B1 = WB_l_2nd_Beta0Beta1_func(Beta,Gam)
H_B0G1 = WB_l_2nd_Beta0Gam1_func(Beta,Gam)
H_B0G2 = WB_l_2nd_Beta0Gam2_func(Beta,Gam)
H_B1 = WB_l_2nd_Beta1_func(Beta,Gam)
H_B1G1 = WB_l_2nd_Beta1Gam1_func(Beta,Gam)
H_B1G2 = WB_l_2nd_Beta1Gam2_func(Beta,Gam)
H_G1 = WB_l_2nd_Gam1_func(Beta,Gam)
H_G1G2 = WB_l_2nd_Gam1Gam2_func(Beta,Gam)
H_G2 = WB_l_2nd_Gam2_func(Beta,Gam)

matrix(c(H_B0,H_B0B1,H_B0G1,H_B0G2,H_B0B1,H_B1,H_B1G1,H_B1G2,H_B0G1,H_B1G1,H_G1,H_G1G2,H_B0G2,H
_B1G2,H_G1G2,H_G2),ncol = 4,nrow = 4,byrow = T)
}

p0_func = function(x){ 1/(1+exp(beta0_true+beta1_true*x)) }

#### Setting (i) for Table 3 ####
n=200; group = c(rep(1,55),rep(2,60),rep(3,45),rep(4,40))
#n=400; group = c(rep(1,110),rep(2,120),rep(3,90),rep(4,80))
#n=600; group = c(rep(1,165),rep(2,180),rep(3,135),rep(4,120))
beta0_true = -1.192
beta1_true = 0.573
gam1_true = 0.316
gam2_true = 0.179
alpha_rec = c(0.033,0.03,0.028,0.021)
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P0 = c(p0_func(1),p0_func(2),p0_func(3),p0_func(4))
p = c(0.8,0.65,0.5,0.35)

#### Setting (ii) for Table 3 ####
n=200; group = c(rep(1,55),rep(2,60),rep(3,45),rep(4,40))
#n=400; group = c(rep(1,110),rep(2,120),rep(3,90),rep(4,80))
#n=600; group = c(rep(1,165),rep(2,180),rep(3,135),rep(4,120))
beta0_true = -0.038
beta1_true = 0.443
gam1_true = 0.316
gam2_true = 0.179
alpha_rec = c(0.021,0.021,0.018,0.010)
P0 = c(p0_func(1),p0_func(2),p0_func(3),p0_func(4))
p = c(0.5,0.4,0.3,0.2)

#### Setting (i+) for Table 5 ####
n=200; group = c(rep(1,55),rep(2,60),rep(3,45),rep(4,40))
#n=400; group = c(rep(1,110),rep(2,120),rep(3,90),rep(4,80))
#n=600; group = c(rep(1,165),rep(2,180),rep(3,135),rep(4,120))
beta0_true = -1.192
beta1_true = 0.573
gam1_true = 1.2
gam2_true = 1.2
alpha_rec = c(0.033,0.03,0.028,0.021)
P0 = c(p0_func(1),p0_func(2),p0_func(3),p0_func(4))
p = c(0.8,0.65,0.5,0.35)

#### Setting (ii+) for Table 5 ####
n=200; group = c(rep(1,55),rep(2,60),rep(3,45),rep(4,40))
#n=400; group = c(rep(1,110),rep(2,120),rep(3,90),rep(4,80))
#n=600; group = c(rep(1,165),rep(2,180),rep(3,135),rep(4,120))
beta0_true = -0.038
beta1_true = 0.443
gam1_true = 1.2
gam2_true = 1.2
alpha_rec = c(0.021,0.021,0.018,0.010)
P0 = c(p0_func(1),p0_func(2),p0_func(3),p0_func(4))
p = c(0.5,0.4,0.3,0.2)

###### Monte Carlo Simulation ######
set.seed(100)
N = 200 ### No. of repetitions
beta0 = beta1 = gam1 = gam2 = censsork = iter_NR = se_beta0 = se_beta1 = se_gam1 = se_gam2 =se_
gam1_tuta=se_gam2_tuta= c()
for (j in 1:N) {

### generate data
Ti = d = numeric(n)
for (i in 1:n) {

xi = group[i]
P0i = 1/(1+exp(beta0_true+beta1_true*xi))
ui = runif(1)
d[i] = 1*(ui>P0i)
C = rexp(1,alpha_rec[xi])
W = rweibull(1,1/gam1_true,1/gam2_true)
Ti[i] = (1-d[i])*C+d[i]*min(C,W)
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d[i] = d[i]*1*(W<C)
}
n1 = sum(d)
Xi = group
censsork[j] = 1-mean(d)
### Newton-Raphson algorithm
beta0_0 = beta1_0 = 0
gam1_0 = gam2_0= -2
Betah = c(beta0_0,beta1_0)
gammah = c(gam1_0,gam2_0)
e = 0
repeat {

e = e+1
beta0_old = Betah[1]
beta1_old = Betah[2]
gam1_old = gammah[1]
gam2_old = gammah[2]
Theta = c(Betah,gammah)
Hess = WB_Hess_l_func(Betah,exp(gammah))
Score = WB_Score_l_func(Betah,exp(gammah))
Theta = Theta - solve(Hess)%*%Score
Betah = Theta[1:2]
gammah = Theta[3:4]
if(abs(Betah[1])>3){

beta0_ran = beta0_0 + runif(1,-1,1)
Betah = c(beta0_ran,Betah[2])

}
if(abs(Betah[2])>3){

beta1_ran = beta1_0 + runif(1,-1,1)
Betah = c(Betah[1],beta1_ran)

}
a = max(abs(Betah[1]-beta0_old), abs(Betah[2]-beta1_old),abs(gammah[1]-gam1_old),abs(gammah
[2]-gam2_old))
if(a < 0.001) break

}
V_WB = solve(-WB_Hess_l_func(Betah,exp(gammah)))
beta0 = c(beta0,Betah[1] )
beta1 = c(beta1,Betah[2] )
gam1 = c(gam1,gammah[1] )
gam2 = c(gam2,gammah[2] )
iter_NR[j] = e
se_beta0 = c(se_beta0,sqrt(V_WB[1,1]))
se_beta1 = c(se_beta1,sqrt(V_WB[2,2]))
se_gam1 = c(se_gam1,sqrt(V_WB[3,3]))
se_gam2 = c(se_gam2,sqrt(V_WB[4,4]))
se_gam1_tuta = c(se_gam1_tuta,sqrt((exp(gammah[1])^(-2))*V_WB[3,3]) )
se_gam2_tuta = c(se_gam2_tuta,sqrt((exp(gammah[2])^(-2))*V_WB[4,4]) )

}

mean(iter_NR) ## AI, the average number of iterations

Est=c(beta0=mean(beta0),beta1=mean(beta1), gamma1=mean(exp(gam1)),gamma2=mean(exp(gam2)))
round(Est,3)
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Bias=c(beta0=mean(beta0)-beta0_true,beta1=mean(beta1)-beta1_true,
gamma1=mean(exp(gam1))-gam1_true,gamma2=mean(exp(gam2))-gam2_true)

round(Bias,3)

SD=c(beta0=sd(beta0),beta1=sd(beta1),gamma1=sd(exp(gam1)),gamma2=sd(exp(gam2)))
round(SD,3)

SE=c(beta0=mean(se_beta0),beta1=mean(se_beta1),gamma1=mean(se_gam1),gamma2=mean(se_gam2))
round(SE,3)

interval_beta0 = (beta0_true<beta0+1.645*se_beta0)*(beta0_true>beta0-1.645*se_beta0)
interval_beta1 = (beta1_true<beta1+1.645*se_beta1)*(beta1_true>beta1-1.645*se_beta1)
interval_gam1 = (gam1_true<exp(gam1+1.645*se_gam1_tuta))*(gam1_true>exp(gam1-1.645*se_gam1_tuta))
interval_gam2 = (gam2_true<exp(gam2+1.645*se_gam2_tuta))*(gam2_true>exp(gam2-1.645*se_gam2_tuta))
CI90=c(beta0=mean(interval_beta0),beta1=mean(interval_beta1),gamma1=mean(interval_gam1),gamma2=
mean(interval_gam2))
round(CI90,3)

interval_beta0 = (beta0_true<beta0+1.96*se_beta0)*(beta0_true>beta0-1.96*se_beta0)
interval_beta1 = (beta1_true<beta1+1.96*se_beta1)*(beta1_true>beta1-1.96*se_beta1)
interval_gam1 = (gam1_true<exp(gam1+1.96*se_gam1_tuta))*(gam1_true>exp(gam1-1.96*se_gam1_tuta))
interval_gam2 = (gam2_true<exp(gam2+1.96*se_gam2_tuta))*(gam2_true>exp(gam2-1.96*se_gam2_tuta))
CI95=c(beta0=mean(interval_beta0),beta1=mean(interval_beta1),

gamma1=mean(interval_gam1),gamma2=mean(interval_gam2))
round(CI95,3)
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康威-馬克士威-泊松治癒率模型對於存活資料之計算觀點

何致晟1 江村剛志2,†

1浙江省醫學科學院藥物研究所

2國立中央大學統計研究所

摘 要

康威-馬克士威-泊松分配 (Conway-Maxwell-Poisson) 可以用於描述存活資料中之治癒

比例, 基於此模型, 在文獻中已有兩種最大概似估計量之計算方法被提出, 一種方法為 R

gamlss 套件所使用的方法, 其利用了對數概似函數之一階導數, 另一種方法則是使用了完整

資料概似函數之最大期望演算法。 在本篇文章中, 我們提出了一個穩健的牛頓-拉弗森演算法,

其穩健性是來自於對起始值之隨機擾動, 以及對恆正參數之對數轉換, 在伯努力治癒模型下, 我

們提供了概似函數之導數表示法與電腦程式碼給讀者使用。 由於牛頓-拉弗森演算法使用了概

似函數之一、二階導數, 故其收斂速度較 R gamlss 套件快, 同時我們也回顧了最大期望演算法,

並利用模擬分析將其表現與牛頓-拉弗森演算法做比較, 除此之外, 我們還提出了一筆新的資料

來配適康威-馬克士威-泊松治癒模型, 並且討論使用兩種演算法之結果。

關鍵詞: 最大期望演算法、廣義伽瑪分配、牛頓-拉弗森演算法、存活分析、韋伯分配。

JEL classification: C13, C46.

†通訊作者: 江村剛志
E-mail: takeshiemura@gmail.com

42


	Introduction
	COM-Poisson cure model for survival data
	The Conway-Maxwell-Poisson (COM-Poisson) distribution
	Cure proportion
	Lifetime distributions
	Long-term survival function

	Likelihood and MLE
	 Right-censored data with cure
	Likelihood construction and MLE
	Complete-data likelihood and EM-algorithm

	Newton-Raphson algorithm
	Simulation
	 Data analysis
	 Uveal cancer data
	Model fitting

	Conclusion and discussion
	Reference

