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Personalized dynamic prediction of
death according to tumour progression
and high-dimensional genetic factors:
Meta-analysis with a joint model
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Abstract

Developing a personalized risk prediction model of death is fundamental for improving patient care and touches on the

realm of personalized medicine. The increasing availability of genomic information and large-scale meta-analytic data sets

for clinicians has motivated the extension of traditional survival prediction based on the Cox proportional hazards

model. The aim of our paper is to develop a personalized risk prediction formula for death according to genetic factors

and dynamic tumour progression status based on meta-analytic data. To this end, we extend the existing joint frailty-

copula model to a model allowing for high-dimensional genetic factors. In addition, we propose a dynamic prediction

formula to predict death given tumour progression events possibly occurring after treatment or surgery. For clinical use,

we implement the computation software of the prediction formula in the joint.Cox R package. We also develop a tool to

validate the performance of the prediction formula by assessing the prediction error. We illustrate the method with the

meta-analysis of individual patient data on ovarian cancer patients.
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1 Introduction

In cancer studies, predicting risk of death is fundamental for improving patient care and optimizing treatment
strategies. A common approach in survival analysis is to predict a dichotomous event status, death, or alive, within
a given time window (e.g., five-years after treatment). The traditional prediction scheme is on the basis of
conditional survival probability given clinical covariates collected at time t ¼ 0, the time of treatment.1,2 The
conditional survival probability is easily estimated by fitting the Cox proportional hazards model and applying the
Breslow estimator.3

Recent years have witnessed a rapid increase in the use of genomic factors to refine survival prediction models in
medical research. Models incorporating genomic factors often lead to an improved prediction accuracy compared
to models based solely only on traditional clinical covariates, as reported in breast cancer,4,5 diffuse large-B-cell
lymphoma,6,7 lung cancer,8–10 ovarian cancer,11–13 and other cancers. In both medical and statistical contexts,
evaluating predictive accuracy of survival models has been an active research area due to the high-dimensional
nature of data.14–21
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Survival prediction using genomic information can be further improved by a ‘dynamic prediction’ scheme that
develops a risk prediction formula at a certain moment t4 0. To predict patient survival, dynamic prediction
utilizes the record of intermediate events occurring to a patient. For example, tumour progression of a patient
(e.g., relapse of cancer) may be strongly predictive of the patient’s overall survival. However, such dynamic events
are not available at time t ¼ 0, as they evolve with time.

Different types of dynamic prediction have been proposed in the literature. The dynamic prediction scheme was
initially developed under the landmark Cox model.22,23 In recent years, there has been a noticeable trend using a
joint model that accounts for the dependence between survival and other responses via frailty. Different frailty
models have been developed to join different response types: survival and recurrent events,24,25 survival and
longitudinal covariates,26–29 clustered multivariate survival responses,30 survival, longitudinal covariates, and
recurrent events.31 However, these existing joint frailty models for dynamic prediction have not been adapted
to handle high-dimensional genomic factors. In addition, dynamic prediction under the setting of individual
patient data (IPD) meta-analysis has rarely been discussed in the literature.

In this context, this paper seeks to develop a personalized survival prediction formula by incorporating both
genomic factors and dynamic history of tumour progression events under the meta-analytic setting. As for the
statistical methods, we follow the meta-analytic approach with the joint frailty-copula model.32 This copula-based
approach results in a novel prediction formula compared to existing prediction schemes that focus solely on
random effect joint models.24–31

The paper is organized as follows. Section 2 extends the joint frailty model to take into account for the high-
dimensional genomic factors, where we utilize the compound covariate (CC) as a main technique for dimension
reduction. Section 3 derives the proposed dynamic prediction formula. Section 4 considers a tool to validate the
prediction formula by estimating prediction error. Section 5 illustrates the methods through the meta-analysis of
ovarian cancer data. Section 6 concludes.

2 Joint model with meta-analysis

2.1 Motivating example: Meta-analysis of ovarian cancer patients

Association between the CXCL12 gene expression and survival was reported by Popple et al.11 in ovarian cancer
patients. Their finding was confirmed by Ganzfried et al.33 based on the meta-analysis of 14 independent studies.
The multivariate Cox regression analyses performed by Popple et al.11 and Ganzfried et al.33 indicated that the
CXCL12 gene expression is predictive of patient survival, independently from other clinic-pathological covariates.
A meta-analysis using a joint model further confirmed that the expression of CXCL12 gene is predictive of both
cancer relapse and death.32 These studies focused solely on the CXCL12 gene expression ignoring other gene
expressions.

The extracted data from Ganzfried et al.33 consist of 912 individual ovarian cancer patients (544 relapsed, 465
died, and 447 censored) from four independent studies (Table 1): the data extraction shall be detailed in Section 5.
There are 11,756 gene expressions that are commonly available across the four studies, including the CXCL12 gene
expression.

Table 1. A meta-analytic data combining the four independent studies of ovarian cancer patients of Ganzfried et al.33

Data

seta
Median

follow-up (days) Sample size

The number of observed events (event rates)
The number

of genesRelapse (�ij ¼ 1) Death (��ij ¼ 1) Censoring (��ij ¼ 0)

GSE17260 1410 N1 ¼84 59 (70%) 38 (45%) 46 (55%) 18,548

GSE30161 2513 N2 ¼58 48 (83%) 36 (62%) 22 (38%) 18,524

GSE9891 1140 N3 ¼260 185 (71%) 113 (43%) 147 (57%) 18,524

TCGA 1721 N4 ¼510 252 (49%) 278 (55%) 232 (45%) 12,211

Total
P4

i¼1 Ni ¼912 544 (60%) 465 (51%) 447 (49%) Common¼ 11,756

Note: The data are extracted from the curatedOvarianData R Bioconductor package of Ganzfried et al.;33 see Section 5 for details.
aThe data sets are signified as GEO accession number which can be used to search the public genomics data in the GEO (Gene Expression Omnibus)

repository. Extracted studies are the subset having documented values of ‘days-to-tumor-recurrence’, ‘days-to-death’, ‘recurrence status’, and ‘vital

status’ for all patients. The median follow-up time is calculated from the Kaplan–Meier survival curve for time-to-censoring for each study. The event

rates are calculated for each study.
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It is of our interest to examine how the high-dimensional genomic information can be incorporated into a joint
model of relapse and death, instead of CXCL12 alone. Waldron et al.13 performed a meta-analysis on the data from
Ganzfried et al.33 to examine the predictive values of these available genes. They applied several existing genomic
predictors for predicting overall survival and confirmed their ability to predict survival. However, they also noted the
modest gain in prediction power, suggesting the need of further improvement to be of clinical value.13

Clinicians are often required to update their predictions of death in patients after intermediate events (e.g.,
relapse of cancer). It was observed that the increase in the risk of death linked to cancer relapse is much greater
than the effect linked to the change in CXCL12 expression.32 To account for such dynamic disease mechanism and
build a highly accurate prediction formula of death, we shall develop a joint model of relapse and death, involving
both clinical and genomic information as covariates.

2.2 Data structure

Meta-analytic data consist of G independent studies with the ith study containing Ni subjects for i ¼ 1, 2, . . . , G.
Let Xij be time-to-tumour progression (TTP), Dij be time-to-death, and Cij be independent censoring time for
i ¼ 1, 2, . . . , G and j ¼ 1, 2, . . . , Ni. We observe the first-occurring event time Tij ¼ minðXij, Dij, CijÞ, the status
of tumour progression �ij ¼ IðTij ¼ XijÞ, the terminal event time T �ij ¼ minðDij, CijÞ, and the status for death
��ij ¼ IðT �ij ¼ DijÞ, where Ið�Þ is the indicator function. The observed data are expressed as ðTij, T

�
ij , �ij, �

�
ijÞ for

i ¼ 1, 2, . . . , G and j ¼ 1, 2, . . . , Ni, as in literature.32,34

The aforementioned data structure follows the semi-competing risks setting:35 the variable Xij may be censored
by Dij, but Dij is never censored by Xij. If a patient has documented records of both TTP and time-to-death, they
correspond to Tij ¼ Xij, T

�
ij ¼ Dij, and �ij ¼ ��ij ¼ 1. Since part of patients provide information on both Xij and Dij,

the parameter determining the level of dependence between Xij and Dij can be estimated from the data.32,34,35

2.3 Joint frailty-copula model

Rondeau et al.34 proposed a joint model tailored for meta-analysis. Let Z1, ij be a vector of clinical covariates
associated with TTP, and Z2, ij be a vector of clinical covariates associated with time-to-death. To capture the
heterogeneity of the studies, Rondeau et al.34 considered unobserved study-specific frailties ui following a Gamma
distribution with a density

f�ðuÞ ¼
1

�ð1=�Þ�1=�
u

1
��1 exp �

u

�

� �

where �4 0 is their variance. The two hazards are jointly specified as

rijðtjuiÞ ¼ uir0ðtÞ expðb
0
1Z1, ijÞ ðfor tumour progression XijÞ

�ijðtjuiÞ ¼ u�i �0ðtÞ expðb
0
2Z2, ijÞ ðfor death DijÞ

�
ð1Þ

The forms of the baseline hazards r0ð�Þ and �0ð�Þ are flexibly modelled, for example, using cubic M-splines.36 The
parameters b1 (or b2) are interpreted as fixed effects of Z1, ij(or Z2, ij) across studies. The random effects
ui ði ¼ 1, 2, . . . , GÞ act multiplicatively on the baseline hazard functions and reflect the intra-study dependence
between Xij and Dij. Positive dependence, independence, or negative dependence corresponds to �4 0, � ¼ 0, or
�5 0, respectively. In the joint frailty model of Rondeau et al.,34 the conditional independence between Xij and Dij

is assumed (given ui, Z1, ij, and Z2, ij).
Residual dependence arises if patient-level characteristics (clinical covariates or genes) affecting both Xij and Dij

are ignored in the model.32,37 Consider a setting where survival prediction is made using a few covariates (e.g., age,
cancer grade, tumour size). Residual dependence implies that TTP gives additional predictive information for
time-to-death beyond these covariates. Hence, residual dependence plays a role on survival prediction unless TTP
is completely predictable by these covariates. In meta-analysis, researchers may access only a few covariates that
are consistently obtained across studies.

Emura et al.32 extended the joint frailty model of Rondeau et al.34 by introducing intra-subject (residual)
dependence with a copula model

PrðXij 4 x, Dij 4 yjuiÞ ¼ C�½SXijðxjuiÞ, SDijð yjuiÞ� ð2Þ
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where C� is a copula38 with an unknown parameter �. Here, SXijðxjuÞ ¼ expf�uR0ðxÞe
b01Z1,ijg and SDijð yjuÞ ¼

expf�u��0ð yÞe
b02Z2,ijg are conditional survival functions following the joint frailty model (1), and R0ðxÞ ¼R x

0 r0ðvÞdv and �0ð yÞ ¼
R y
0 �0ðvÞdv are the baseline cumulative hazard functions.

The model (2) is called the joint frailty-copula model.32 The copula describes intra-subject dependence between
Xij and Dij (given ui, Z1, ij, and Z2, ij). A convenient example is the Clayton copula

C�ðv, wÞ ¼ ðv
�� þ w�� � 1Þ�1=�, �4 0

where the copula parameter � determines the amount of dependence and is related to Kendall’s � via � ¼ �=ð� þ 2Þ
(pp. 116–117 of Nelsen38). If �! 0, then C�ðv, wÞ ¼ vw and � ¼ 0. Thus, the model reduces to the joint frailty
model of Rondeau et al.34

2.4 Incorporating high-dimensional genomic factors

Theoretically, it might be possible to consider the joint frailty model (1) treating Z1, ij and Z2, ij as high-dimensional
genetic factors. However, estimation becomes infeasible for such a model without penalization techniques. While
many techniques penalizing the Cox partial likelihood for high-dimensional covariates are available,18,19,21,39,40

they are not straightforwardly applied to the joint model requiring the complicated full likelihood computation.
In this context, rather than a complete multivariate technique, we adopt a simple approach based on Tukey’s

CC,41 as commonly employed in medical studies with microarrays.8,9,13,15,20,37,42–44 The CC is a weighted sum of
gene expressions, where the weight attached to a gene is a regression coefficient from the univariate Cox regression
for the gene. The competitive performance of the CC to more sophisticated multivariate techniques, such as ridge
and Lasso, was previously reported.42

In the literature, the CC has been mainly utilized for purpose of making class prediction, especially classifying
patients into either good or poor prognosis group.8,9,13,20,37,42,43 For purpose of predicting survival probability, the
CC was first employed in Matsui et al.44 who proposed to build a patient-level survival prediction with a single
event. In the sequel, we shall adopt the approach of Matsui et al.44 to the joint model.

For each subject ði, jÞ, we consider two sets of genomic factors

Vij ¼ ðVij,1, . . . ,Vij,q1 Þ ðassociated with tumour progression XijÞ

Wij ¼ ðWij,1, . . . ,Wij,q2Þ ðassociated with death DijÞ

where q1 and q2 can be large numbers. The set Vij is determined as those genes that have low P-values of testing the
null hypothesis H0 : bk ¼ 0 in the univariate Cox model, rijðtÞ ¼ r0ðtÞ expðbkVij,kÞ; the set Wij is determined in a
similar fashion. We generally recommend the P-value threshold of 0.001,45 but it depends on many different
factors, such as the total number of genes.

We first form two CCs

CC1,ij ¼ b̂1Vij,1 þ � � � þ b̂q1Vij,q1 ðassociatedwith tumour progression XijÞ

CC2,ij ¼ ĉ1Wij,1 þ � � � þ ĉq2Wij,q2 ðassociated with death DijÞ

where the weights b̂k and ĉk are estimates of regression coefficients under univariate Cox models on kth gene,
rijðtÞ ¼ r0ðtÞ expðbkVij,kÞ, and �ijðtÞ ¼ �0ðtÞ expðckWij,kÞ, respectively. Since the scale of CC1,ij (or CC2,ij) depends on
the number q1 (or q2), we suggest standardizing CC1,ij (or CC2,ij) to have a mean of 0 and SD of 1.

We propose to treat the CCs as new covariates and construct the joint frailty-copula model

rijðtjuiÞ ¼ uir0ðtÞ expðb
0
1Z1, ij þ �1CC1,ijÞ ðfor tumour progression XijÞ

�ijðtjuiÞ ¼ u�i �0ðtÞ expðb
0
2Z2, ij þ �2CC2,ijÞ ðfor death DijÞ

PrðXij 4 x,Dij 4 yjuiÞ ¼ C�½SXijðxjuiÞ,SDijð yjuiÞ� ðbetween Xij and DijÞ

8<
: ð3Þ

One can regard CC1,ij (or CC2,ij) as a risk score: patients with larger CC1,ij have higher risk for relapse if �1 4 0.
The univariate Cox regression is used to determine the weight of each gene involved in the risk score.

Our experiences in applying the CCs suggest that the predictive accuracy is relatively insensitive to changing the
P-value threshold around 0.001. We nevertheless recommend conducting a sensitivity analysis on the choice of the
P-value threshold (see Section 5.4).
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3 Dynamic prediction with the joint frailty-copula model

Our focus is on predicting the probability of death for a new patient from a new study at a given time point t4 0.
This prediction is conditional on the patient’s covariate information Z ¼ ðZ1, Z2, CC1, CC2Þ measured at time
t ¼ 0 and dynamic information measured at time t4 0.

Let D be time-to-death and X be TTP of the new patient. In dynamic prediction, prediction of death at time
t4 0 is meaningful only when the patient is still alive (i.e., D4 t). Given the covariate information, the conditional
probability of death between t and tþ w is predicted as

Fðt, tþ wjZÞ ¼ PrðD � tþ wjD4 t, ZÞ

If we add the dynamic information on the presence or absence of tumour progression status, the above
prediction is modified as follows. First, suppose that the patient does not have a history of tumour progression
at time t (i.e., X4 t). Given that the patient is alive at time t, the probability of death between t and tþ w is

Fðt, tþ wjX4 t, ZÞ ¼ PrðD � tþ wjD4 t, X4 t, ZÞ

Second, if the patient has a history of tumour progression before time t, the time of the tumour progression (i.e.,
X ¼ x) is available at time t. Given that the patient is still alive at time t, the probability of death between t and
tþ w is

Fðt, tþ wjX ¼ x, ZÞ ¼ PrðD � tþ wjD4 t, X ¼ x, ZÞ, x � t

Here, TTP occurring before time t is observable, but TTP occurring after t is not.
Tumour progression occurring to a patient may be strongly associated with death occurring to the same patient.

If so, the two probabilities, Fðt, tþ wj X ¼ x, ZÞ and Fðt, tþ wjX4 t, ZÞ, show large discrepancy: the former is
much larger than the latter. The individual-level (intra-subject) dependence between X and D is essential to
discriminate the two probabilities. In the following, we consider a prediction formula accounting for the
individual-level dependence by the joint frailty-copula model.

3.1 Proposed prediction formula

Let SXðxjuÞ ¼ expf�uR0ðxÞe
b01Z1þ�1CC1g and SDð yjuÞ ¼ expf�u��0ð yÞe

b02Z2þ�2CC2g be the conditional survival
functions for a new patient having covariates Z ¼ ðZ1, Z2, CC1, CC2Þ measured at time t ¼ 0. We assume that
the patient’s TTP and time-to-death follow the joint frailty-copula model

PrðX4 x, D4 yjuÞ ¼ C�½SXðxjuÞ, SDð yjuÞ�

Dynamic information available at time t4 0 is defined as

Hðt, xÞ ¼
X4 t

X ¼ x, x � t

�

Under these settings, the dynamic prediction formula is

Fðt, tþ wjHðt, xÞ, ZÞ ¼ PrðD � tþ wjD4 t,Hðt, xÞ, ZÞ

The formula is divided into the following exclusive cases (derivations given in Appendix 1):

. Given that the patient does not experience tumour progression before time t (i.e., X4 t)

Fðt, tþ wjX4 t, ZÞ ¼ PrðD � tþ wjD4 t, X4 t, ZÞ

¼

R 1
0 C�½SXðtjuÞ, SDðtjuÞ� � C�½SXðtjuÞ, SDðtþ wjuÞ�ð Þ f�ðuÞduR 1

0 C�½SXðtjuÞ, SDðtjuÞ� f�ðuÞdu
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. Given that the patient experiences tumour progression before time t (i.e., X ¼ x, x � t)

Fðt, tþ wjX ¼ x, ZÞ ¼ PrðD � tþ wjD4 t, X ¼ x, ZÞ

¼

R 1
0 C½1,0�� ½SXðxjuÞ, SDðtjuÞ� � C½1,0�� ½SXðxjuÞ, SDðtþ wjuÞ�
� �

uSXðxjuÞ f�ðuÞduR 1
0 C½1,0�� ½SXðxjuÞ, SDðtjuÞ�uSXðxjuÞ f�ðuÞdu

where C½1,0�� ðv, wÞ ¼ @C�ðv, wÞ=@v. For instance, under the Clayton copula, the formula C½1,0�� ðv, wÞ ¼
v���1ðv�� þ w�� � 1Þ�1=��1 is used to calculate the probability.

If � ¼ 0, the Clayton copula reduces to the independence copula C�¼0ðv, wÞ ¼ vw (pp. 116–117 of Nelsen38).
Applying C½1,0��¼0 ðv, wÞ ¼ w to the prediction formulas, one has

Fðt, tþ wjX4 t, ZÞ ¼

R 1
0 SDðtjuÞ � SDðtþ wjuÞð ÞSXðtjuÞ f�ðuÞduR 1

0 SDðtjuÞSXðtjuÞ f�ðuÞdu

Fðt, tþ wjX ¼ x, ZÞ ¼

R 1
0 SDðtjuÞ � SDðtþ wjuÞð ÞuSXðxjuÞ f�ðuÞduR 1

0 SDðtjuÞuSXðxjuÞ f�ðuÞdu

This prediction formula corresponds to the joint frailty model of Rondeau et al.,34 where progression events
affect death only through the study-specific frailty.

The unknown parameters in the joint models are estimated using the penalized likelihood approach.32,34 The
estimates ð�̂, �̂, b̂1, b̂2, r̂0, �̂0Þ under the Clayton copula or under the independence copula (given � ¼ 0 in the
Clayton copula) can be computed through the joint.Cox R package.46 Estimation under the case of � ¼ 0
(independence copula) can also be implemented through the frailtypack R package.47 In joint.Cox,46 the value
of � must be given by users. In practice, the value of � is chosen based on the profile-likelihood approach.32 The
estimate F̂ of F is obtained once all the unknown parameters are estimated.

The calculation of the prediction probability F̂ and its graphical representations are implemented in the
joint.Cox R package.46 Supplementary Material contains a simple example of calculating the prediction
probability F̂.

The variability of the estimate F̂ is measured by the 95% confidence interval. We suggest the percentile
confidence interval based on the Monte Carlo simulation method, as previously employed.24,30,31 The detailed
algorithms are provided in Appendix 2.

Remark. Mauguen et al.24 considered a prediction formula of death given recurrent events in a single study (not in
meta-analysis). In their setting, the number of previous recurrences (denoted as J ¼ 0, 1, 2, . . . in Mauguen
et al.24) influences the prediction probability of death. In our setting, we obtain two separate prediction
probabilities, Fðt, tþ wj X4 t, ZÞ and Fðt, tþ wj X ¼ x, ZÞ, corresponding to J ¼ 0 and J ¼ 1, respectively.

4 Evaluation of prediction error

In order to validate the performance of the proposed prediction formula, we introduce a traditional measure for
predictive accuracy in survival analysis, known as the Brier score.1,2

4.1 Brier score

The true prediction error, defined as the Brier score, is

Errðt, tþ wÞ ¼ E½fIðD4 tþ wÞ � Ŝðt, tþ wjHðt,XÞ, ZÞg2jD4 t�

where the expectation is taken over the distribution of ðD,X, ZÞ given Ŝðt, tþ wj Hðt,xÞ, ZÞ ¼ 1�
F̂ðt, tþ wj Hðt, xÞ, ZÞ.

The idea of Graf et al.1 and Gerds and Schumacher2 can be applied to get an estimator of Errðt, tþ wÞ. Let
YðtÞ ¼

P
ij IðT

�
ij 4 tÞ be the number of subjects at risk at time t. Then, the estimated prediction error is
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Êrrðt, tþ wÞ ¼
1

YðtÞ

X
ij

IðT �ij 4 tÞŵijðt, tþ wÞfIðT �ij 4 tþ wÞ � Ŝðt, tþ wjHðt,TijÞ, ZijÞg
2

where

ŵijðt, tþ wÞ ¼
��ijĜðtÞ

ĜðT �ij Þ
IðT �ij � tþ wÞ þ

ĜðtÞ

Ĝðtþ wÞ
IðT �ij 4 tþ wÞ

and where ĜðtÞ is the estimate of the censoring survival function GðtÞ ¼ PðCij 4 tÞ. The inverse probability of
censoring weight for ŵijð�Þ corrects the bias due to censoring.2 We use the Kaplan–Meier estimator for Ĝ by
treating T �ij as event time and 1� ��ij as event indicator. The variability of Êrrðt, tþ wÞ is measured in terms of
the 95% point-wise confidence interval for each ðt, tþ wÞ. One can apply the bootstrap percentile interval, which is
based on B ¼1000 random samplings (with replacement) from the risk set fði, jÞ : T �ij 4 tg.

The performance of the prediction formula F̂ is evaluated by examining how the estimated error Êrrðt, tþ wÞ
reduces remarkably from a benchmark value. A common benchmark is the estimated prediction error by the
Kaplan–Meier estimator

ÊrrKMðt, tþ wÞ ¼
1

YðtÞ

X
ij

IðT �ij 4 tÞŵijðt, tþ wÞfIðT �ij 4 tþ wÞ � ŜKMðt, tþ wÞg2

where ŜKMðt, tþ wÞ ¼ ŜKMðtþ wÞ=ŜKMðtÞ and ŜKM is the Kaplan–Meier estimator by treating T �ij as event time
and ��ij as event indicator for all i and j. Prediction with the Kaplan–Meier estimator is interpreted as the ‘average
prediction’, as it pools all the data and then calculates the overall prediction probability. Roughly speaking, ŜKM is
regarded as the best possible predictor when one cannot utilize any individual (covariate) information.

4.2 Optimism bias of estimated error Êrrðt, tþ wÞ

Typically, the estimator Êrrðt, tþ wÞ yields some underestimation of the true value Errðt, tþ wÞ in finite sample.
This is because we use the same data to estimate parameters in a given prediction model and to estimate the error,
a typical phenomenon known as ‘optimism bias’ of the error estimate.48 Prediction models involving high-
dimensional factors require serious attention to the bias due to over-fitting.16,20,43

In our approach, the concern for the optimism bias becomes not severe due to the dimension reduction step of
the CCs. In Supplemental Material, we evaluated the degree of the optimism bias by simulations, where the true
prediction error Errðt, tþ wÞ is known by the simulation design. The simulations reveal that the estimated
prediction error Êrrðt, tþ wÞ shows modest downward bias but is still a good substitute for the true prediction
error Errðt, tþ wÞ. One can remove the optimism bias by applying a cross-validation, as previously employed
under the joint models.24 We detail the cross-validation scheme in Section 5.

5 Data analysis

In this data analysis, we aim to develop a dynamic prediction formula of death (i.e., overall survival) for ovarian
cancer patients. The prediction formula was constructed on the basis of the joint frailty-copula model that
incorporates both clinical and genomic covariates.

We used the subset of the ovarian cancer data of Ganzfried et al.33 to estimate parameters in the model. We first
applied the prescribed patient selection criterion given by the curatedOvarianData R package, and then extracted
the studies that have documented values of ‘days-to-tumor recurrence’, ‘days-to-death’, ‘recurrence status’, and
‘vital status’ for all patients. The same process was carried out in our previous analysis of the same data.32

However, our present analysis yielded a slightly reduced list of patients (Table 1). The reason may be due to
the update of ‘patientselection.config’ file (from older version 1.0.3 to the latest version 1.8.0) in the
curatedOvarianData R package to avoid some duplicate removal.13

Our extracted data consist of 912 ovarian cancer patients (544 relapsed, 465 died, and 447 censored) from four
different studies (Table 1). Observed genomic factors are 11,756 gene expressions consistently available across the
four studies. All the expression values are standardized (mean of 0 and SD of 1 in the 912 patients). Several clinical
covariates in the data of Ganzfried et al.33 contained missing values at study-level (e.g., age is completely missing in
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two studies). Therefore, we focused on the two covariates considered in Ganzfried et al.33: the residual tumour size
at surgery and the FIGO stage.

5.1 Compound covariate

Among 11,756 genes commonly available in the four studies, we chose a subset consisting of 6056 genes whose
coefficient of variation in expression values in the 912 patients is greater than 3%. Then, the univariate Cox
regression analyses give the CCs

CC1,ij ¼ ð0:249� CXCL12Þ þ ð0:235� TIMP2Þ þ ð0:222� PDPNÞ þ � � � þ ð�0:152�MMP12Þ

involving 158 genes (P-value< 0.001 for time-to-relapse), and

CC2,ij ¼ ð0:237�NCOA3Þ þ ð0:223� TEAD1Þ þ ð0:263� YWHABÞ þ � � � þ ð�0:157� KCNH4Þ

involving 128 genes (P-value< 0.001 for time-to-death). In the above expressions, the gene symbols were ordered
by their significance. For instance, CXCL12 was the most strongly associated gene for time-to-relapse.
Supplementary Material details known biological functions of selected genes (TIMP2, PDPN, NCOA3,
TEAD1, YWHAB) involved in the expressions of CC1,ij and CC2,ij. The full lists of genes with their coefficients
are given in Supplementary Material. We standardized CC1,ij and CC2,ij to have mean of 0 and SD of 1.

5.2 Fitting joint frailty-copula model

The joint.Cox R package46 was applied to fit the data to the joint frailty-copula model. We selected covariates in a
stepwise fashion and arrived at a model

rijðtjuiÞ ¼ uir0ðtÞ expð�1CC1,ijÞ ðfor time to relapse XijÞ

�ijðtjuiÞ ¼ u�i �0ðtÞ expð	2Z2, ij þ �2CC2,ijÞ ðfor time to death DijÞ

�

Here, the clinical covariate is the binary variable (Z2, ij¼ 0 vs.¼ 1) on the residual tumour size at surgery (<1 cm
vs. �1 cm). The FIGO stage was not included in the model. The details of the covariate selection method are given
in Supplemental Material.

All the regression coefficients were significant (P-value< 0.05). Their relative risks are expð	2Þ ¼ 1.18 (95%CI:
1.03–1.35), expð�1Þ ¼ 1.48 (95%CI: 1.37–1.59), and expð�2Þ ¼ 1.56 (95%CI: 1.44–1.70). The copula parameter was
� ¼1.90 (95%CI: 1.49–2.42), and the corresponding Kendall’s tau was � ¼0.49 (95%CI: 0.32–0.65), representing
moderate positive dependence between time-to-relapse and time-to-death. The heterogeneity parameter was
VarðuiÞ ¼ � ¼0.039 (95%CI: 0.007–0.227).

We set the value � ¼ 0 which maximized the profile penalized likelihood32 for the data. Hence, there is no
heterogeneity of death rates among the four studies. Indeed, the heterogeneity of death rates among the four
studies (Table 1) may be mostly explained by the heterogeneity of the median follow-up times.

5.3 Predicted risk of death for individual patients

To demonstrate the proposed prediction formula, we consider two hypothetical patients (named Patient 1 and
Patient 2) having the following characteristics: Patient 1 has high-risk factors at t ¼ 0 (CC1 ¼ 1, CC2 ¼ 1, the
residual tumour size� 1 cm) but does not experience relapse during the follow-up. Patient 2 has low-risk factors at
t ¼ 0 (CC1 ¼ �1, CC2 ¼ �1, the residual tumour size< 1 cm) but experiences relapse at x ¼ 600 days after
surgery. The joint.Cox R package46 was used to compute the dynamic prediction formula Fðt, tþ wj Hðt, xÞ, ZÞ
at prediction time t ¼500 (early) or t ¼1000 (late) over the prediction horizon tþ w � 3500 (in days). The 95%
confidence intervals are also given.

Figure 1 displays the predicted probabilities of death for Patient 1 and Patient 2. At the early prediction time
(t ¼500 days), Patient 1 has higher predicted probabilities of death due to the higher risk factors, compared to
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Patient 2. However, at the late prediction time (t ¼1000 days), the predicted probabilities of death for Patient 2 get
consistently higher than those of Patient 1. Clearly, the increase in the risk of Patient 2 is due to the relapse
occurred at 600 days. This explains that, for late prediction time, the relapse event is a stronger risk factor than all
the three risk factors (CC1, CC2, and the residual tumour size).

5.4 Assessing prediction error

We assessed the prediction error of the proposed prediction formula that involves CC1, CC2, and the residual
tumour size. We calculated the prediction error estimate Êrrðt, tþ wÞ and the 95% confidence intervals. We then
compared them with the benchmark value ÊrrKMðt, tþ wÞ, treating the latter as fixed and known.

Figure 2 displays the prediction error curve Êrrðt, tþ wÞ of the dynamic prediction formula for a given
prediction time t ¼500 (early) or 1000 (late) with the range tþ w � 3000 (in days). For the early prediction

Figure 1. Probability of death between t and tþ w for two patients: Patient 1 has high-risk factors at t ¼ 0 (CC1 ¼ 1, CC2 ¼ 1, the

residual tumour size� 1 cm) and does not experience relapse during the follow-up. Patient 2 has low-risk factors at t ¼ 0 (CC1 ¼ �1,

CC2 ¼ �1, the residual tumour size< 1 cm) and experiences relapse at 600 days. The vertical grey line corresponds to t ¼500 or

t ¼1000 (days). Dotted lines represent the 95% confidence intervals.
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time (t ¼500), the prediction errors were smaller than the benchmark values in the whole range
500 � tþ w � 3000. The 95% confidence interval did not cover the benchmark value in the range
800 � tþ w � 2300, implying a significant reduction in prediction error. For the late prediction time (t ¼1000),
the prediction errors were also smaller than the benchmark values but had wider confidence intervals due to the
smaller number of patients in the risk set.

We also compare the proposed dynamic prediction formula with the dynamic prediction formula incorporating
CXCL12 alone that was used in Emura et al.32 For the early prediction time (t ¼500), the CXLC12-alone formula
had smaller prediction error than the benchmark model but had larger prediction error than the proposed
prediction formula. However, in the late prediction time (t ¼1000), the advantage of the proposed prediction
formula over the CXLC12-alone formula becomes less clear. The reason may be that accumulated relapse events
up to t ¼1000 erase the impact of clinical and genomic covariates. A similar phenomenon was seen in different
contexts of dynamic prediction.24,32

Figure 2. Comparison of prediction errors (Brier scores). (dashed line): joint model with Z2, CC1, and CC2, (shaded area): 95%

confidence region with the joint model with Z2, CC1, and CC2, (dotted line): joint model with CXCL12 alone, (vertical grey line):

prediction time t ¼500 or 1000 days.
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To assess the degree of the optimism bias, we modified Êrrðt, tþ wÞ using leave-one-out cross-validation. We
removed one patient ði, j Þ from the risk set fði, j Þ : T �ij 4 tg, and re-estimated the model parameters using the
remaining subsamples (911 patients). All the model building steps, including selection of genes and estimation
of regression coefficients, were based on the subsamples. Repeating this process for all patients in the risk set, the
cross-validated prediction error was computed as

Êrrðt, tþ wÞ ¼
1

YðtÞ

X
ij

IðT �ij 4 tÞŵijðt, tþ wÞfIðT �ij 4 tþ wÞ � Ŝ�ði,j Þðt, tþ wjHðt,TijÞ, ZijÞg
2

where Ŝ�ði,j Þðt, tþ wj � , �Þ did not use any information for the left-out patient ði, j Þ.
Figure 3 reveals that cross-validated prediction error estimates do not differ too much from the prediction

error estimates without cross-validation. For the proposed prediction formula involving the CCs, the variability
due to selection of genes and estimation of coefficients in the CCs leads to minor increase in cross-validated

Figure 3. Comparison of cross-validated prediction errors (Brier scores). (dashed line): joint model with Z2, CC1, and CC2,

(dotted line): joint model with CXCL12 alone, (vertical grey line): prediction time t ¼500 or 1000 days.
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prediction errors over the prediction errors without cross-validation. This is a remarkable property of using the
CC to handle high-dimensional genetic factors. The figure shows the clear advantage of the proposed dynamic
prediction formula over the prediction by the Kaplan–Meier estimator. However, at the late prediction time
(t ¼1000), the benefit of the proposed dynamic prediction formula over the CXCL12-alone formula becomes
questionable. Indeed, the CXCL12-alone formula can utilize the dynamic tumour progression information in the
same manner as the proposed model. We have seen the same pattern in the prediction error estimates without
cross-validation.

Finally, we conducted a sensitivity analysis by slightly increasing P-value threshold of 0.001 for the univariate
gene selection (Section 5.1). Then, more genes were included into the CCs, but the prediction error curves did not
show any visible change. This may be because the CCs were constructed in a stepwise manner: the CCs only
updated the newly included genes after increasing the P-value threshold.

6 Conclusion and discussion

With the increasing availability of rich information, researchers may easily obtain meta-analytic data sets
containing patients’ multivariate time-to-events (death, tumour progression, PFS, etc.), high-dimensional
genomic factors (e.g., gene expressions), and other clinical information. However, building a personalized
survival prediction formula remains a challenging problem, as it requires the precise specifications of the
dependency between multiple events (death and tumour progression) as well as their relationship with both
genomic and clinical covariates. An additional challenge comes from the heterogeneity among studies
ubiquitous in meta-analysis, which typically demands random effect or frailty modelling.

This paper offers a statistical approach using a joint model to implement a personalized dynamic prediction
based on IPD meta-analysis with genomic factors. Our study touches on the realm of individualized or
personalized medicine according to the definition of ‘personalized’ or ‘individualized’ medicine that aims to
improve stratification and timing of health care by using biological and genomic information.49

We used the ovarian cancer data to demonstrate the individual-patient prediction of death according to his/her
clinical and genomic information. Using the proposed prediction model, we observed that the information on both
clinical and genomic factors allows clinicians to discriminate between good and poor prognosis patients at early
prediction time (e.g., t ¼500 days after surgery). On the other hand, at late prediction time (e.g., t ¼1000 days after
surgery), relapse information offers stronger predictive power than the clinical and genomic factors. While the
high-relevance of relapse information on death is widely recognized, we confirmed it numerically through the
proposed prediction formula.

If clinicians wish to draw the correct conclusion from the proposed dynamic prediction formula, the prediction
time t must be pre-specified (e.g., t ¼1000 days after treatment). It is not a correct way to make prediction at the
time of tumour progression for each patient. Hence, a sensible choice of t is required that has to come from clinical
perspective and not from statistical perspective.

The performance of the proposed prediction formula was assessed using the Brier score, the mean squared error
of predicting dichotomous event (death or alive) in a time horizon. The estimated prediction error showed modest
downward bias (optimism bias) relative to the true prediction error (simulations detailed in Supplementary
Material). We have intentionally used the CCs to avoid the extreme overfitting by initially reducing the
dimension of genomic factors with univariate selection. This is not a contradiction to a well-known
phenomenon of formidable underestimation of prediction error for rich statistical models.16 While one can
always use cross-validation to adjust for the optimism bias in real data analysis, cross-validation has high
computational demand for the joint model. Alternatively, the estimated prediction error without cross-
validation can be suggested as a good substitute for the true prediction error. Otherwise, some analytical cross-
validation method would be useful.50

To handle high-dimensional genetic factors, we adopted a simple approach based on Tukey’s CC41 followed by
the univariate selection of genes with the P-value threshold of 0.001.45 The univariate selection yielded 128 genes
associated with time-to-relapse and 158 genes associated with time-to-death (P-value< 0.001). In our illustrative
example of ovarian cancer patients, the joint model incorporating the CCs showed better predictive ability than
the model incorporating CXCL12 alone. For a new patient (not in the ovarian cancer data), we suggest using the
same set of genes (128 genes for time-to-relapse and 158 genes time-to-death) and their coefficients to form CCs.
As we described in Supplementary Material, some of these genes have known biological functions associated with
patient survival, and the formulas of CCs appear to be consistent with these known functions. With these
statistical and biological supports for the adopted approach, a personalized prediction of death for ovarian
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cancer patients would be achieved. However, we recognize the need of testing our approach with an independent
validation set of patients, before it is widely applied by clinicians.

Van Houwelingen et al.40 applied a similar approach as Tukey’s CC, where the coefficients attached to genes
come from the ridge regression. This ridge approach could be used without the pre-selection of genes.17,40 Instead,
the ridge approach requires one to select a shrinkage parameter that plays a similar role as the P-value threshold of
the CC.

We conducted simulation studies to compare the performance between the ridge-based approach and the CC
approach as detailed in Supplementary Material. The results showed a remarkable contrast between the two
approaches. The ridge provided smaller estimated prediction error (without cross-validation) than the CC.
However, the ridge exhibited larger true prediction error over the CC. This over-fitting phenomenon of the
ridge may be caused by a large number of genes in the model. Hence, with an appropriate P-value cut-off, the
CC would be superior to the ridge in real prediction settings. One drawback of the CC is that the choice of the
P-value cut-off is somewhat subjective. In this paper, we suggested the P-value threshold of 0.001,45 though there is
a more sophisticated approach that optimizes a cross-validated partial likelihood.15

Clearly, some dependence exists among time-to-death (overall survival), TTP, progression free survival (PFS),
and their dependence pattern is essential to enhance the predictive value of death after progression events. In meta-
analytic studies of cancer patients, the dependence is fundamental in validating the surrogacy of TTP or PFS for
overall survival.51–55 The joint frailty-copula model is a tailored model to analyse the dependence via copulas and
the heterogeneity via frailty in meta-analytic settings. However, developing a formal validation process of
surrogacy of TTP or PFS requires further extensions of the joint frailty-copula model, which would be our
next topic for investigation.

Time-varying effects of clinical covariates and genetic factors are another important issue to be investigated. If
clinical follow-up of patients is long, the prognostic effect of covariates may vary over time. For instance, time-
varying effects of hormone receptors on recurrences (or metastases) were reported in breast cancer patients.56–58

One simplest way to introduce such time-varying effects of genes in the joint model is to add (gene � time)
interaction terms, CC1, ij � f1ðtÞ and CC2 ij � f2ðtÞ, where f‘ ðtÞ, ‘ ¼ 1, 2, are flexibly chosen by users. One choice is
f‘ ðtÞ ¼ logðtþ 1Þ23,59 while a more elaborate choice is a B-spline approximation.57. In this way, the CCs account
for ‘common’ time-varying effects of genes. This approach would be suitable if the majority of genes in the CCs
share a similar time-varying effect on survival.

In reality, individual genes may have different time-varying effects on survival. For instance, one may categorize
genes into two groups, namely a set of genes with short-term effect and a set of genes with long-term effect. In this
way, time-varying effects can be homogeneous for genes in the same group. However, this strategy requires a way
of grouping genes in order to reduce the heterogeneity of time-varying effects within a group.

Under time-varying effects, one can straightforwardly define the joint frailty-copula model but cannot exploit
the computational advantage of the cubic spline models for the baseline hazards.32 As a result, likelihood-based
inference becomes computationally demanding. One possible alternative is to impose piecewise exponential models
as in Mazroui et al.57 It is fascinating that the Weibull or Pareto model for the baseline hazards may result in
tractable forms under the time function f‘ ðtÞ ¼ logðtþ 1Þ. While we do not pursue these approaches here, a further
development would be an interesting topic for investigation.
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29. Proust-Lima C, Séne M, Taylor JM, et al. Joint latent class models for longitudinal and time-to-event data: a review. Stat

Methods Med Res 2014; 23: 74–90.

Emura et al. 2855



30. Rondeau V, Mauguen A, Laurent A, et al. Dynamic prediction models for clustered and interval-censored outcomes:
investigating the intra-couple correlation in the risk of dementia. Stat Methods Med Res 2015; 26: 2168–2183.

31. Król A, Ferrer L, Pignon JP, et al. Joint model for left-censored longitudinal data, recurrent events and terminal event:

predictive abilities of tumor burden for cancer evolution with application to the FFCD 2000-05 trial. Biometrics 2016. DOI:
10.1111/biom.12490.

32. Emura T, Nakatochi M, Murotani K, et al. A joint frailty-copula model between tumour progression and death for meta-
analysis. Stat Methods Med Res 2015; 26: 2649–2666.

33. Ganzfried BF, Riester M, Haibe-Kains B, et al. Curated ovarian data: clinically annotated data for the ovarian cancer
transcriptome. Database 2013. Article ID bat013. DOI:10.1093/database/bat013.

34. Rondeau V, Pignon JP and Michiels S. A joint model for dependence between clustered times to tumour progression and

deaths: a meta-analysis of chemotherapy in head and neck cancer. Stat Methods Med Res 2015; 24: 711–729.
35. Haneuse S and Lee KH. Semi-competing risks data analysis, accounting for death as a competing risk when the outcome of

interest is nonterminal. Circ Cardiovasc Qual Outcomes 2016; 9: 322–331.

36. Joly P, Commenges D and Letenneur L. A penalized likelihood approach for arbitrary censored and truncated data:
application to age-specific incidence of dementia. Biometrics 1998; 54: 185–194.

37. Emura T and Chen YH. Gene selection for survival data under dependent censoring, a copula-based approach. Stat

Methods Med Res 2016; 25: 2840–2857.
38. Nelsen RB. An introduction to copulas, 2nd ed. New York: Springer, 2006.
39. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med 1997; 16: 385–395.
40. Van Houwelingen HC, Bruinsma T, Hart AA, et al. Cross-validated Cox regression on microarray gene expression data.

Stat Med 2006; 25: 3201–3216.
41. Tukey JW. Tightening the clinical trial. Contr Clin Trials 1993; 14: 266–285.
42. Emura T, Chen YH and Chen HY. Survival prediction based on compound covariate under Cox proportional hazard

models. PLoS One 2012; 7: e47627.
43. Radmacher MD, Mcshane LM and Simon RM. A paradigm for class prediction using gene expression profiles. J Comput

Biol 2002; 9: 505–511.

44. Matsui S, Simon RM, Qu P, et al. Developing and validating continuous genomic signatures in randomized clinical trials
for predictive medicine. Clin Canc Res 2012; 18: 6065–6073.

45. Simon RM. Design and analysis of DNA microarray investigations. New York: Springer Science & Business Media,
2003.

46. Emura T. R joint.Cox: penalized likelihood estimation and dynamic prediction under the joint frailty-copula models
between tumour progression and death for meta-analysis. CRAN, version 2.10 2016-10-30.

47. Rondeau V, Gonzalez JR, Mazroui Y, et al. R frailtypack: general frailty models: shared, joint and nested frailty models

with prediction. CRAN, version 2.8.3 2016-01-13.
48. Hastie T, Tibshirani R and Friedman J. The elements of statistical learning. New York: Springer, 2009.
49. Schleidgen S, Klingler C, Bertram T, et al. What is personalized medicine: sharpening a vague term based on a systematic

literature review. BMC Med Ethic 2013; 14: 55.
50. Commenges D, Proust-Lima C, Samieri C, et al. A universal approximate cross-validation criterion for regular risk

functions. Int J Biostat 2015; 11: 51–67.

51. Burzykowski T, Molenberghs G, Buyse M, et al. Validation of surrogate end points in multiple randomized clinical trials
with failure time end points. Appl Stat 2001; 50: 405–422.

52. Burzykowski T, Molenberghs G and Buyse M (eds) The evaluation of surrogate endpoints. New York: Springer,
2005.

53. Michiels S, Le Maı̂tre A, Buyse M, et al. Surrogate endpoints for overall survival in locally advanced head and neck cancer:
meta-analyses of individual patient data. Lancet Oncol 2009; 10: 341–350.

54. Buyse M, Sargent DJ and Saad ED. Survival is not a good outcome for randomized trials with effective subsequent

therapies. J Clin Oncol 2011; 29: 4719–4720.
55. Oba K, Paoletti X, Alberts S, et al. Disease-free survival as a surrogate for overall survival in adjuvant trials of gastric

cancer: a meta-analysis. J Natl Canc Inst 2013; 105: 1600–1607.

56. Bellera CA, MacGrogan G, Debled M, et al. Variables with time-varying effects and the Cox model: some statistical
concepts illustrated with a prognostic factor study in breast cancer. BMC Med Res Methodol 2010; 10: 1.

57. Mazroui Y, Mauguen A, Mathoulin-Pélissier S, et al. Time-varying coefficients in a multivariate frailty model: application
to breast cancer recurrences of several types and death. Lifetime Data Anal 2016; 22: 191–215.

58. Baulies S, Belin L, Mallon P, et al. Time-varying effect and long-term survival analysis in breast cancer patients treated
with neoadjuvant chemotherapy. Br J Canc 2015; 113: 30–36.

59. Putter H, Sasako M, Hartgrink H, et al. Long-term survival with non-proportional hazards: results from the Dutch Gastric

Cancer Trial. Stat Med 2005; 24: 2807–2821.

2856 Statistical Methods in Medical Research 27(9)



Appendix 1: Derivation of prediction formula

. Given that the patient does not experience tumour progression before time t (i.e., X4 t)

Fðt, tþ wjX4 t, ZÞ ¼ PrðD � tþ wjD4 t, X4 t, ZÞ

¼
PrðD4 t, X4 tjZÞ � PrðD4 tþ w, X4 tj ZÞ

PrðD4 t, X4 tj ZÞ

¼

R 1
0 PrðD4 t, X4 tju, ZÞ � PrðD4 tþ w, X4 tju, ZÞð Þ f�ðuÞduR 1

0 PrðD4 t, X4 tju, ZÞ f�ðuÞdu

¼

R 1
0 C�½SXðtjuÞ, SDðtjuÞ� � C�½SXðtjuÞ, SDðtþ wjuÞ�ð Þ f�ðuÞduR 1

0 C�½SXðtjuÞ, SDðtjuÞ� f�ðuÞdu
:

. Given that the patient experiences tumour progression at time x � t

Fðt, tþ wjX ¼ x, ZÞ ¼ PrðD � tþ wjD4 t, X ¼ x, ZÞ

¼
PrðD4 t, X ¼ xjZÞ � PrðD4 tþ w, X ¼ xjZÞ

PrðD4 t, X ¼ xjZÞ

¼

R 1
0 PrðD4 t, X ¼ xju, ZÞ � PrðD4 tþ w, X ¼ xju, ZÞð Þ f�ðuÞduR 1

0 PrðD4 t, X ¼ xju, ZÞ f�ðuÞdu

¼

R 1
0 � @

@xPrðD4 t, X4 xju, ZÞ � � @
@xPrðD4 tþ w, X4 xju, ZÞ

� �	 

f�ðuÞduR 1

0 �
@
@xPrðD4 t, X4 xju, ZÞ f�ðuÞdu

¼

R 1
0 � @

@xC�½SXðxjuÞ, SDðtjuÞ� � �
@
@xC�½SXðxjuÞ, SDðtþ wjuÞ�

� �	 

f�ðuÞduR 1

0 �
@
@xC�½SXðxjuÞ, SDðtjuÞ� f�ðuÞdu

¼

R 1
0 C½1,0�� ½SXðxjuÞ, SDðtjuÞ� � C½1,0�� ½SXðxjuÞ, SDðtþ wjuÞ�
� �

uSXðxjuÞ f�ðuÞduR 1
0 C½1,0�� ½SXðxjuÞ, SDðtjuÞ�uSXðxjuÞ f�ðuÞdu

,

where the last expression follows from �@SXðxjuÞ=@x ¼ ur0ðxÞ expðb
0
1Zþ �1CC1ÞSXðxjuÞ.

Appendix 2: Confidence interval for F

To enhance the accuracy of normal approximation, we consider log-transformed parameters ~� ¼ logð�Þ,
~� ¼ logð�Þ, ~g ¼ logðgÞ and ~h ¼ logðhÞ, where g ¼ ðg1, . . . , gLr

Þ
0 and h ¼ ðh1, . . . , hL�Þ

0 are coefficients for
r0ðtÞ ¼

PLr

‘¼1 g‘M‘ ðtÞ and �0ðtÞ ¼
PL�

‘¼1 h‘M‘ ðtÞ, respectively. The log-likelihood function of Emura et al.32 can
be re-expressed as

‘ ð�, �, b1, b2, g, hÞ ¼ ‘ ðexpð ~�Þ, expð ~�Þ, b1, b2, expð~gÞ, expð~hÞÞ ¼ ~‘ ð ~�, ~�, b1, b2, ~g, ~hÞ

The penalized maximization in the joint.Cox R package is performed on ~‘ rather than ‘ since the domains of ~‘
are unrestricted. The penalized log-likelihood is

~‘ ð ~�, ~�, b1, b2, ~g, ~hÞ � 
1

Z
€r0ðtÞ

2dt� 
2

Z
€�0ðtÞ

2dt ð4Þ

where €f ðtÞ ¼ d2f ðtÞ=dt2, and ð
1, 
2Þ are positive smoothing parameters.
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We generate 500 pairs of parameters from a multivariate normal distribution

ðlogð�̂�Þ, logð�̂�Þ, b̂
�

1, b̂
�

2, logðĝ
�
Þ, logðĥ

�
ÞÞ

	 N Mean ¼ ðlogð�̂Þ, logð�̂Þ, b̂1, b̂2, logðĝÞ, logðĥÞÞ, Covariance ¼ � ~̂H
�1

PLð
1, 
2Þ
� �

where ~̂HPLð
1, 
2Þ is the converged Hessian matrix for the penalized log-likelihood of equation (4). These
parameters are used to compute 500 Monte Carlo values F̂�ðt, tþ wj Hðt, xÞ, ZÞ’s. The 95% confidence interval
is obtained using the 2.5% and 97.5% points of F̂�ðt, tþ wj Hðt, xÞ, ZÞ’s.
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Supplementary Material contains the following items to supply the main article. 

S1: An example of calculating the prediction probability F̂  

S2: Simulations to assess optimism bias 

S3: Lists of genes associated with survival (P-value<0.001) 

S4. Biological functions of genes associated with death and relapse 

S5. Variable selection 

 

S1: An example of calculating the prediction probability F̂  

A simple example allows one to see how the proposed prediction formula works. We consider 

parameter estimates ))(ˆ),(ˆ,ˆ,ˆ,ˆ,ˆ,ˆ( 0021   rββ  defined as 6ˆ  , 5.0ˆ  , 1ˆ  , 1ˆˆ
21  ββ , 

and  


5

10 )(ˆ)(ˆ
  tMgtr  and  


5

10 )(ˆ)(ˆ
  tMht , where 1ˆˆ   gh  for all  . Here, 

5,,1),(  tM , are the five cubic M-spline bases (Emura et al., 2015) defined on the range 

31   t , where 01   and 33  . The value 6ˆ   implies strong intra-subject dependence 

(Kendall’s tau = 0.75) between time-to-tumour progression (TTP) and time-to-death, and the 

value 5.0ˆ   implies moderate amount of heterogeneity between studies. We wish to predict 

the probability of death by )),,(|,(ˆ ZxtHwttF   for a patient with a covariate 

)1,1(),( 21  ZZZ  and given his/her progression status at a prediction time 1t . We 

consider two cases for TTP occurring before 1t : 2.0X  and 8.0X . After installing the 

joint.Cox R package (Emura 2016), we run the following commands: 

mailto:takeshiemura@gmail.com
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> w=c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0) 
> F.windows(time=1,X=0.2,widths=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=6, 
+           alpha=1,g=rep(1,5),h=rep(1,5),xi1=0,xi3=3) 
      t   w   X F_event_at_X  F_noevent 
 [1,] 1 0.0 0.2    0.0000000 0.00000000 
 [2,] 1 0.1 0.2    0.2242580 0.06203191 
 [3,] 1 0.2 0.2    0.3842101 0.13066666 
 [4,] 1 0.3 0.2    0.5021955 0.19724611 
 [5,] 1 0.4 0.2    0.5915647 0.25886806 
 [6,] 1 0.5 0.2    0.6606891 0.31492470 
 [7,] 1 0.6 0.2    0.7150498 0.36557577 
 [8,] 1 0.7 0.2    0.7584282 0.41127527 
 [9,] 1 0.8 0.2    0.7934999 0.45261118 
[10,] 1 0.9 0.2    0.8226970 0.49019403 
[11,] 1 1.0 0.2    0.8480790 0.52460305 
[12,] 1 1.1 0.2    0.8696267 0.55636284 
[13,] 1 1.2 0.2    0.8880923 0.58593418 
[14,] 1 1.3 0.2    0.9040385 0.61371132 
[15,] 1 1.4 0.2    0.9178853 0.64002216 
[16,] 1 1.5 0.2    0.9299454 0.66512968 
[17,] 1 1.6 0.2    0.9404502 0.68923412 
[18,] 1 1.7 0.2    0.9495726 0.71247607 
[19,] 1 1.8 0.2    0.9574454 0.73494047 
[20,] 1 1.9 0.2    0.9641782 0.75666223 
[21,] 1 2.0 0.2    0.9698715 0.77763348 
> F.windows(time=1,X=0.8,widths=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=6, 
+           alpha=1,g=rep(1,5),h=rep(1,5),xi1=0,xi3=3) 
      t   w   X F_event_at_X  F_noevent 
 [1,] 1 0.0 0.8    0.0000000 0.00000000 
 [2,] 1 0.1 0.8    0.4238257 0.06203191 
 [3,] 1 0.2 0.8    0.6378359 0.13066666 
 [4,] 1 0.3 0.8    0.7573313 0.19724611 
 [5,] 1 0.4 0.8    0.8293982 0.25886806 
 [6,] 1 0.5 0.8    0.8754908 0.31492470 
 [7,] 1 0.6 0.8    0.9063526 0.36557577 
 [8,] 1 0.7 0.8    0.9278059 0.41127527 
 [9,] 1 0.8 0.8    0.9432126 0.45261118 
[10,] 1 0.9 0.8    0.9545995 0.49019403 
[11,] 1 1.0 0.8    0.9632329 0.52460305 
[12,] 1 1.1 0.8    0.9699296 0.55636284 
[13,] 1 1.2 0.8    0.9752285 0.58593418 
[14,] 1 1.3 0.8    0.9794958 0.61371132 
[15,] 1 1.4 0.8    0.9826720 0.64002216 
[16,] 1 1.5 0.8    0.9856990 0.66512968 
[17,] 1 1.6 0.8    0.9882681 0.68923412 
[18,] 1 1.7 0.8    0.9904528 0.71247607 
[19,] 1 1.8 0.8    0.9923035 0.73494047 
[20,] 1 1.9 0.8    0.9938563 0.75666223 
[21,] 1 2.0 0.8    0.9951401 0.77763348 

 

Above outputs are summarized as follows: 

Predictive probability of death ))1,1(),(),,(|,(ˆ
21  ZZxtHwttF  

(i) Given that a patient had no tumour progression at time 1t  (i.e., 1X ), the 

probability of death between 1t  and 2wt  is 0.525. 

(ii) Given that a patient had tumour progression at time 2.0x  (i.e., 2.0X ), the 

probability of death between 1t  and 2wt  is 0.848.  

(iii) Given that a patient had tumour progression at time 8.0x  (i.e., 8.0X ), the 

probability of death between 1t  and 2wt  is 0.963.  
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The outputs are also presented in Figure S1. The figure shows that the prior occurrence of 

tumour progression remarkably increases the predictive probability of death. The TTP of 

8.0X  yields higher predictive probability of death than the TTP of 2.0X . This is the 

consequence of the strong intra-subject dependence between TTP and death (Kendall’s tau = 

0.75). 

 

Figure S1. Predictive probabilities of death between 1t  and ]3,1[wt . The blue symbol 

(▲) signifies a patient who did not experience tumour progression before 1t . The red 

symbol (●) signifies a patient who experienced tumour progression at 2.0X  (left panel) 

and a patient who experienced tumour progression at time 8.0X  (right panel). 

 

Ranges of prediction: The two baseline hazards )(0 tr  and )(0 t  are identifiable in a range 

31   t , where  )(min .1 ijji T  is the smallest even time and )(max *

.3 ijji T  is the 

maximal follow-up time, as computed by the joint.Cox R package. Accordingly, the 

probability ),|,(ˆ ZxXwttF   can be defined only within the range 31   wttx . 

Some warning messages will be produced if the inputted values are beyond the range. 
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S2: Simulations to assess optimism bias 

Simulations were conducted to evaluate the degree of the optimism bias for estimating 

prediction error of the proposed prediction formula. We also compare two different methods 

of summarizing high-dimensional genetic factors: 1) compound covariate predictor, and 2) 

ridge-based predictor.  

Let 5G  be the number of studies and iN 200 be the number of subjects in each study 

for 5...,,2,1i . The frailty iu  followed a gamma distribution with variance  , and a clinical 

covariate ijZ  followed the standard normal distribution )1,0(N , truncated between -3 and 3. 

We generated a vector of genomic covariates ),,( ,1, qijijij UU U  from a multivariate 

uniform distribution with all the margins having mean 0  and SD 1 , where 200q  is the 

number of genes. The corresponding coefficients are 

)0...,,0,03.0,...,03.0,03.0...,,03.0(

1701515

  


ξ . 

Here, we have assumed the existence of the two blocks of correlated genes (i.e., pathways): 

the first corresponds to the 15 positive coefficients, and the second corresponds to the 15 

negative coefficients. Specifically, 5.0),( ,, ijkij UUCorr  for 151  lk  or 3016  lk ; 

0),( ,, ijkij UUCorr  otherwise. We generated such gene expressions by X.pathway routine in 

the R compound.Cox package (Emura et al., 2016). This correlation structure mimics the 

setting of gene pathways, where the two sets of genes informative for survival are correlated 

(see Binder et al., 2009; Emura et al., 2012).  

Given iu , ijZ , and ijU , the distribution of ijX  and ijD  followed the joint frailty-copula 

model (Emura et al., 2015)  















 





/1

20

10

]1})|(exp{})|(exp{[)|,Pr(

)   for     (        )exp()()|(

)  for     (            )exp()()|(

iijiijiijij

ijijijiiij

ijijijiiij

uyuxRuyDxX

DZtuut

XZtruutr

Uξ

Uξ

 

where 1)()( 00  trt , 
x

iijiij dtutruxR
0

)|()|(  and 
y

iijiij dtutuy
0

)|()|(  . The amount of 

intra-subject dependence (between ijX  and ijD ) is determined by the association parameter    

while the amount of intra-study dependence is determined by the frailty variance  . We set 
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6  (Kendall’s tau = 0.75) and 5.0  throughout the simulations. Censoring variable ijC  

followed a uniform distribution on )5,0(  that yielded about 30% censored subjects.  

   For a dataset generated from the aforementioned models, we summarize the high-

dimensional genetic factors in two different ways: 

 

Method (1) Compound covariate 

We form two compound covariate (CC) predictors 

) death   with associated (           ˆˆCC

) n  progressiour  with tumoassociated (           ˆˆCC

22

11

,1,1,2

,1,1,1

ijqijqijij

ijqijqijij

DWcWc

XVbVb








 

where the weights kb̂  and kĉ  are estimates of regression coefficients under univariate Cox 

models on k-th gene, )exp()()( ,0 kijkij Vbtrtr  , and )exp()()( ,0 kijkij Wctt   , respectively. 

We determined the number of genes 1q  in ij,1CC  by thresholding P-value<0.2 of testing the 

null hypothesis 0:0 kbH  in the univariate Cox model. The number 2q  in ij,2CC  is 

determined similarly. This implies that two subsets ),,(
1,1, qijijij VV V  and 

),,(
2,1, qijijij WW W  of ),,( ,1, qijijij UU U  are used for prediction.  

 

Method (2) Multivariate Ridge regression (L2-penalized Cox regression) 

We form two ridge-based predictors 

) death   with associated (           ˆˆˆRidge

) n  progressiour  with tumoassociated (           ˆˆˆRidge

ij,1,1,2

ij,1,1,1

ijqijqijij

ijqijqijij

DUU

XUU

Uς

Uξ












 

where the weights ξ̂  and ς̂  are the ridge estimates (Verweij and van Houwelingen, 1994) of 

regression coefficients under multivariate Cox models )exp()()( 0 ijij trtr Uξ , and 

)exp()()( 0 ijij tt Uς  , respectively. We apply the R command optL2(,fold=5) in the 

package penalized (Goeman et al. 2016) to obtain the ridge estimates, where the shrinkage 

parameter is optimized by 5-fold cross-validation.  
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Method (1) uses a pre-selection of genes while Method (2) uses all available genes of 

200p . In Method (1), every simulation run results in a different subset of genes. For 

instance, on average, the number 601 q  is included in the formula of ij,1CC . In Method (2), 

every simulation run results in a different amount of shrinkage parameter.  

The CC predictors [or ridge-based predictors] are treated as new covariates and 

incorporated into the joint frailty-copula model as 















 





/1

,2220

,1110

]1})|(exp{})|(exp{[)|,Pr(

)   for     (        )CCexp()()|(

)  for     (            )CCexp()()|(

iijiijiijij

ijijijiiij

ijijijiiij

uyuxRuyDxX

DZβtuut

XZβtruutr

 

We obtained parameter estimates and dynamic prediction formula by using the joint.Cox R 

package. The ridge-based predictors are incorporated in a similar way. 

Based on the fitted results of the joint models, we calculated estimates of prediction error, 

denoted as ),(ˆ wttrrE   that is defined in the main article. We also fitted the joint frailty model 

under an assumed value of 0 , and calculated estimates of prediction error. These 

estimated prediction errors are compared with the benchmark value ),(ˆ wttrrE KM   defined in 

the main article. We did not use cross-validation since our objective was to see the degree of 

the optimism bias. 

To evaluate the optimism bias, we compared ),(ˆ wttrrE   with the true prediction error 

),( wttErr  . To this end, we generated independent test data ),,,( ijijijij ZDX U  in the same 

algorithms described before. The true prediction error is then approximated as 









ij ij

ij ijijijijij

tD

XtHwttSwtDtD
wttErr

)(

}),),,(|,(ˆ)(){(
),(

2

I

UZII
, 

where the summation is taken over all subjects in the test data 5...,,2,1i  and 200...,,2,1j . 

Estimates in the formula of Ŝ  do not use the test data. The true prediction error under the null 

model, ),( wttErrKM  , is approximated similarly. 

The estimated (and true) prediction errors are reported based on the average of 50 Monte 

Carlo replications at time t 0.5 or 1.5 and range 30  w . Results are summarized in Figure 

S2. 
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Left panels of Figure S2 display the true prediction errors between different prediction 

models. All types of the joint models had smaller prediction error than the null model (the 

Kaplan-Meier estimator), indicating the advantage of using the joint models in prediction. 

Among the joint models, the smallest prediction error was achieved by the model that utilizes 

both clinical covariates and CCs. If the CCs are replaced by the ridge-based predictors, the 

prediction error shows a small increase. If the model ignores the CCs (utilizes only clinical 

covariates), the prediction error clearly inflates. Also, if the model ignores the intra-subject 

dependence, the prediction error inflates. The model using only clinical covariates (ignoring 

both the CCs and intra-subject dependence) performs worse among all the joint models, but it 

still shows a clear advantage over the null model. 

Right panels of Figure S2 display the estimated prediction errors between different 

prediction models. The estimated prediction errors showed very similar patterns with the true 

prediction errors. That is, if the model ignores either the genetic factors or the intra-subject 

dependence, the prediction error increases. Unlike the case of the true prediction error, the best 

prediction scheme was now achieved by the joint model that utilizes both clinical covariates 

and ridge-based predictors. This phenomenon may be explained as the over-fitting of the 

ridge-based predictors that use all the 200 genes for prediction; the ridge-based predictors may 

work better on the training data, but not as much on the testing data. 

Comparing between the true and estimated prediction errors, it is clear that the estimated 

prediction errors showed downward biases relative to the true prediction errors. Nevertheless, 

the estimated prediction errors contained sufficient information to determine the relative 

performance between different prediction models. One exception is the joint model that uses 

the ridge-based predictor that yielded the over-fitting phenomenon. 

In conclusion, we have confirmed that the estimated prediction error ),(ˆ wttrrE   exhibits 

modest downward bias, but is still a good substitute for the true prediction error ),( wttErr  . 

This is an important advantage of using the CC to avoid extreme overfitting. 
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Figure S2. The true and estimated prediction errors under the joint models with clinical 

covariate (Z) and genetic factors (CC or Ridge). The Clayton copula (Joint-copula) or 

independence copula (Joint) is used for intra-subject dependence. 
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S3. Lists of genes associated with survival (P-value<0.001) 

We present the results of performing gene selection based on univariate Cox regression 

analyses. In the univariate Cox model, we treat time-to-relapse (or time-to-death) as a 

response and a single gene expression as a covariate. The results of testing the null hypothesis 

of no covariate effect are used to select and order genes. 

 

158 genes associated with time-to-relapse (P-value<0.001) 

Gene P-value coefficient 

CXCL12 1.36E-08 0.249 

TIMP2 1.03E-07 0.235 

PDPN 1.68E-07 0.222 

TUBB6 3.28E-07 0.228 

ANKRD27 1.91E-06 0.198 

COL3A1 2.52E-06 0.21 

CRYAB 2.80E-06 0.204 

FOSL2 2.84E-06 0.206 

DNAJC8 2.98E-06 0.2 

TEAD1 3.13E-06 0.195 

SPARC 6.69E-06 0.197 

RARRES1 6.77E-06 0.197 

CLIC4 6.87E-06 0.207 

TIMP3 6.97E-06 0.191 

PCYT1A 7.77E-06 0.183 

ITGB1 8.02E-06 0.223 

NCOA3 8.18E-06 0.194 

FAP 8.26E-06 0.191 

ASAP3 8.41E-06 0.182 

FGF1 8.47E-06 0.181 

THEMIS2 9.58E-06 0.192 

COL11A1 1.13E-05 0.187 

LOX 1.35E-05 0.188 

PDGFD 1.48E-05 0.183 

KLHL25 1.59E-05 -0.191 

CRISPLD2 1.74E-05 0.183 

NUAK1 1.96E-05 0.185 

MEOX2 2.24E-05 0.166 
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HP1BP3 2.52E-05 0.172 

GPATCH1 2.54E-05 0.176 

INHBA 2.69E-05 0.179 

SERPINE1 2.93E-05 0.173 

LGALS1 3.33E-05 0.189 

FERMT2 3.79E-05 0.188 

HSD17B6 4.08E-05 0.172 

KIAA1598 4.47E-05 0.185 

COL5A1 4.60E-05 0.175 

FABP4 4.62E-05 0.169 

VSIG4 4.91E-05 0.179 

ZFP36 4.99E-05 0.17 

ZFP36L2 5.27E-05 0.179 

COMP 5.39E-05 0.161 

POSTN 5.69E-05 0.175 

CYR61 5.73E-05 0.176 

C1QTNF3 6.09E-05 0.167 

CDV3 6.10E-05 0.174 

GAS1 6.16E-05 0.183 

NPY 6.61E-05 0.154 

PDE1A 7.01E-05 0.156 

N4BP2L2 7.31E-05 0.17 

COL10A1 7.35E-05 0.168 

B4GALT5 7.39E-05 0.17 

DDX27 7.86E-05 0.174 

CTSK 8.55E-05 0.165 

VCAN 8.68E-05 0.173 

COL5A2 8.73E-05 0.171 

DVL3 8.90E-05 0.168 

TAGLN 9.03E-05 0.175 

CCNL1 9.64E-05 0.164 

DPYSL3 9.96E-05 0.18 

RPS16 1.06E-04 0.203 

ADAM12 1.09E-04 0.16 

SLC12A8 1.13E-04 0.168 

SH3PXD2A 1.14E-04 0.157 

GJC1 1.15E-04 0.16 

ZNF148 1.18E-04 0.163 
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TPM4 1.19E-04 0.173 

USP48 1.27E-04 0.161 

FN1 1.29E-04 0.174 

JUN 1.35E-04 0.165 

CEBPB 1.44E-04 0.177 

DNAJC13 1.45E-04 0.16 

LUZP1 1.57E-04 0.166 

PLSCR4 1.59E-04 0.155 

TGM5 1.82E-04 -0.169 

HLTF 1.83E-04 0.165 

ADORA3 1.87E-04 0.16 

EIF3K 1.87E-04 0.168 

DNAJB4 1.91E-04 0.161 

SULF1 1.98E-04 0.163 

TESK1 1.98E-04 -0.163 

TUBB2A 2.06E-04 0.157 

LUM 2.10E-04 0.165 

KIN 2.14E-04 0.166 

CALD1 2.20E-04 0.168 

STAU1 2.23E-04 0.17 

FAM69A 2.28E-04 0.155 

EPYC 2.32E-04 0.151 

PPIC 2.35E-04 0.161 

COL16A1 2.47E-04 0.161 

NOTCH2 2.59E-04 0.16 

PSMC4 2.64E-04 0.157 

ENPP1 2.79E-04 0.163 

TPM2 2.87E-04 0.156 

ARHGAP28 2.95E-04 0.175 

SGK1 3.00E-04 0.158 

CSE1L 3.04E-04 0.17 

OAT 3.16E-04 0.162 

MXD1 3.32E-04 0.159 

L2HGDH 3.33E-04 -0.158 

ARHGAP29 3.35E-04 0.167 

DCUN1D1 3.39E-04 0.156 

KRT7 3.40E-04 0.166 

PLAU 3.59E-04 0.159 
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AP3S1 3.61E-04 0.158 

RAB32 3.74E-04 0.151 

KPNA6 3.97E-04 0.146 

MFN1 3.98E-04 0.16 

MCL1 4.00E-04 0.152 

GFRA1 4.11E-04 0.109 

KIAA0355 4.18E-04 0.155 

PGRMC1 4.18E-04 -0.155 

KIAA0226 4.39E-04 0.147 

SPHK1 4.40E-04 0.149 

ELK1 4.64E-04 -0.161 

METTL9 4.64E-04 -0.148 

MAPRE1 4.72E-04 0.156 

MRPS22 4.77E-04 0.156 

MICAL2 4.83E-04 0.159 

OLFML2B 4.87E-04 0.15 

PRDM2 5.07E-04 0.152 

RAB31 5.26E-04 0.155 

ARTN 5.30E-04 -0.157 

NNMT 5.39E-04 0.156 

GFRA3 5.78E-04 -0.194 

CDC42 5.84E-04 0.154 

ABI3BP 6.07E-04 0.126 

DIAPH3 6.08E-04 0.144 

SUPT5H 6.10E-04 0.143 

RAB22A 6.49E-04 0.142 

PLOD2 6.61E-04 0.151 

GLIPR1 6.61E-04 0.153 

URI1 6.72E-04 0.139 

TP73-AS1 6.78E-04 0.144 

GABRG3 6.83E-04 -0.156 

TJP1 6.88E-04 0.156 

LPP 6.90E-04 0.147 

KRTAP5-8 7.05E-04 -0.154 

YWHAB 7.05E-04 0.169 

MXRA8 7.36E-04 0.145 

EFNB2 7.66E-04 0.145 

NDRG3 7.82E-04 0.138 
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NINJ1 7.82E-04 -0.146 

TSC22D2 7.88E-04 0.134 

TUFT1 7.88E-04 0.147 

FSTL1 8.10E-04 0.148 

AP2M1 8.25E-04 0.145 

BCAP31 8.31E-04 -0.147 

SKIL 8.34E-04 0.144 

ZMYM1 8.47E-04 0.14 

NTM 8.69E-04 0.138 

CCNE1 8.85E-04 0.145 

MAP7D1 8.91E-04 0.144 

TBCB 8.91E-04 0.143 

ZNF79 9.31E-04 -0.153 

PARD3 9.50E-04 0.14 

BRD4 9.61E-04 0.14 

MMP12 9.77E-04 -0.152 

 

128 genes associated with time-to-death (P-value<0.001) 

Gene P-value coefficient 

NCOA3 6.88E-07 0.237 

TEAD1 1.32E-06 0.223 

YWHAB 1.38E-06 0.263 

PSMC4 1.77E-06 0.214 

PDP1 3.26E-06 0.226 

TUBB6 3.37E-06 0.228 

STAU1 4.67E-06 0.234 

GPATCH1 4.72E-06 0.202 

RPS16 4.91E-06 0.258 

B4GALT5 6.62E-06 0.215 

ASAP3 1.02E-05 0.199 

HP1BP3 1.47E-05 0.197 

DDX27 1.61E-05 0.211 

NUAK1 1.69E-05 0.199 

ENPP1 2.00E-05 0.197 

KIAA0355 2.53E-05 0.194 

COL16A1 2.56E-05 0.197 

SH3PXD2A 2.61E-05 0.181 
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CRYAB 2.79E-05 0.195 

RECQL 3.15E-05 0.189 

DLGAP4 4.46E-05 0.183 

CPNE1 4.84E-05 0.193 

FABP4 5.02E-05 0.176 

N4BP2L2 5.50E-05 0.191 

NCOA6 5.53E-05 0.196 

LSM14A 6.54E-05 0.193 

TBCB 6.66E-05 0.193 

COL5A1 8.44E-05 0.184 

ARHGAP28 8.59E-05 0.201 

LEP 8.80E-05 0.168 

LPL 9.22E-05 0.177 

INHBA 1.02E-04 0.177 

PCDH9 1.02E-04 0.158 

FSTL1 1.05E-04 0.192 

BYSL 1.05E-04 -0.192 

RND3 1.10E-04 0.189 

MAPRE1 1.12E-04 0.186 

AP3S1 1.17E-04 0.191 

PLXNA1 1.20E-04 0.188 

ZFP36 1.23E-04 0.173 

HLA-DOB 1.27E-04 -0.193 

URI1 1.28E-04 0.17 

COMP 1.31E-04 0.162 

OAT 1.33E-04 0.189 

APMAP 1.33E-04 0.186 

GAS1 1.33E-04 0.194 

IL2RG 1.39E-04 -0.189 

NOTCH2NL 1.47E-04 0.183 

CXCL12 1.48E-04 0.183 

LUZP1 1.50E-04 0.18 

PSMD8 1.60E-04 0.172 

ZNF148 1.64E-04 0.177 

ANKRD27 1.66E-04 0.166 

TIMP3 1.72E-04 0.174 

CLIC4 1.79E-04 0.19 

PAK4 1.85E-04 0.163 



15 

 

RAI14 1.86E-04 0.177 

COL3A1 1.96E-04 0.183 

CYTH3 2.02E-04 0.169 

COL11A1 2.33E-04 0.167 

FAP 2.37E-04 0.174 

TJP1 2.69E-04 0.185 

RAB13 2.69E-04 0.174 

KDELC1 2.79E-04 0.165 

JUN 2.84E-04 0.172 

CTNNBL1 2.89E-04 0.164 

TSPAN9 2.91E-04 0.178 

EIF3K 2.96E-04 0.176 

RARRES1 2.98E-04 0.174 

SLAMF7 2.98E-04 -0.187 

SACS 2.99E-04 0.16 

ZFP36L2 3.04E-04 0.175 

LOX 3.18E-04 0.173 

ITGB1 3.21E-04 0.197 

PHF20 3.37E-04 0.168 

CASP8 3.43E-04 -0.166 

CRISPLD2 3.43E-04 0.165 

KIN 3.48E-04 0.175 

MMP12 3.64E-04 -0.187 

RIN2 3.79E-04 0.178 

EMP1 3.88E-04 0.174 

TUBB2A 3.92E-04 0.164 

PDPN 3.93E-04 0.161 

CD79A 4.05E-04 -0.18 

FGF1 4.32E-04 0.157 

C1QTNF3 4.38E-04 0.156 

SUPT5H 4.39E-04 0.155 

MEOX2 4.52E-04 0.149 

EFNB2 4.56E-04 0.169 

JAM2 4.71E-04 0.16 

SPARC 4.73E-04 0.166 

SMG5 4.85E-04 0.166 

COL5A2 4.90E-04 0.166 

TTI1 4.91E-04 0.16 
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SLC37A4 4.98E-04 -0.153 

CYBRD1 5.31E-04 0.164 

GABRG3 5.36E-04 -0.182 

SOCS5 5.38E-04 0.167 

TP53BP2 5.49E-04 0.162 

GFRA1 5.50E-04 0.126 

HSD17B6 5.70E-04 0.159 

USP48 5.71E-04 0.16 

ITPKC 5.87E-04 0.149 

RBM39 6.03E-04 0.171 

HOXA5 6.09E-04 0.158 

TBCC 6.43E-04 -0.165 

CYR61 6.65E-04 0.161 

OMD 6.66E-04 0.146 

MCL1 6.85E-04 0.161 

CXCL9 6.94E-04 -0.163 

SSR4 7.00E-04 -0.159 

GJC1 7.27E-04 0.156 

LUM 7.45E-04 0.166 

COX7A2P2 7.78E-04 -0.163 

DYNLRB1 7.90E-04 0.164 

NR1H3 8.13E-04 -0.158 

SKI 8.15E-04 0.148 

ASAP1 8.25E-04 0.153 

DNAJC13 8.59E-04 0.157 

TESK1 8.73E-04 -0.161 

ASB7 8.81E-04 -0.159 

CCL18 9.10E-04 -0.181 

FBL 9.21E-04 0.161 

CDK19 9.23E-04 0.149 

GZMB 9.35E-04 -0.166 

FOXN3 9.47E-04 0.156 

ELN 9.69E-04 0.141 

KCNH4 9.83E-04 -0.157 
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S4. Biological functions of genes associated with death and relapse 

The lists of genes associated with survival in Section S3 give the compound covariates 

ij,1CC (0.249*CXCL12) + (0.235*TIMP2) + (0.222*PDPN) +…+ (-0.152*MMP12), 

involving 158 genes (P-value < 0.001 for time-to-relapse), and 

ij,2CC (0.237*NCOA3) + (0.223*TEAD1) + (0.263*YWHAB) +…+ (-0.157*KCNH4), 

involving 128 genes (P-value < 0.001 for time-to-death).  

Below, we detail known biological functions of selected genes (TIMP2, PDPN, NCOA3, 

TEAD1, YWHAB) involved in the expressions of ij,1CC  and ij,2CC .  

 

 TIMP2 

TIMP2 is a member of the TIMP gene family. The proteins encoded by this gene family are 

natural inhibitors of the matrix metalloproteinases (MMPs). MMPs and their inhibitors (TIMP 

gene family) play an important regulatory role in the homeostasis of the extracellular matrix 

(Halon et al., 2012). In addition to inhibitors of MMPs, TIMP2 has additional functions that 

are associated with cell proliferation and survival (Bourboulia et al., 2011). In our study, the 

overexpression of the gene was highly associated with time-to-relapse (Coefficient=0.235, P-

value= 7101.03 - ). 

 

 PDPN 

The PDPN gene encodes the podoplanin protein. It is reported that cancer cells with higher 

PDPN expression have higher malignant potential due to enhanced platelet aggregation, which 

promotes alteration of metastasis, cell motility, and epithelial-mesenchymal transition (Shindo 

et al., 2013). Zhang et al. (2011) reported that overexpression of PDPN in fibroblasts is 

significantly associated with a poor prognosis in ovarian carcinoma. In our study, the 

overexpression of the gene was highly associated with time-to-relapse (Coefficient=0.222, P-

value= 7101.68 - ) and time-to-death (Coefficient=0.161, P-value= 4103.93 - ). 
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 NCOA3 

The NCOA3 gene encodes a nuclear receptor coactivator, and amplification of the gene  

occurs in breast and ovarian cancers (Anzick et al., 1997). The overexpression of NCOA3 is 

associated with tumor size (Spears et al., 2012) and tamoxifen resistance (Osborne et al., 

2003), which are involved in the progression. Yoshida et al. (2005) reported that NCOA3 

could contribute to ovarian cancer progression by promoting cell migration. In our study, the 

overexpression of the gene was highly associated with time-to-relapse (Coefficient=0.194, P-

value= 6108.18 - ) and time-to-death (Coefficient=0.237, P-value= 7106.88 - ). This result is 

consistent with the function of these reports. 

 

 TEAD1 

TEAD1 encodes a ubiquitous transcriptional enhancer factor that is a member of the 

TEA/ATTS domain family. It is reported that the protein level of TEAD1 was associated with 

poor prognosis in prostate cancer patients (Knight et al., 2008). In our study, the 

overexpression of the gene was highly associated with time-to-relapse (Coefficient=0.195, P-

value= 6103.13 - ) and time-to-death (Coefficient=0.223, P-value= 6101.32 - ).  

 

 YWHAB 

YWHAB encodes a protein belonging to the 14-3-3 family of proteins, members of which 

mediate signal transduction by binding to phosphoserine-containing proteins. It is reported that 

the protein of YWHAB can regulate cell survival, proliferation, and motility (Tzivion, 2006). 

Actually, it is reported that overexpression of this gene promotes tumor progression and was 

associated with extrahepatic metastasis and worse survival in hepatocellular carcinoma (Liu et 

al., 2011). In our study, the overexpression of the gene was highly associated with time-to-

relapse (Coefficient=0.169, P-value= 4107.05 - ) and time-to-death (Coefficient=0.263, P-

value= 6101.38 - ).  
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S5. Variable selection 

Table S1 presents the results of forward variable selection. Model selection is guided with the 

likelihood cross-validation (LCV) criterion. The LCV accounts for the number of parameters 

in the model with penalized likelihood approaches via equation LCV=logL-DF, where logL is 

the log-likelihood value and DF is the (effective) degree of freedom. More details can be seen 

from the source codes of the joint.Cox R package (Emura 2016). The larger LCV value 

corresponds to the better model. 

We start from the simplest model including only CXCL12 expression and ignoring clinical 

covariates (Model 1, Table S1), which was used in Emura et al. (2015). The estimates for the 

relative risks of CXCL12 are comparable to previously reported results (Ganzfried et al. 2013; 

Emura et al. 2015). 

By replacing CXCL12 with the CCs, the LCV criterion improved remarkably (Model 2, 

Table S2). The estimates for the relative risks are greater than those based on CXCL12 alone. 

Hence, we keep the CCs to the model rather than CXCL12 alone. 

The addition of the clinical covariates 21 ZZ   (=0 vs. =1) on the residual tumour size at 

surgery (<1cm vs.   1cm) further improved the LCV criterion (Model 4, Table 1). 

Furthermore, their addition almost did not alter the relative risks for the genomic factors 

(Model 2 vs. Model 4). This implies that the residual tumour size and CCs are independent 

predictors of survival. However, we observe that the lower confidence bound of the relative 

risk for 1Z  reached the null value of 1. 

Therefore, we considered the model dropping 1Z  for relapse but still keeping 2Z  for death 

(Model 3 in Table 1). With this model, the LCV criterion was maximized among all the 

models (Table 1). 

Inclusion of FIGO stage to all the models (Models 1-4) did not improve the LCV criterion 

and the corresponding regression coefficients were nonsignificant (not shown). Hence, FIGO 

stage is not included in the model. 

Thus, we conclude that the most satisfactory model is Model 3 in Table S1, namely 
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Table S1.  The joint analysis of time-to-relapse and time-to-death for ovarian cancer patients 

based on the meta-analytic data (four studies, 912 patients) of Ganzfried et al. (2013).  

 Model 1: Model 2: Model 3 (chosen): Model 4:  

 
1CC CXCL12 

2CC CXCL12 

1CC =158 genes 

2CC =128 genes 

2Z =Res. tumour 

1CC =158 genes 

2CC =128 genes 

1Z =Res. tumour 

2Z =Res. tumour 

1CC =158 genes 

2CC =128 genes 

 

RR for time-to-relapse (95% CI) 

1Z  - - - 1.17 (1.00-1.37)  

1CC  1.24  (1.14-1.33) 1.47 (1.37-1.59) 1.48 (1.37-1.59) 1.45 (1.35-1.57)  

RR for time-to-death (95% CI) 

2Z  - - 1.18 (1.03-1.35)             1.30 (1.10-1.53)  

2CC  1.19 (1.09-1.30) 1.56 (1.43-1.70) 1.56 (1.44-1.70) 1.55 (1.42-1.69)  

Parameter estimate (95% CI) 

  0.028 

   (0.005-0.155) 

0.035  

(0.006-0.200) 

0.039 

(0.007-0.227) 

0.040 

(0.007-0.233) 

 

  2.20 

 (1.78-2.72) 

1.87 

(1.47-2.39) 

1.90 

(1.49-2.42) 

1.94 

(1.52-2.46) 

 

  0.52 

(0.37-0.68) 

0.48 

(0.32-0.65) 

0.49 

(0.32-0.65) 

0.49 

(0.33-0.66) 

 

  0 0 0 0  

Likelihood cross-validation (LCV) 

LCV -8150.89 -8088.77 -8086.36  -8087.77  

DF 12.16 12.01 12.07 13.99  

RR, relative risk; Res. tumour (Residual tumour), Z=1 (>1cm) vs Z=0 (<=1cm); CI, 

confidence interval; LCV=logL-DF, the likelihood cross-validation criterion which accounts 

for the effective number of parameters (DF, degree of freedom) in the model. The larger LCV 

value corresponds to the better model. 
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