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Comparison of the marginal hazard
model and the sub-distribution hazard
model for competing risks under
an assumed copula

Takeshi Emura1 , Jia-Han Shih1, Il Do Ha2 and Ralf A Wilke3

Abstract

For the analysis of competing risks data, three different types of hazard functions have been considered in the literature,

namely the cause-specific hazard, the sub-distribution hazard, and the marginal hazard function. Accordingly, medical

researchers can fit three different types of the Cox model to estimate the effect of covariates on each of the hazard

function. While the relationship between the cause-specific hazard and the sub-distribution hazard has been extensively

studied, the relationship to the marginal hazard function has not yet been analyzed due to the difficulties related to non-

identifiability. In this paper, we adopt an assumed copula model to deal with the model identifiability issue, making it

possible to establish a relationship between the sub-distribution hazard and the marginal hazard function. We then

compare the two methods of fitting the Cox model to competing risks data. We also extend our comparative analysis to

clustered competing risks data that are frequently used in medical studies. To facilitate the numerical comparison, we

implement the computing algorithm for marginal Cox regression with clustered competing risks data in the R joint.Cox

package and check its performance via simulations. For illustration, we analyze two survival datasets from lung cancer

and bladder cancer patients.
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1 Introduction

Competing risks data often arise in medical follow-up studies or industrial life tests where several different

types of events determine the follow-up duration of a subject. In such circumstances, understanding the

effects of covariates on individual event times is essential. For modeling the effects of covariates on

event times, researchers typically fit the Cox proportional hazards model1 on the hazard function of a

specific event time of interest. However, there are various ways to formulate the Cox model in the case

of competing risks.
For the analysis of competing risks data, three different types of hazard functions have been considered,

namely the cause-specific hazard, the sub-distribution hazard (subhazard), and the marginal hazard function.

Modeling the effect of covariates on the cause-specific hazard functions is the traditional approach to the analysis

of competing risks data.2 While it has been shown that the covariate effects on the cause-specific functions and on
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the sub-distribution functions are different,3,4 not much is known how the effect on the marginal hazard functions
relate. Unlike the cause-specific hazard and subhazard, modeling covariate effects on the marginal hazard typ-
ically requires a strong assumption, called “assumed copula”.5 This means that the dependence structure between
competing event times is completely known or assumed by the researcher. If this assumption is deemed acceptable,
it is straightforward to model covariate effects on marginal hazards.6–9 While marginal hazard regression is
relatively recently developed, the exploration of the marginal effects is historically regarded as the main goal of
competing risk analysis.10

To draw an appropriate conclusion from competing risks data, it is essential to understand the difference
between the three types of hazard function. Several studies4,11–13 compared the difference between the cause-
specific hazard and the subhazard. In addition, the comparison between the cause-specific hazard and marginal
hazard is relatively straightforward, and has been considered in detail.8,14,15 In this paper, we compare the dif-
ference between subhazard and marginal hazard models, which has not yet been explored in the literature. The
absence of such a comparative study is partially due to the technical difficulty of implementing marginal regres-
sion and the lack of an adequate software package.

This paper makes the following contributions:

a. We establish a mathematical relationship between the subhazard and the marginal hazard function under an
assumed copula (Theorems 1 and 2). The relationship is also extended to clustered competing risks data that are
increasingly popular in the literature (Theorem 3).

b. We make numerical comparisons between subhazard regression and marginal hazard regression by using two
cancer datasets.

c. We develop an R function to implement a semiparametric inference method for marginal regression
analysis with clustered competing risks data. This is made available in the joint.Cox R package.16 This
tool is useful for researchers who wish to compare the results of subhazard regression and marginal hazard
regression.

The paper is organized as follows. Section 2 reviews classical competing risks models. Section 3 develops a
mathematical relationship between the marginal hazard and subhazard. Section 4 compares covariate effects
between the marginal hazard and subhazard through the Cox models. Section 5 extends our analysis to clustered
competing risks data. Section 6 concludes and discusses the main findings.

2 Classical competing risks models

In the classical theory of competing risks, survival time of a subject is determined by several different causes of
failures.17 This implies that survival time is determined by the time at which at least one of the events occurs. In
many applications of the competing risks theory, survival time of a subject can be any terminal event time, not
necessarily time-to-death. For instance, if the major event of interest is death, the occurrence of dropout8 or liver
transplantation18 can be regarded as a competing risk for death. The independence among different events is not
assumed in competing risks analysis.

Hereafter, we consider bivariate competing risks where one event is a major focus of analysis and the other
event is of secondary importance. For instance, if researchers are interested in survival time of prostate cancer
patients, death from prostate cancer is the major cause of failure, and death due to other reasons is relegated to
another cause of failure.6,11 For another instance, if researchers are interested in overall survival of lung cancer
patients, death from any cause is the major importance, and dropout and follow-up end are combined into
another cause of failure.19 Conversely, researchers may treat death as a competing risk if their major interest is
on time-to-relapse.20

Let X be time to “Event 1” and Y be time to “Event 2”. Under competing risks, we observe the first occurring
event time T ¼ minðX; Y Þ, and the event indicator d ¼ IðT ¼ X Þ, where Ið�Þ is the indicator function. Since one
cannot observe X and Y simultaneously, the pair of event times X and Y are often called “latent times”.10,21

2.1 Hazard functions

The marginal hazard function for Event 1 is defined as

k1ðtÞ ¼ Prðt < X � tþ dtjX > tÞ=dt

2 Statistical Methods in Medical Research 0(0)



The marginal hazard function describes the instantaneous risk of experiencing Event 1 given that a subject has
not yet experienced Event 1 at time t. It is simply a hazard for one marginal of the pair ðX; YÞ. Accordingly, the
marginal survival function is related to the marginal hazard function through

S1ðtÞ � PrðX > tÞ ¼ exp �
Z t

0

k1ðsÞds
� �

If X and Y were independent, the distribution could be easily estimated by treating Y as an independent
censoring variable. In dependent competing risks, the marginal distribution is not identifiable unless some
assumptions are made on the joint distribution of ðX; Y Þ.22

Other functions of interest are therefore often considered in the presence of dependent competing risks. What
can be estimated without knowing or assuming the risk dependence is the cause-specific (CS) hazard function. For
Event 1 it is defined as

kCS1 ð t Þ ¼ Prðt < T � tþ dt; d ¼ 1jT > tÞ=dt

This is the instantaneous risk of experiencing Event 1 given that a subject has not yet experienced any event
before time t. The CS hazard function for Event 2 (d ¼ 0) is analogously kCS2 ð t Þ. By definition, kCS1 ð t Þ þ kCS2 ð t Þ is
the hazard function for T.

Another identifiable quantity in dependent competing risks is the sub-distribution function

FSub
1 ð t Þ ¼ PrðT � t; d ¼ 1Þ

This is simply the probability of experiencing Event 1 before time t, which is also known as the cumulative incidence
function (CIF). Many analyses of competing risks data start by plotting a nonparametric estimate of FSub

1 ð t Þ.11
The subhazard function for Event 1 is defined as a hazard function associated with the sub-distribution func-

tion through

kSub1 ð t Þ ¼ �dlogf 1� FSub
1 ð t Þ g=dt

¼ Prð t < T � tþ dt; d ¼ 1jfT > tg [ fT � t; d ¼ 0 g Þ=dt (1)

Here, the conditioning event of the CS hazard function is modified by adding the event fT � t; d ¼ 0 g. While
it is difficult to interpret the conditioning event, an important advantage of the subhazard is the direct link to the

sub-distribution function, such that FSub
1 ðtÞ ¼ 1� exp �

Z t

0

kSub1 ðsÞds
� �

The relationship between the subhazard and CS hazard is well known. It is not difficult to show kCS1 ð t Þ ¼
½dFSub

1 ð t Þ=dt�=PrðT > tÞ and PrðT > t Þ ¼ exp½�KCS
1 ðtÞ � KCS

2 ðtÞ�, where KCS
1 ðtÞ and KCS

2 ðtÞ are the cumulative CS
hazard functions for Events 1 and 2, respectively. With these equations, we obtain the well-known relationship

FSub
1 ðtÞ ¼

Z t

0

kCS1 ðsÞexp½�KCS
1 ðsÞ � KCS

2 ðsÞ�ds

By taking the derivative of the preceding equation, the relationship between the subhazard and CS hazard is
obtained as

kSub1 ðtÞ ¼ kCS1 ðtÞexp½�KCS
1 ðtÞ � KCS

2 ðtÞ�= 1� FSub
1 ðtÞ

� �
These relationships are general and do not require restrictions on the model. Similarly, we have for the rela-

tionship between the marginal hazard and the subhazard

kSub1 ðtÞ ¼ fSub1 ðtÞ
1� FSub

1 ðtÞ �
f1ðtÞ
S1ðtÞ ¼ k1ðtÞ; 8t > 0
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which follows from

1� FSub
1 ðtÞ ¼ 1� PrðT � t; d ¼ 1Þ ¼ 1� PrðX � t;X � YÞ � 1� PrðX � tÞ ¼ S1ðtÞ

and

fSub1 ðtÞ ¼ dFSub
1 ðtÞ=dt ¼ Prðt < X � tþ dt;X � YÞ=dt � Prðt < X � tþ dtÞ=dt ¼ �dS1ðtÞ=dt ¼ f1ðtÞ

where fSub1 ðtÞ is the sub-density function and f1ðtÞ is the marginal density function.
Unfortunately, the mathematical equation between the marginal hazard and subhazard cannot be established unless

some model assumptions are made. Indeed, the same CS hazard function can originate from many different marginal

models.22 This problem is known as the nonidentifiability. To derive a mathematical relationship between the marginal

hazard and subhazard functions, we first consider the independent competing risks model as a special case.

2.2 Independence assumption

A classical assumption is the independence between X and Y, which makes the joint distribution of ðX; YÞ
identifiable from the joint distribution of ðT; dÞ.22 Under the independence assumption, it is known that k1ðtÞ ¼
kCS1 ðtÞ and k2ðtÞ ¼ kCS2 ðtÞ. Hence, the sub-distribution function can be expressed as the marginal hazards by

FSub
1 ðtÞ ¼

Z t

0

k1ðsÞexp½�K1ðsÞ � K2ðsÞ�ds

Accordingly, the subhazard is then

kSub1 ðtÞ ¼ k1ðtÞ expf�K1ðtÞ � K2ðtÞg
1�

Z t

0

k1ðsÞexpf�K1ðsÞ � K2ðsÞ gds

It is important to note that kSub1 ð t Þ 6¼ k1ð t Þ even though kCS1 ðtÞ ¼ k1ðtÞ. To see this phenomenon more closely,

let us consider the exponential margin K1ð t Þ ¼ K2ð t Þ ¼ kt. Then

kSub1 ðtÞ ¼ k
2expð�2ktÞ

1þ expð�2ktÞ ; FSub
1 ð t Þ ¼ 1� expð�2ktÞ

2

Thus, the constant marginal hazard functions give a non-constant subhazard function for Event 1. Therefore,

the marginal hazard and subhazard functions have different functional forms in the case of independent com-

peting risks.

2.3 Assumed copula for competing risks

In competing risks analysis, the two random variables X and Y are rarely independent. Zheng and Klein5 showed that

the joint distribution of X and Y becomes identifiable by assuming a copula function for the dependence structure

between risks. Independence between X and Y is simply a special case of assuming the independence copula.
To model the dependence between two competing event times, Escarela and Carri�ere6 proposed a survival

copula model

PrðX > x;Y > yÞ ¼ ChfS1ðxÞ; S2ðyÞg (2)

where Ch : ½ 0; 1 �2 7!½ 0; 1 � is a copula function with a parameter h.23 The copula function can be any bivariate

distribution function having the uniform marginal distribution on (0,1). Here, the assumed copula in the sense of

Zheng and Klein5 means the assumptions for both the parametric form of Ch and its parameter value h.
The survival copula model (2) is subsequently applied to various competing risks problems in literature.8,9,19,24

4 Statistical Methods in Medical Research 0(0)



We shall not use another copula model PrðX � x; Y � yÞ ¼ Chf 1� S1ð x Þ; 1� S2ð y Þ g that produces a dif-

ferent joint distribution of X and Y from the survival copula model (2).
Examples of commonly used copula functions Ch are as follows

• The Clayton copula:

Chð u; v Þ ¼ ð u�h þ v�h � 1 Þ�1=h; h > 0

• The Gumbel copula:

Chðu; vÞ ¼ exp � ð�loguÞhþ1 þ ð�logvÞhþ1
n o 1

hþ1

� �
; h � 0

• The Farlie-Gumbel-Morgenstern (FGM) copula:

Chð u; v Þ ¼ uvf 1þ hð 1� u Þð 1� v Þ g; � 1 � h � 1

• The Fr�echet-Hoeffding upper bound copula:

C1ð u; v Þ ¼ minðu; vÞ

The parameter h is related to Kendall’s tau (s) between X and Y. The Clayton copula has s ¼ h=ðhþ 2Þ, the
Gumbel copula has s ¼ h=ðhþ 1Þ, and the FGM copula has s ¼ 2h=9. These three copulas reduce to the inde-

pendence copula Cð u; v Þ ¼ uv when h ! 0. When h ! 1, the Clayton and Gumbel copulas reduce to the

Fr�echet-Hoeffding upper bound copula whose Kendall’s tau is 1.

3 Mathematical relationship between the marginal hazard and subhazard

To establish the relationship between the subhazard and marginal hazard, it is convenient to introduce the

following notations

Dhðs; t Þ ¼ Chf expð�sÞ; expð�tÞ g; D
½1;0�
h ð s; t Þ ¼ � @

@s
Dhðs; tÞ; D

½0;1�
h ð s; t Þ ¼ � @

@t
Dhð s; t Þ

Also, we rewrite the copula model (2) as PrðX > x;Y > yÞ ¼ DhfK1ðx Þ; K2ð y Þ g. This expression

emphasizes the relationship between the joint survival function and the marginal cumulative hazard functions.

For instance, the Gumbel copula has Dhð s; t Þ ¼ exp �ð shþ1 þ thþ1 Þ1=ðhþ1Þ
h i

, which implies PrðX > x;Y > yÞ ¼
exp �fKhþ1

1 ð x Þ þ Khþ1
2 ð y Þ g1=ðhþ1Þ

h i
.

The sub-distribution function for Event 1 is

FSub
1 ð t Þ ¼ PrðX � t; Y � XÞ ¼

Z t

0

� @

@x
PrðX > x; Y � yÞ x¼ y dy

��
This well-known formula implies that the sub-distribution function is obtained through the joint survival

function PrðX > x;Y > yÞ.6,11 Under the survival copula model (2), we have

FSub
1 ð t Þ ¼

Z t

0

� @

@x
Dh K1ð x Þ; K2ð s Þf g

����
x¼s

ds ¼
Z t

0

k1ð s ÞD½1;0�
h fK1ð s Þ; K2ð s Þ gds (3)

This expression describes the link between the sub-distribution function and marginal hazard function. The

integral in equation (3) cannot be computed analytically for most of the well-known copulas.

Emura et al. 5



By using equation (3) and kSub1 ð t Þ ¼ �dlog½1� FSub
1 ð t Þ�=dt, we arrive at the following result:

Theorem 1: Under the copula model (2), the marginal hazard and subhazard are connected through

kSub1 ð t Þ ¼ k1ð t Þ D
½1;0�
h fK1ð t Þ; K2ð t Þ g

1�
Z t

0

k1ð s ÞD½1;0�
h fK1ð s Þ; K2ð s Þ gds

Under the common marginal assumption KðtÞ � K1ðtÞ ¼ K2ðtÞ, the integrals in Theorem 1 may have explicit
forms. For instance, the Gumbel copula gives

kSub1 ð t Þ ¼ kð t Þ
21=ðhþ1Þ�1exp �21=ðhþ1ÞKðtÞ

h i
1þ 2�1 exp �21=ðhþ1ÞKðtÞ

h i
� 1

� � ¼ kð t Þ
21=ðhþ1Þexp �21=ðhþ1ÞKðtÞ

h i
exp �21=ðhþ1ÞKðtÞ
h i

þ 1

For the Clayton copula, we have

kSub1 ð t Þ ¼ kð t Þ 2expf hKð t Þ g½ 2expf hKð t Þ g � 1 ��1=h�1

1þ ½ 2expf hKð t Þ g � 1 ��1=h
(4)

and for the FGM copula, we have

kSub1 ð t Þ ¼ kð t Þ 2expf � 2Kð t Þ gð 1þ h½ 1� 2expf � Kð t Þg �½ 1� expf � Kð t Þg � Þ
1þ expf � 2Kð t Þ gð 1þ h½ 1� expf � Kð t Þg �2 Þ (5)

Our numerical studies confirm kSub1 ð t Þ < k1ð t Þ 8t > 0 under various models (details are given in the
Supplementary Material). The difference k1ð t Þ � kSub1 ð t Þ can be quite large, which depends heavily on the
choice of the marginal distributions. For instance, exponential distributions in the marginal models produce a
steeply decreasing subhazard function (S1, Supplementary Material). The choice of copula function also influen-
ces the difference k1ð t Þ � kSub1 ð t Þ. We do not observe equality kSub1 ð t Þ ¼ k1ð t Þ in any of the numerically examined
models but technically it is attained under the following necessary and sufficient conditions.

Theorem 2: Under the copula model (2) with continuous marginal survival functions, one has

kSub1 ð t Þ ¼ k1ð t Þ 8t � 0 if and only if PrðX � Y Þ ¼ 1

The proof of Theorem 2 is given in Appendix 1.
Under the copula model (2), Theorem 2 reveals that the equality kSub1 ð t Þ ¼ k1ð t Þ holds for all t � 0 if and only

if the model is degenerated under competing risks, i.e. T ¼ minðX; Y Þ ¼ X with probability one. Thus, we
conclude that kSub1 ð t Þ ¼ k1ð t Þ 8t � 0 does not hold for any real competing risks model that gives observed
values for Y.

Example 1: Consider the Fr�echet-Hoeffding upper bound copula model

PrðX > x; Y > y Þ ¼ C1fS1ðx Þ; S2ð y Þ g ¼ minfS1ð x Þ; S2ð y Þ g; x; y � 0 (6)

for continuous marginal survival functions S1ð t Þ < S2ð t Þ 8t � 0. One can verify

f Sub
1 ð t Þ ¼ � d

dx
PrðX > x; Y > y Þ��

x¼y¼t
¼ � dS1ð t Þ

dt
¼ f1ð t Þ 8t � 0

Hence, kSub1 ð t Þ ¼ k1ð t Þ 8t � 0 holds true. By Theorem 2, we have PrðX � Y Þ ¼ 1. One can also verify PrðX �
Y Þ ¼ 1 directly from model (6).

6 Statistical Methods in Medical Research 0(0)



3.1 Covariate effects

So far, we have focused on the difference between kSub1 ðtÞ and k1ðtÞ as a function of t. Another approach is to

compare the difference in terms of covariate effects given t. To study the covariate effects on the two hazards, we

assume a marginal Cox model k1ðtjZÞ ¼ k10ðtÞexpð b01Z Þ for some baseline hazard function k10ð�Þ, regression
coefficients b1, and covariates Z. By Theorem 1

kSub1 ð tjZ Þ ¼ k10ð t Þexpð b01Z Þ D
½1;0�
h fK10ð t Þexpð b01Z Þ; K2ð tjZ Þ g

1�
Z t

0

k10ð s Þexpð b01Z ÞD½1;0�
h fK10ð s Þexpð b01Z Þ; K2ð sjZ Þ gds

where K10ðtÞ ¼
Z t

0

k10ðsÞds. Hence, kSub1 ðtjZÞ does not have a proportional hazard form since the covariate effect

depends on t. An exception is the case of t ¼ 0, where for some copulas (e.g. the Clayton copula in equation (4)

and FGM copula in equation (5)) give kSub1 ð0jZÞ ¼ k10ð0Þexpðb01ZÞ.
We emphasize the difference between the subhazard and marginal hazard by considering the case of b1 ¼ 0, i.e.

no marginal effect on Event 1. Then, the subhazard function is

kSub1 ð tjZ Þ ¼ k10ð t Þ D
½1;0�
h fK10ð t Þ; K2ð tjZ Þ g

1�
Z t

0

k10ð s ÞD½1;0�
h fK10ð s Þ; K2ð sjZ Þ gds

Hence, even if there is no marginal effect on Event 1, the subhazard of Event 1 is influenced by the marginal

effect on Event 2.

4 Semiparametric inference for the Cox model

We compare two inference methods for the marginal Cox model and subhazard Cox model, respectively. Let b̂1 be

an estimator obtained by fitting a model k1ðtjZÞ ¼ k10ðtÞexpð b01Z Þ and b̂Sub1 be an estimator obtained by fitting a

model kSub1 ðtjZÞ ¼ kSub10 ðtÞexpð bSub1 Z Þ. We wish to compare the two methods of computing b̂1 and b̂Sub1 from a

dataset consisting of ðTj; d1j; d2j; ZjÞ, j ¼ 1; 2; . . . ; n, where Tj ¼ minðXj; Yj; Cj Þ, d1j ¼ IðTj ¼ Xj Þ,
d2j ¼ IðTj ¼ Yj Þ, and Cj is independent censoring time. Censored cases correspond to d1j ¼ d2j ¼ 0.

Below, we review two semiparametric estimators b̂1 and b̂Sub1 that do not require the model specifications for

baseline hazard functions.

4.1 Fitting the subhazard model

Fine and Gray3 proposed Cox regression on the sub-distribution based on the model

kSub1 ðtjZjÞ ¼ kSub10 ðtÞexpð bSub1 Zj Þ

The estimator b̂Sub1 is obtained by applying some weights to the partial likelihood.3 Here, the weights are

computed by estimating the survival function of censoring time Cj. The cmprsk R package25 can compute b̂Sub1

and its standard error (SE) and confidence interval (CI). The package can also estimate the covariate-specific

cumulative subhazard function as K̂
Sub

1 ðtjZÞ ¼ K̂
Sub

10 ðtÞexpð b̂Sub1 Z Þ and sub-distribution function as

F̂
Sub

1 ðtjZÞ ¼ 1� exp½�K̂
Sub

1 ðtjZÞ�. See Pintilie11 for the review.

Some explanation is necessary to interpret the value of b̂Sub1 as the effects of covariates. In the subhazard model,

the major focus is on the effects of covariates on the sub-distribution function. In this respect, the value of b̂Sub1 is

interpreted as the acceleration factor in a complementary log–log linear model for the sub-distribution function

log½�logf 1� FSub
1 ðtjZÞ g� ¼ log½�logf 1� FSub

10 ðtÞ g� þ bSub1 Z

Emura et al. 7



where FSub
10 ðtÞ ¼ FSub

1 ðtj0Þ. Hence, b̂Sub1 is linked to the observed differences among the nonparametric estimates of

the sub-distribution function computed for different covariate values. While this link is advantageous, the inter-

pretation of the subhazard itself is not straightforward due to its complex conditioning events in equation (1).

4.2 Fitting the marginal Cox model

We assume the two Cox models for the two marginal hazard functions such that

k1ðtjZjÞ ¼ k10ðtÞexpð b01Zj Þ; k2ðtjZjÞ ¼ k20ðtÞexpð b02Zj Þ

The joint survival function is defined by

PrðXj > x ; Yj > yjZj Þ ¼ Ch½ expf � K1ðxjZjÞ g; expf � K2ðyjZjÞ g �

where Ch is a copula, the parameter h is assumed or known, and KkðtjZjÞ ¼
Z t

0

kkðujZjÞdu is the marginal cumu-

lative hazard functions (k ¼ 1 and 2). The estimates ðb̂1; b̂2; k̂10; k̂20Þ are obtained by a semiparametric method of

Chen.8 Appendix 2 provides the details of this method.

4.3 Methodological comparison of the two Cox models

In this section we qualitatively compare the two Cox models and provide some guidance on the choice of a

suitable model.
If the main interest lies in a single event, fitting the subhazard Cox model is easier and requires weaker restrictions

on the model. The subhazard Cox model for a single event time does not require any assumption on the other event

time. On the other hand, the marginal hazard approach needs to specify two Cox models on two event times, as well

as their copula function. A minor drawback of the subhazard approach is the need to estimate the censoring

distribution by applying the inverse probability of censoring weighting to the partial likelihood. Fitting the marginal

Cox model does not need to estimate the censoring distribution, yet the numerical computation is demanding.8

If the interest lies in the joint assessment of two events, the marginal Cox model may be desirable. However,

investigation of the dependence structure between two events is inherently difficult with competing risks data. The

subhazard Cox model does not provide any parameter related to the dependence structure since the latter is not a

part of the observational model. In the marginal Cox model, the copula parameter provides a tool to assess

dependence. However, the current consensus is to perform a sensitivity analysis under an assumed value of a

copula parameter. Often, the fitted results are examined under a few different copula parameters selected by a

researcher.8,9,15 We shall further demonstrate the method of assessing the dependence through a real data example.

4.4 Numerical comparison of the two Cox models

We suggest comparing the two Cox models with aid of graphical diagnostic tools. We consider three estimators of

FSub
1 ð tjZ Þ ¼ PrðT � t; d ¼ 1jZ Þ

• A new estimator for equation (3) that bases on the marginal Cox model

FSub
1;n̂

ð tjZ Þ ¼
X
j:Tj�t

d1jk̂1ðTjjZ ÞD½1;0�
h K̂1ðTjjZ Þ; K̂2ðTjjZ Þ
n o

where k̂1ð�jZÞ ¼ k̂10ð�Þexpðb̂1ZÞ, K̂kð�jZÞ ¼ K̂k0ð�Þexpðb̂kZÞ, and ðb̂1; b̂2; k̂10; k̂20Þ are given in Appendix 2.

• The estimator under the subhazard Cox model

F̂
Sub

1 ðtjZÞ ¼ 1� exp �K̂
Sub

1 ðtjZÞ
h i
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where K̂
Sub

1 ðtjZÞ ¼ K̂
Sub

10 ðtÞexpð b̂Sub1 Z Þ

• The nonparametric (model-free) estimator

F̂
NP

1 ð tjZ Þ ¼
X

j:Tj�t;Zj¼Z

ŜðTjjZ Þ d1j
nj;Z

where Ŝð tjZ Þ ¼
Y

j:Tj�t;Zj¼Z

f 1� ð d1j þ d2j Þ=nj;Z g and nj;Z ¼
X

i:Zi¼Z

IðTi � Tj Þ

We then plot the three estimators FSub
1;n̂

ð tjZ Þ, F̂Sub

1 ðtjZÞ, and F̂
NP

1 ð tjZ Þ to check their similarity. A discrepancy

among them is a signal of inappropriate model assumptions made in one of the Cox models. The first two
estimators are inconsistent if their model assumptions are wrong. On the other hand, the last (model-free) esti-
mator represents the empirical behavior of the sub-distribution function without any model assumption. The idea
was presented in Escarela and Carri�ere6 for the marginal Cox model and Pintilie11 for the subhazard Cox model.

A similar plot can be made to compare FSub
2;n̂

tjZð Þ, F̂Sub

2 ðtjZÞ, and F̂
NP

2 ð tjZ Þ for Event 2.
The Cram�er-von Mises (CvM) distance can be used as a tool for selecting a copula parameter in marginal

regression. As a measure of fit based on the CvM distance, we suggest

CvM ¼
X
Z2I

X2
k¼1

1

ndk;Z

X
j:Zj¼Z

dkj Fk;n̂
SubðTjjZ Þ � F̂

NP

k ðTjjZ Þ
n o2

 !2
4

3
5

where I is the set of all possible covariate values and ndk;Z ¼
Xn

j¼1
dkjIðZj ¼ Z Þ for k ¼ 1 and 2. The idea follows

from Shih and Emura26 who present a goodness-of-fit test based on the CvM distance under a parametric model
and in the absence of covariates. We suggest using a grid search to find h that minimizes the CvM distance.
The detailed algorithms and simulation results are given in the Supplementary Material (S2, Copula parameter
selection). These results show that h is only weakly identified by the minimizer of the CvM distance due to the
latter often being very flat. The convergence behavior of the estimated parameters is therefore worse than if h was
known or assumed. The identification of h comes from the presence of covariates and the assumptions for the
marginal Cox models.19,27,28 In the absence of covariates, h is not identified.

However, the CvM distance may not be used to select between the marginal model and subhazard model. First,
the CvM distance under the marginal model could be minimized over a number of copula parameters, or different
copula functions. On the other hand, the subhazard does not have such options. Second, the CvM distance does
not account for the difference in the number of parameters, which may lead to a favourable result for a model
with a larger number of parameters.

Remark I: A goodness-of-fit method for the subhazard Cox model was developed by Scheike and Zhang29 and
Sfumato et al.30 These methods are not applicable to measure the fit of the marginal Cox model, and hence, it
cannot be used to compare the two models.

Remark II: Since the estimator FSub
1;n̂

tjZð Þ is new in the literature, we have checked its accuracy by simulations

given in the Supplementary Material (S2, Copula parameter selection). Our results show that FSub
1;n̂

tjZð Þ consis-
tently estimates FSub

1 ð tjZ Þ if the value of h is correctly specified.

4.5 Data example (lung cancer data)

We analyze the data on 125 lung cancer patients of Chen et al.31 In this study, the primary endpoint is overall
survival (i.e., time-to-death). During the follow-up, 38 patients died, while the remaining 87 patients were cen-
sored by dropout or the end of the study. Some early dropouts were possibly related to patients’ health status.
Therefore, we regard this censoring as a competing risk for death, leading to bivariate competing risks involving
time-to-death (Xi) for Event 1 and time-to-censoring (Yj) for Event 2. There is no independent censoring (i.e.
Cj ¼ 1). As in Chen et al.,31 we use the 63 training samples out of the 125 samples.

We are interested in how the gene expression of ZNF264 is associated with overall survival. The values of
ZNF264 were categorized according to the quantile (taking values 1, 2, 3 and 4; see Chen et al.31). It is found in
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Chen et al.31 that the gene expression of ZNF264 is significantly associated with overall survival (P< 0.05) based
on the usual Cox regression with independent censoring. However, the analysis did not allow for dependent
censoring. Therefore, we adopt a dependent competing risks model.

The subhazard model for Event 1 (death) is

kSub1j ðtÞ ¼ kSub10 ðtÞexp bSub1 � ZNF264j

� �
and the subhazard model for Event 2 (censoring) is

kSub2j ðtÞ ¼ kSub20 ðtÞexp bSub2 � ZNF264j

� �

We fitted the data to the two models to estimate bSub1 and bSub2 using the method of Section 4.1.
The marginal models for Events 1 and 2 are specified as

k1jðtÞ ¼ k10ðtÞexpðb1 � ZNF264j Þ ðfor deathÞ;
k2jðtÞ ¼ k20ðtÞexpðb2 � ZNF264j Þ ðfor censoringÞ;
PrðXj > x ; Yj > y Þ ¼ ½ expf hK1jðx Þ g þ expf hK2jðyÞ g � 1 ��1=h

8>><
>>:

where h ¼ 0, 0.22, . . . and 18. The latter correspond to s ¼ 0; 0.1, . . . and 0.9, respectively. For each h, we fitted the
data to estimate b1 and b2 using the method of Section 4.2.

Table 1 summarizes the results of fitting the data. Under the subhazard model, the effect of ZNF264 gene on
overall survival is significant (P < 0.05). Under the marginal hazard model, the effect of ZNF264 gene on
overall survival is also significant across all the selected values of h. However, the effect sizes in the two
different models are interpreted in different ways. For instance, the value b̂1 ¼ 0:548 (under h¼ 0.00) implies
that the unit increase of ZNF264 gene expression yields about 1.73 (¼ expð0:548Þ) times higher instantaneous
risk of death. This value is equivalent to that obtained by Chen et al.31 under the usual Cox regression with
independent censoring. Meanwhile, the value b̂

Sub

1 ¼ 0:425 yields the degree of acceleration in the sub-
distribution function

log½�logf 1� FSub
1 ðtjZþ 1 Þ g� ¼ 0:425� log½�logf 1� FSub

1 ðtjZÞ g�

Interpreting expðb̂Sub

1 Þ ¼ 1:57 as a relative risk of death is difficult, since the conditioning events are complex
and involve censoring.

Table 1 shows some interesting differences in the regression coefficients between the subhazard model and

marginal model for Event 2 (censoring); while b̂
Sub

2 is negative and non-significant, b̂2 is positive for all values of h
with a P-value< 0.05 for h � 3. Thus, the overexpressed value of ZNF264 gene expression may increase the
instantaneous risk of censoring, though this effect may not become apparent from the sub-distribution-based
analysis.

To draw some conclusions on the effect of ZNF264 gene on the hazard of censoring time, we selected the
copula parameter h ¼ 8 (s ¼ 0:8) that minimizes the CvM distance (see Section 4.4). Under this value, ZNF264

gene is significantly associated with censoring time (b̂2 ¼ 0:453, 95% CI: 0.156–0.751). On the other hand, the

regression coefficient for the subhazard model lacks statistical significance (b̂
Sub

2 ¼ �0:222, 95%CI:

�0.182	0.698). The difference of these conclusions comes naturally, as the two models are estimating two dif-
ferent quantities.

Figure 1 gives the model diagnosis plot for the subhazard model and the marginal model. Both models fit
well to the data since their model-based estimators of the sub-distribution function capture the empirical
behavior of the sub-distribution. While the CvM distance is smaller for the marginal model, this does not
mean the marginal hazard is more suitable for the data (Section 4.4). The R codes for performing the above
data analysis are available in the Supplementary Material (S3, Computer codes for the analysis of the lung
cancer data).
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5 Clustered competing risks data

This section extends our analysis to permit for more complex data structure, namely, clustered competing risks
data. Clustered data frequently appear in medical studies, where patients are collected from different hospitals
(in multi-center clinical trials) or different studies (in meta-analysis). Competing risks methods for analyzing
clustered data are developed by a number of authors,24,32–38 most of them using frailty to account for heteroge-
neity between clusters.

Consider G different clusters with the i-th cluster containing Ni subjects. Let Xij be the time to Event 1, Yij be
the time to Event 2 for i ¼ 1; 2; . . . ;G and j ¼ 1; 2; . . . ;Ni. Define Tij ¼ minðXij; Yij Þ and dij ¼ IðTij ¼ Xij Þ.
Independent censoring is introduced later.

Table 1. Regression coefficients obtained by fitting the lung cancer data.

Model

Event 1 (death)

b̂1 (95%CI)

Event 2 (censoring)

b̂2 (95%CI)

Subhazard 0.425 (0.044, 0.807) �0.222 (�0.586, 0.143)

Marginal (h ¼ 0.00; s¼ 0.0) 0.548 (0.144, 0.952) 0.259 (�0.176, 0.694)

Marginal (h¼ 0.22; s¼ 0.1) 0.560 (0.154, 0.965) 0.272 (�0.158, 0.702)

Marginal (h¼ 0.50; s¼ 0.2) 0.570 (0.162, 0.979) 0.280 (�0.143, 0.704)

Marginal (h¼ 0.86; s¼ 0.3) 0.578 (0.169, 0.988) 0.290 (�0.129, 0.710)

Marginal (h¼ 1.33; s¼ 0.4) 0.585 (0.178, 0.991) 0.311 (�0.103, 0.725)

Marginal (h¼ 2.00; s¼ 0.5) 0.593 (0.198, 0.987) 0.349 (�0.051, 0.749)

Marginal (h¼ 3.00; s¼ 0.6) 0.599 (0.229, 0.969) 0.394 (0.026, 0.762)

Marginal (h¼ 4.67; s¼ 0.7) 0.591 (0.251, 0.932) 0.432 (0.101, 0.762)

Marginal (h¼ 8.00; s¼ 0.8) 0.561 (0.251, 0.872) 0.453 (0.156, 0.751)

Marginal (h¼ 18.0; s¼ 0.9) 0.508 (0.227, 0.788) 0.455 (0.187, 0.723)

Figure 1. The estimated sub-distribution functions under the marginal Cox model (Mar-Cox), subhazard Cox model (Sub-Cox), and
nonparametric model (Nonpara) using the lung cancer data. The plots show the estimated cumulative incidence rates for Event 1
(death) and Event 2 (censoring). The nonparametric estimator for Event 1 (death) is not available for Z¼ 3 since this group only
contains three censored samples. The marginal hazard model is fitted under h¼ 8.
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To account for heterogeneity between clusters, we consider an unobserved frailty term ui that acts on the hazard
functions of Xij and Yij. The frailty term ui is considered as a realization of a positive-valued random variable. Two
parametric distributions are commonly used for ui: The gamma distribution with Egð ui Þ ¼ 1 and Vargð ui Þ ¼ g, and
the log-normal distribution ui ¼ expðviÞ where Egð vi Þ ¼ 0 and Vargð vi Þ ¼ g. In either case, a large value of g
implies a large amount of heterogeneity while the value of g ! 0 implies no heterogeneity between the clusters.

The marginal hazard functions of Xij and Yij given ui are denoted as k1ijð tjui Þ and k2ijð tjui Þ, respectively. Here,
the “marginal” refers to one marginal of the joint survival function PrðXij > x;Yij > yj ui Þ. For instance, the

marginal hazard for Xij is k1ijð tjui Þ ¼ �dlogPrðXij > t;Yij > 0j ui Þ=dt. In a multi-center analysis, the frailty term

ui captures the “frailty” for the i-th center, acting on all the patients in the center. The corresponding marginal

survival function is S1ijð tjui Þ ¼ exp½�K1ijð tjui Þ� ¼ exp �
Z t

0

k1ijð sjui Þds
� �

.

As in Ha et al.,37 the subhazard function for Event 1, given the frailty term, is

kSub1ij ð tjui Þ ¼ Prðt � Tij < tþ dt; dij ¼ 1jfTij � t g [ fTij < t; dij ¼ 0 g; ui Þ=dt

The subhazard and the sub-distribution function are related through kSub1ij ð tjui Þ ¼ �dlog½1� FSub
1ij ðtj uiÞ�=dt,

where FSub
1ij ð tjui Þ ¼ PrðTij � t; dij ¼ 1j uiÞ is the sub-distribution function for Event 1.

The next theorem extends the relationship between the marginal hazard and subhazard as given in Theorem 1
to clustered competing risks data:

Theorem 3: Under the joint frailty-copula model (Emura et al. 2017) of

PrðXij > x;Yij > yj ui Þ ¼ ChfS1 ijð xjui Þ;S2 ijð yjui Þ g (7)

the marginal hazard and subhazard are connected through

kSub1ij ð tjui Þ ¼ k1ijð tjui Þ D
½1;0�
h fK1ijð tjui Þ; K2ijð tjui Þ g

1�
Z t

0

k1ijð xjui ÞD½1;0�
h fK1ijðxjui Þ; K2ijðxjui Þ gdx

Assuming Chðu; vÞ ¼ uv in equation (7) corresponds to Xij and Yij that are independent given the frailty term. In
this case we have the joint frailty model of Rondeau et al.32 However, assuming independence does not simplify
the relationship between the marginal hazard and subhazard as in Section 3. A copula model similar to equation
(7) was also considered by Rotolo et al.24 for the purpose of simulating clustered competing risks data.

The implications of Theorem 3 are similar to those from Theorem 1 for non-clustered data. Specifically,

kSub1ij ðtjuiÞ < k1ijðtjuiÞ hold for 8t > 0 under various marginal models. The difference k1ijðtjuiÞ � kSub1ij ðtjuiÞ is usually
large, which depends on both marginal distributions and an assumed copula. The equality kSub1ij ðtjuiÞ ¼ k1ijðtjuiÞ does
not hold except for a degenerated competing risks model satisfying PrðTij ¼ XijjuiÞ ¼ 1. Thus, we conclude that

kSub1ij ðtjuiÞ ¼ k1ijðtjuiÞ does not hold for any clustered competing risks data that contains observed values for Yij.

Next, we study the effect of covariates on the two hazards.

5.1 Semiparametric inference for the Cox models

Medical researchers are typically interested in estimating the effects of covariates Zj on one or two event times.
For Event 1, we specify the covariate effects through the subhazard Cox model given ui

kSub1ij ð tjui; Zij Þ ¼ uik
Sub
10 ðtÞexpð bSub1 Zij Þ

The estimator of bSub1 is denoted by b̂
Sub

1 . Similarly for Event 2, we consider the subhazard Cox model

kSub2ij ð tjui; Zij Þ ¼ uik
Sub
20 ðtÞexpð bSub2 Zij Þ

and the estimator is denoted as b̂
Sub

2 . The two estimators b̂
Sub

1 and b̂
Sub

2 are obtained separately by working on two
different likelihood functions (e.g. Ha et al.37).
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Meanwhile, we also specify the covariate effects through the marginal Cox models

k1ijð tjui; Zij Þ ¼ uik10ðtÞexpð b01Zij Þ;
k2ijð tjui; Zij Þ ¼ uai k20ðtÞexpð b02Zij Þ

(

where ð k10; k20 Þ are baseline hazard functions, and a can be any real number such as a ¼ 1 (shared frailty case)

and a ¼ 0 (no frailty on Event 2). The estimators ðb̂1; b̂2Þ can be obtained by maximizing a likelihood function for

clustered competing risks data that was shortly mentioned in Emura et al.34 To implement their methods, we make

the cmprskCox.reg () function available in the R joint.Cox package. While our goal in this paper is to compare

between marginal regression and subhazard regression, the R function itself can be a useful tool for researchers.
A conclusion from Theorem 3 and Section 4 is that the subhazard Cox model and marginal Cox model do not

hold simultaneously. Hence, b̂
Sub

k and b̂k are estimating different population values. Nonetheless, it is informative

to review how these estimators can be computed from the clustered competing risks data.
Clustered competing risks data consist of ðTij; d1ij; d2ij; Zij Þ for i ¼ 1; 2; . . . ;G and j ¼ 1; 2; . . . ;Ni, where

Tij ¼ minðXij; Yij; Cij Þ, Cij is independent censoring time, d1ij ¼ IðTij ¼ Xij Þ and d2ij ¼ IðTij ¼ Yij Þ are event

indicators. Next, we introduce the models for analyzing the data.

5.1.1 Fitting the subhazard model

The estimator b̂
Sub

1 is obtained by maximizing the profiled h-likelihood function.13,37 The frailtyHL R package39

can compute b̂
Sub

1 and its SE and CI. Note that the estimates b̂
Sub

1 and b̂
Sub

2 should be obtained separately by fitting

two subhazard Cox models.

5.1.2 Fitting the marginal model

We give the methodological details for computing the marginal regression estimators ðb̂1; b̂2Þ. Emura et al.34

derived the log-likelihood function

‘ð g; b1; b2; k10; k20 j h; a Þ ¼
XG
i¼1

"XNi

j¼1

f d1ijlogk1ijðTijÞ þ d2ijlogk2ijðTijÞ g

þ log

Z 1

0

u
m1iþam

2i

i

(YNi

j¼1

wh½ uiK1ijðTijÞ; uaiK2ijðTijÞ �d1ijw

h½ uiK1ijðTijÞ; uaiK2ijðTijÞ �d2ij

�Dh½ uiK1ijðTijÞ; uai K2ijðTijÞ �
)
fgðuiÞdui

#

where kkijðtÞ ¼ kk0ðtÞexpð b0kZij Þ, KkijðtÞ ¼
Z t

0

kkijðsÞds, and mki ¼
XNi

j¼1
dkij for k ¼ 1 and 2. They proposed to

apply a cubic M-spline function to model ð k10; k20 Þ. Unlike the full nonparametric models, the spline yields

smooth functions k10ðtÞ ¼
XL1

‘¼1
g‘M‘ðtÞ and k20ðtÞ ¼

XL2

‘¼1
h‘M‘ðtÞ, where M‘ðtÞ is a cubic M-spline basis func-

tion,40 and g‘ � 0 and h‘ � 0 are unknown parameters. Here, wh ¼ D
½1; 0�
h =Dh and w


h ¼ D
½0; 1�
h =Dh

To compute the M-spline basis functions, one needs to specify the number and locations of knots. As in

literature,34,38 we adopt equally spaced knots n1 < n2 < n3, where n1 ¼ minðTijÞ, n3 ¼ maxðTijÞ, and

n2 ¼ ðn1 þ n3Þ=2. The functions M‘ðtÞ’s for L1 ¼ L2 ¼ 5 are defined on t 2 ½n1; n3�.
We develop the R function cmprskCox.reg () in the joint.Cox R package that automatically obtains

ðĝ; b̂1; b̂2;  k̂10; k̂20Þ. This function applies a Newton-type optimization to the penalized log-likelihood

‘ð g; b1; b2; g; hjh; a Þ � j1

Z
d2

dt2
k10ðtÞ

( )2

dt� j2

Z
d2

dt2
k20ðtÞ

	 
2

dt (8)
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where h, a, and jk > 0 are given values. The R function cmprskCox.reg () automatically selects the best values of

j1 and j2 by a cross-validation while the values h and a have to be pre-specified. We suggest considering a ¼ 0,

a ¼ 1, and other plausible values, and then choose the one that gives the best (largest) likelihood value in equation

(8). This is straightforward by checking the output of “cmprskCox.reg(,alpha¼)”. The choice a ¼ 0 implies that

the risks of Event 2 are homogeneous across clusters. The choice a ¼ 1 gives a shared frailty model for Events 1

and 2 so that the between-cluster heterogeneity in two events is similar. We have examined the performance of the

inference procedure via simulations (Appendix 3).

5.2 Data example (bladder cancer)

We consider the bladder cancer data collected from 21 centers that participated in the EORTC trial 30791.41 We

use the subset of the bladder cancer data as considered in Section 1.2.4 of Ha et al.,13 consisting of 396 patients

with bladder cancer from 21 centers. We consider two competing endpoints, i.e. time to first bladder recurrence

(Event 1) and time to death prior to recurrence (Event 2). Of 396 patients, 200 (50.51%) had recurrence of bladder

cancer, 81 (20.45%) died prior to recurrence, and 115 (29.04%) were censored without recurrence or death at the

last date of the follow-up. The numbers of patients per center varied from 3 to 78, with the mean of 18.9 and the

median of 14. Two covariates are considered: Chemotherapy (0¼No vs. 1¼Yes) and Age (0 if age �65 years vs. 1

if age >65 years).
The subhazard model for Event k is

kSubkij ð tjui Þ ¼ uik
Sub
k0 ðtÞexp bSubk1 � Chemoij þ bSubk2 � Ageij

� �

for k ¼ 1 (Recurrence) and k ¼ 2 (Death). The two models are fitted separately to compute b̂
Sub

’s.
The marginal model for the two events is jointly specified as

k1ijð tjui Þ ¼ uik10ðtÞexpðb11 � Chemoij þ b12 � Ageij  Þ ðfor recurrenceÞ;
k2ijð tjui Þ ¼ uai k20ðtÞexpðb21 � Chemoij þ b22 � Ageij Þ ðfor deathÞ;
PrðXij > x ; Yij > yjui Þ ¼ ½ expf hK1ijðxjuiÞ g þ expf hK2ijðyjuiÞ g � 1 ��1=h

8>><
>>:

We set h ¼ 0, 0.5, 2, or 8, which corresponds to s ¼0, 0.2, 0.5, or 0.8, respectively. We report the fitted

results for a ¼ 1 (shared frailty model) as it gave a greater likelihood value than other values of a (e.g. a ¼ 0,

a ¼ 2).
Table 2 summarizes the results of fitting the two different Cox models. For the subhazard model, the effect of

Chemo on time-to-recurrence is significant (b̂
Sub ¼ �0:70; P-value< 0.05) but its effect on time-to-death is non-

significant (b̂
Sub ¼ 0:64; P-value> 0.05). The result implies that the chemotherapy is effective for reducing the

event rate of recurrence, in the sense that the sub-distribution function is decreased as

log½�logf 1� FSub
1 ðtjChemo ¼ Yes Þ g� ¼ �0:70þ log½�logf 1� FSub

1 ðtjChemo ¼ No Þ g�

Table 2. Regression coefficients obtained by fitting the bladder cancer data.

Covariate (taking 0 or 1) Model Event 1 (recurrence) b̂1 (95%CI) Event 2 (death) b̂2 (95%CI)

Chemo (1 for chemotherapy) Subhazard �0.70 (�1.04, �0.36) 0.64 (�0.09, 1.37)

Marginal (h¼0; s¼0) �0.55 (�0.91, �0.20) 0.34 (�0.38, 1.06)

Marginal (h¼0.5; s¼0.2) �0.52 (�0.87, �0.17) 0.19 (�0.48, 0.86)

Marginal (h¼2; s¼0.5) �0.51 (�0.86, �0.16) �0.27 (�0.77, 0.23)

Marginal (h¼8; s¼0.8) �0.30 (�0.63, 0.04) �0.18 (�0.53, 0.18)

Age (1 for>65 years) Subhazard �0.22 (�0.50, 0.06) 0.93 (0.43, 1.43)

Marginal (h¼0; s¼0) �0.10 (�0.39, 0.18) 0.73 (0.21, 1.26)

Marginal (h¼0.5; s¼0.2) �0.07 (�0.36, 0.21) 0.66 (0.16, 1.17)

Marginal (h¼2; s¼0.5) �0.04 (�0.31, 0.23) 0.37 (�0.02, 0.76)

Marginal (h¼8; s¼0.8) �0.05 (�0.30, 0.20) 0.08 (�0.20, 0.36)
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However, the effect of Chemo on time-to-death is non-significant, possibly due to toxicity or side effects.
Under the marginal hazard model, the effect of Chemo on time-to-recurrence is significant (P-value< 0.05) but

its effect on time-to-death is non-significant (P-value> 0.05). Hence, the significance of Chemo is confirmed on

both the marginal hazard and subhazard. However, since the values of b̂
Sub

and b̂ are targeted to measure

different risks, they must be interpreted differently. To interpret the results for the marginal regression, we

choose h¼ 2 (s¼ 0.5) corresponding to a moderate amount of dependence between time-to-recurrence and

time-to-death. Under this value, Chemo reduced the marginal hazard rate of recurrence by

expðb̂Þ ¼ expð�0:51Þ ¼ 0:60. Normally, researchers do not interpret b̂ ¼ �0:51 as the decrease in the survival

function.
Now we compare the effects of Age on the two endpoints (Table 2). Under the subhazard model, Age signif-

icantly influences time-to-death. This means that older patients tend to have higher death rate in terms of their

increased sub-distribution function. While this appears to be a plausible finding, the marginal model with h¼ 2

(s¼ 0.5) and h¼ 8 (s¼ 0.8) suggests a different conclusion: Age does not have a significant effect on time-to-death.

A possible explanation of the effect of Age on subhazard model is the presence of some indirect influence of the

effect of Age on time-to-recurrence. That is, even if Age has no marginal effect on time-to-death, it influences the

subhazard of time-to-death through its effect on time-to-recurrence (Section 3).

6 Conclusion and discussion

In this article, we investigated in detail the relationship between the subhazard function and marginal hazard

function in the analysis of competing risks data. We have adopted the assumed copula model of Zheng and Klein5

to establish a mathematical relationship between the two hazard functions (Theorem 1). We have also adopted the

joint frailty-copula model34,38 to extend the mathematical result to clustered competing risks data (Theorem 3).

One conclusion from Theorems 1 and 3 is that, even if there is no marginal effect on one event time, the subhazard

of this event time is influenced by the marginal effect on the other event. Hence, even if a fitted covariate for

a marginal model does not show any significance on one event, the covariate can still be significant on the

subhazard model.
Besides these theoretical findings, we have developed an R function for marginal regression with clustered

competing risks data: cmprskCox.reg (), and checked the validity by means of simulations (Appendix 3). This

adds a new tool to the existing R functions for fitting the marginal hazard model for competing risks data

(Table 3). While we do not intend to compare all the available packages, the new R function allows researchers

to compare the results of subhazard regression and marginal hazard regression for their own data. An R package

for subhazard regression using interval censored data is only recently developed.44

One has to recognize that the marginal hazard function and subhazard function describe different population

quantities. We have shown that a constant marginal hazard function produces a steeply decreasing subhazard

function. In the analysis of the two cancer datasets, we have seen that regression coefficients fitted by the marginal

Table 3. R functions in available R packages for competing risks.

R package No covariate Covariates Covariate & cluster

Subhazard cmprsk

Gray25
cuminc crr –

timereg

Scheike et al.42
– comp.risk

prop.odds.subdist

comp.risk

prop.odds.subdist

frailtyHL

Ha et al.39
– – hlike.frailty

Goftte

Sfumato et al.30
– prop.crr

fcov.crr

–

Marginal hazard joint.Cox

Emura16
– – cmprskCox.reg

compound.Cox

Emura et al.43
– dependCox.reg

dependCox.reg.CV

–

See Appendix 2 for some descriptions about the compound.Cox package.
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hazard model and the subhazard model can have different signs. These findings emphasize the fact that the two

hazard functions measure different natures of event risks.
We introduced a Cram�er-von Mises distance for selecting a copula parameter for the marginal hazard model.

While we developed and tested the method for discrete or categorical covariates, an extension to continuous

covariate might be possible by following the idea of Escarela and Carri�ere.6 An extension of this method to

clustered competing risks data is challenging, because of the lack of a nonparametric estimator for the sub-

distribution function in the presence of heterogeneity and/or correlation caused by clustering.
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Appendix 1. Proof of Theorem 2

We first rewrite the condition kSub1 ð t Þ ¼ k1ð t Þ 8t � 0 as fSub1 ð t ÞS1ð t Þ ¼ f1ð t Þf 1� FSub
1 ð t Þ g 8t � 0.

The right-hand-side of this equation can be written as
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f1ð t Þf 1� FSub
1 ð t Þ g ¼ f1ð t ÞfS1ð t Þ þ PrðX � t; X > Y Þ g

¼ fSub1 ð t ÞS1ð t Þ þ f f1ð t Þ � fSub1 ð t Þ gS1ð t Þ þ f1ð t ÞPrðX � t; X > Y Þ

Hence, kSub1 ð t Þ ¼ k1ð t Þ 8t � 0 is equivalent to

f f1ð t Þ � fSub1 ð t Þ gS1ð t Þ þ f1ð t ÞPrðX � t; X > Y Þ ¼ 0 8t (9)

Since S1ð t Þ is non-increasing in t, 9t
 2 ½0; 1� such that S1ð t Þ ¼ 0 for 8t � t
. Note that S1ð t Þ ¼ 0 implies

f1ð t Þ ¼ 0. Hence equation (9) holds for 8t � t
. On the other hand, for 8t < t
, we have a positive value

S1ð t Þ > 0. Thus, a necessary condition for equation (9) is f f1ð t Þ � fSub1 ð t Þ g ¼ 0 8t < t
. This is also a sufficient

condition for equation (9) since

d

dt
PrðX � t; X > Y Þ ¼ f1ð t Þ � fSub1 ð t Þ ¼ 0 8t < t
 iff PrðX � t; X > Y Þ ¼ 0 8t < t


Hence, kSub1 ð t Þ ¼ k1ð t Þ 8t � 0 is equivalent to PrðX � t; X > Y Þ ¼ 0 8t < t
. The proof complete since

PrðX � t; X > Y Þ ¼ 0 8t < t
 iff PrðX > Y Þ ¼ 0 iff PrðX � Y Þ ¼ 1

Appendix 2. Semiparametric MLE under the marginal model

We introduce the marginal regression method of Chen8 to compute the MLE ðb̂1; b̂2; k̂10; k̂20Þ based on the

dataset ðTj; d1j; d2j; ZjÞ, j ¼ 1; 2; . . . ; n. Under the marginal Cox models of section 4.2, the CS hazard functions are

kCS1 ð tjZj Þ ¼ k10ð t Þexpð b01Zj Þg1jð t; b1; b2; K10; K20jh Þ;
kCS2 ð tjZj Þ ¼ k20ð t Þexpð b02Zj Þg2jð t; b1; b2; K10; K20jh Þ

where

g1jðt; b1; b2; K10; K20jh Þ ¼ D
½1;0�
h fK1jðtÞ; K2jðtÞ g
DhfK1jðtÞ; K2jðtÞ g ;

g2jðt; b1; b2; K10; K20jh Þ ¼ D
½0;1�
h fK1jðtÞ; K2jðtÞ g
DhfK1jðtÞ; K2jðtÞ g

where KkjðtÞ � KkðtjZjÞ for k ¼ 1 and 2. As in Chen,8 we obtain the log-likelihood

‘ðb1; b2; k10; k20jhÞ ¼
X
j

d1j½ b01Zj þ logg1jðTj; b1; b2; K10; K20jh Þ þ logk10ðTjÞ �

þ
X
j

ð1� d2jÞ½ b02Zj þ logg2jðTj; b1; b2; K10; K20jh Þ þ logk20ðTjÞ �

�
X
j

Dh½K1jðTjÞ; K2jðTjÞ �

For a given h, the MLE is obtained as ðb̂1; b̂2; k̂10; k̂20Þ ¼ argmax‘ðb1; b2; k10; k20jhÞ, where we treat Kk0 as an

increasing step function with jumps sizes k10ðTjÞ ¼ dK10ðTjÞ ¼ K10ðTjÞ � K10ðTj � dtÞ for d1j ¼ 1 and k20ðTjÞ ¼
dK20ðTjÞ ¼ K20ðTjÞ � K20ðTj � dtÞ for d2j ¼ 0. Currently, there seems no software package to implement the

computation of the MLE.
For a special case of Cj ¼ 1 and one-dimensional covariate Zj ¼ Zj, one can compute the MLE by

the R function dependCox.reg () in compound.Cox R package.43 The value of h should be given by user.

Multiple covariates and cross-validated estimate of h can be handled by dependCox.reg.CV (); however, the

estimates are obtained from univariate analyses and they are not equal to ðb̂1; b̂2; k̂10; k̂20Þ. See Chapter 5 of
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Emura and Chen14 for details. We illustrate the dependCox.reg () function through the lung cancer data. Given

below are the input and output in the R console.

> data(Lung)
>
> t.vec ¼ Lung$t.vec[Lung$train ¼ ¼ TRUE]
> d.vec ¼ Lung$d.vec[Lung$train ¼ ¼ TRUE]
> X.vec ¼ Lung$ZNF264[Lung$train ¼ ¼ TRUE]
>
> theta ¼ 8
> dependCox.reg(t.vec,d.vec,X.vec,censor.reg¼TRUE,alpha¼ theta,baseline¼TRUE)

$surv.reg
beta SE Z P
0.5613137475 0.1583489783 3.5447891957 0.0003929272

$censor.reg
beta SE Z P
0.453470429 0.151979571 2.983759106 0.002847308

$baseline
[1] 0.006091766 0.012249470 0.018474552 0.025089564 0.025089564 0.032470851
. . .
[61] 1.006589532 1.006589532 1.006589532

$cen.baseline
[1] 0.00000000 0.00000000 0.00000000 0.00000000 0.01387123 0.01387123
. . .
[61] 1.83754289 2.08436566 2.72019869

We see the estimate b̂1 ¼ 0.5613137475 (along with the SE, Z-value, and P-value), a regression coefficient for

Event 1 (death). Similarly, we see the estimate b̂2 ¼ 0.453470429, a regression coefficient for Event 2 (censoring).

We also see the cumulative baseline hazard function K̂k0ðTjÞ for j ¼ 1; 2; . . . ; n and Event k. Since the sample size

is n ¼ 63, we have K̂k0ðTðjÞÞ for 63 ordered time points Tð1Þ < � � � < Tð63Þ. The value of hmust be given by user as

seen from the input “theta ¼ 8”.

Appendix 3. Simulations for the marginal regression method

This appendix conducts simulation studies to demonstrate that the marginal regression methods for clustered

competing risks data (section 5.1) are reliable. To this end, we generate data from a joint frailty-copula model and

estimate the parameters. We then check the consistency between the estimates and the parameters for 500

repetitions.

A.3.1 Simulation designs

Following Emura et al.,34 we consider two different scenarios:
Scenario (I): G ¼ 5 and Ni ¼ 100 (or 200) for i ¼ 1; 2; . . . ; 5.
Scenario (II): G ¼ 30 and Ni ¼ 10 (or 20) for i ¼ 1; 2; . . . ; 30.
The case of G ¼ 5 corresponds to small number of clusters (studies), which is common in meta-analyses. For

example, Sabatier et al.45 combined G ¼ 6 independent studies to examine the effect of ECRG4 expression on

survival. In the ovarian cancer research, Emura et al.34 analyzed the effect of CXCL12 expression to both tumor

recurrence and death based on G ¼ 4 independent studies. The case of G ¼ 30 corresponds to a larger amount of

clusters with smaller number of subjects. Our bladder cancer data example (section 5.2) is G ¼ 21.
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Table 4. Simulation results under Scenario (I) (G ¼ 5 studies) based on 500 replications.

Ni ¼ 100 Ni ¼ 200

Parameter Mean SD SE CP Mean SD SE CP

CEN¼ 16% b1 ¼ 1 1.003 0.212 0.217 0.95 1.003 0.148 0.151 0.96

h ¼ 2 b2 ¼ 1 1.013 0.210 0.217 0.96 1.003 0.146 0.151 0.97

g ¼ 0:5 0.400 0.263 0.245 0.89 0.396 0.282 0.239 0.83

j1 60.020 185.132 – – 28.880 108.023 – –

j2 79.420 218.246 – – 26.480 86.495 – –

CEN¼ 32% b1 ¼ �1 �1.002 0.254 0.249 0.95 �1.000 0.169 0.174 0.95

h ¼ 2 b2 ¼ �1 �0.995 0.253 0.248 0.95 �0.995 0.172 0.174 0.96

g ¼ 0:5 0.397 0.264 0.244 0.89 0.395 0.283 0.239 0.83

j1 264.340 397.644 – – 126.320 284.601 – –

j2 229.340 373.205 – – 105.720 245.626 – –

CEN¼ 18% b1 ¼ 1 1.007 0.193 0.198 0.95 1.005 0.139 0.138 0.95

h ¼ 6 b2 ¼ 1 1.015 0.191 0.197 0.96 1.006 0.138 0.138 0.95

g ¼ 0:5 0.402 0.266 0.247 0.88 0.399 0.285 0.241 0.83

j1 117.480 281.349 – – 55.800 178.341 – –

j2 136.080 292.132 – – 52.200 175.123 – –

CEN¼ 36% b1 ¼ �1 �1.002 0.233 0.231 0.95 �0.999 0.157 0.161 0.95

h ¼ 6 b2 ¼ �1 �0.997 0.230 0.231 0.95 �0.998 0.158 0.161 0.95

g ¼ 0:5 0.400 0.268 0.248 0.89 0.396 0.281 0.240 0.84

j1 306.740 420.877 – – 126.040 278.419 – –

j2 285.940 412.046 – – 127.040 277.603 – –

CEN: the censoring percentage; SD: the sample standard deviation of the estimates; SE: the average of the standard errors; CP: the coverage probability

of the 95% CIs.

Table 5. Simulation results under Scenario (II) (G ¼ 30 studies) based on 500 replications.

Ni ¼ 10 Ni ¼ 20

Parameter Mean SD SE CP Mean SD SE CP

CEN¼ 16% b1 ¼ 1 0.993 0.306 0.296 0.95 1.019 0.193 0.201 0.96

h ¼ 2 b2 ¼ 1 0.991 0.313 0.295 0.93 1.012 0.204 0.202 0.94

g ¼ 0:5 0.489 0.165 0.158 0.95 0.482 0.144 0.136 0.93

j1 73.320 176.789 – – 29.520 64.846 – –

j2 75.720 190.648 – – 27.520 57.491 – –

CEN¼ 32% b1 ¼ �1 �1.015 0.360 0.331 0.91 �0.991 0.221 0.229 0.96

h ¼ 2 b2 ¼ �1 �1.024 0.354 0.331 0.92 �0.994 0.228 0.229 0.95

g ¼ 0:5 0.493 0.176 0.168 0.97 0.480 0.147 0.139 0.94

j1 262.420 397.434 – – 151.000 311.598 – –

j2 267.220 401.863 – – 143.200 299.575 – –

CEN¼ 18% b1 ¼ 1 0.993 0.287 0.274 0.94 1.013 0.178 0.185 0.96

h ¼ 6 b2 ¼ 1 0.993 0.289 0.274 0.93 1.011 0.180 0.185 0.96

g ¼ 0:5 0.489 0.165 0.158 0.96 0.484 0.144 0.135 0.93

j1 137.120 285.962 – – 49.440 143.696 – –

j2 126.920 273.864 – – 54.840 143.462 – –

CEN¼ 36% b1 ¼ �1 �1.023 0.342 0.307 0.91 �0.999 0.206 0.213 0.96

h ¼ 6 b2 ¼ �1 �1.029 0.341 0.308 0.91 �1.001 0.207 0.213 0.95

g ¼ 0:5 0.494 0.177 0.171 0.97 0.482 0.148 0.141 0.94

j1 343.880 435.267 – – 209.380 363.457 – –

j2 341.680 440.912 – – 198.780 354.868 – –

CEN: Censoring percentage; SD: sample standard deviation of the estimates; SE: average of the standard errors; CP: coverage probability of the

95% CIs.
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For each cluster i ¼ 1; 2; . . . ;G, a frailty term ui follows a gamma distribution with mean 1 and variance
g ¼ 0:5. For each subject j ¼ 1; 2; . . . ;Ni, a covariate Zij follows a uniform distribution on the unit interval
ð 0; 1 Þ. Given ui and Zij, the joint distribution of Xij (Event 1) and Yij (Event 2) follows a joint frailty-copula
model specified by

PrðXij > x; Yij > yjui Þ ¼ ½ expf hK1ijðxjui Þ g þ expf hK2ijð yjui Þ g � 1 ��1=h

where K1ijðxjui Þ ¼ uiK10ð x Þexpð b1Zij Þ and K2ijð yjui Þ ¼ uai K20ð y Þexpðb2Zij Þ are the cumulative hazards with
dK10ðx Þ=dx ¼ k10ðx Þ ¼ 1 and dK20ð y Þ=dy ¼ k20ð y Þ ¼ 1. Here, we introduce dependence between Events 1
and 2 by choosing h ¼ 2 (h ¼ 6) that corresponds to Kendall’s tau equals to 0.5 (0.75). To avoid the non-
identifiability issue on the competing risks data,22 we assumed the dependence parameter h to be known. We also
assumed a ¼ 1 is known and not estimated. The independent censoring time Cij follows a uniform distribution on
the interval ð 0; 5 Þ that yields around 16–36% censored subjects. After generating data, we fit the joint model by
utilizing the R function cmprskCox.reg () in the joint.Cox R package. Our simulations are based on 500
replications.

A.3.2 Simulation results

Table 4 shows the simulation results under Scenario (I). The parameter estimates are nearly unbiased for regres-
sion parameters b1 and b2. The standard deviations (SDs) of the estimates decrease as the numbers of subjects
increase from Ni ¼ 100 to 200. In addition, the average standard errors (SEs) accurately approximate the
SDs. Consequently, the coverage probabilities (CPs) of the 95% CIs are all close to the nominal confidence
level of 0.95.

Table 4 reveals that the estimates of the frailty parameter g are biased. Also, the average SEs are lower than the
SDs. Consequently, the resulting CPs of the 95%CIs do not reach the nominal confidence level of 0.95. These
problems do not vanish even if the number of subjects increases from Ni ¼ 100 to 200 (Table 4). This is because
the bias is due to the small number of clusters (G ¼ 5). Fortunately, the problems of the bias and CPs vanish
when the number of clusters is large (G ¼ 30, Table 5).

Table 5 shows the simulation results under Scenario (II). Similar conclusions can be drawn for the estimation of
b1 and b2 from those of Scenario (I). On the other hand, unlike Scenario (I), the estimates of g are nearly unbiased.
The average SEs are close to the SDs, and hence the CPs of the 95%CIs are close to the nominal confidence level
of 0.95.
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