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Abstract

Dependent censoring often arises in biomedical studies when time to tumour progression (e.g., relapse of cancer) is

censored by an informative terminal event (e.g., death). For meta-analysis combining existing studies, a joint survival

model between tumour progression and death has been considered under semicompeting risks, which induces

dependence through the study-specific frailty. Our paper here utilizes copulas to generalize the joint frailty model by

introducing additional source of dependence arising from intra-subject association between tumour progression and

death. The practical value of the new model is particularly evident for meta-analyses in which only a few covariates are

consistently measured across studies and hence there exist residual dependence. The covariate effects are formulated

through the Cox proportional hazards model, and the baseline hazards are nonparametrically modeled on a basis of

splines. The estimator is then obtained by maximizing a penalized log-likelihood function. We also show that the present

methodologies are easily modified for the competing risks or recurrent event data, and are generalized to accommodate

left-truncation. Simulations are performed to examine the performance of the proposed estimator. The method is

applied to a meta-analysis for assessing a recently suggested biomarker CXCL12 for survival in ovarian cancer

patients. We implement our proposed methods in R joint.Cox package.
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1 Introduction

Several endpoints have been adopted to appropriately demonstrate a clinically convincing effect of treatments,
covariates, or biomarkers on survival outcomes. A common endpoint is death, which would be a clinically most
significant event for a patient. The overall survival (OS) refers to the time from the patient entry to death due to
any cause. Owning to the unambiguity of the definition, OS has been the gold standard endpoint in many cancer
studies.1–3 Another commonly used endpoint is the time to tumour progression (TTP) defined as the time from the
entry to the first evidence of disease progression (e.g. relapse, loco-regional progression or distant metastasis). If
TTP is used as a primary endpoint, death is one possible cause for censoring (i.e. competing risk). The first
occurring event between TTP and OS is progression-free survival (PFS), formally defined as PFS¼minfOS,
TTP}. Many researchers adopt PFS, rather than TTP alone, since PFS is more associated with OS or PFS
itself is a more effective endpoint than OS.4 The appropriate choice of OS, TTP and PFS as an endpoint and
their association has been discussed by many authors.1,3–7

In most medical studies, the Cox proportional hazards model8 is applied to OS, TTP, or PFS separately. The
primary interest of such studies is to understand the marginal effect of some covariates on a selected endpoint.
Clearly, some dependence exists among OS, TTP, and PFS, and its dependence pattern may be essential to
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understand the disease progression mechanisms.3,5,6 In meta-analytic studies, the dependence is examined to
validate the surrogacy of TTP or PFS for OS.2,3,9 If TTP is the primary endpoint, the Cox regression analysis
requires the assumption that TTP and OS are independent (given covariates). This assumption, however, appears
to be rarely true owning to the strong link between TTP and OS; death may occur soon after progression.

While the separate (marginal) Cox regression analyses are simple, the observed effects of biomarkers can be
biased. Emura and Chen10 give a systematic reason that the Cox model encounters the bias owning to residual
dependence in genetic biomarker search. In a similar reason, the problem of potential bias is evident in meta-analysis
for which only a few covariates are consistently measured across studies and hence there is residual dependence.

This paper is concerned about meta-analysis for the joint assessment of TTP and OS using a joint (bivariate)
statistical model. While many bivariate survival models useful for fitting TTP and OS have been already proposed in
the literature of multivariate survival analysis,11–13 they are not tailored for meta-analysis. An appropriate model for
meta-analysis may include a study-specific (random) effect to explain the variation due to heterogeneity among
studies and allow an adequate parameterization of the target population effect.14 In this respect, Burzykowski
et al.15 propose a parametric Weibull regression and a two-stage semiparametric procedure useful for fitting TTP
and OS in meta-analysis. See also Chapter 11 of Burzykowski et al.9 However, these inference methods are designed
for the standard bivariate survival data in which TTP and OS are subject to independent right-censoring only. More
realistic setting is the so-called semicompeting risks setting16 in which OS can dependently censor TTP (i.e.
progression is never observed after death). Under the semicompeting risks data, Rondeau et al.6 developed a
joint-frailty model to take into account for the study specific random effect, which in turn induces the
dependency between TTP and OS. For estimation, they utilized penalized likelihood techniques under
nonparametric models for the two baseline hazards. This approach deals with the dependency between TTP and
OS at the study-level; however, there may exist a residual dependency at the patient-level in these meta-analyses.

So this paper aims to develop a copula-based approach for jointly performing the Cox regressions for TTP and
OS in meta-analysis. For this purpose, we follow the semicompeting risks framework of Fine et al.,16 and then
generalize the joint-frailty model of Rondeau et al.6 to incorporate additional source of dependence arising from
intra-subject dependence based on copulas. We show that statistical inference methods follow similarly to the
penalized likelihood approach of Rondeau et al.6 even under our broader class of copula models. We supplement
the development of the efficient computational schemes by building our original R package ‘‘joint.Cox’’.17

In addition, we demonstrate the proposed methods with the meta-analysis of assessing a recently suggested
biomarker CXCL12 for survival in ovarian cancer patients.18,19 Finally, we show that the present
methodologies are easily modified for the competing risks or recurrent event data, and are generalized to
accommodate left-truncation. This implies that our proposal offers a unified framework accommodating a
variety of data types in survival analysis.

This paper is organized as follows. Section 2 describes the background. Section 3 introduces our proposed
methods. Section 4 conducts simulations and Section 5 performs a meta-analysis of real data. Section 6 discusses
extensions of our methods. Section 7 concludes.

2 Background

2.1 Data structure

Meta-analytic data consists of G independent studies with the i-th study containing Ni subjects. Let Xij be time to
tumour progression (TTP), Dij be overall survival (OS; i.e., time to death), and Cij be independent and
uninformative censoring time for i¼ 1, 2, . . . ,G and j¼ 1, 2, . . . ,Ni. We observe the first-occurring event time
Tij¼min(Xij, Dij, Cij), the indicator of progression dij¼ I(Tij¼Xij), where I(:) is the indicator function, the terminal
event time T�ij ¼ minðDij,CijÞ and the indicator for death ��ij ¼ IðT�ij ¼ DijÞ. The data consist of ðTij, T

�
ij, �ij, �

�
ijÞ for

i¼ 1, 2, . . . ,G and j¼ 1, 2, . . . ,Ni (Table 1).
The observation scheme mentioned above is termed ‘‘semicompeting risks’’.16 This is different from the usual

competing-risks data in which two events can censor each other and only the first occurring event time is
observable. The semicompeting risks data offers more information about the population than the competing
risks data that encounters the un-identifiability about the model of (Xij, Dij).

20

2.2 Motivating example: meta-analysis of ovarian cancer patients

We consider a recently reported CXCL12 gene expression as a predictive biomarker of survival in ovarian
cancer.18,19 It has been known that CXCL12 promotes tumour growth, participates in tumour metastasis, and
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suppresses tumour immunity.21 The statistical significance of the CXCL12 expression on survival is first examined
by Popple et al.,18 and is further confirmed by Ganzfried et al.19 based on the meta-analysis of 14 independent
studies. These results are based on the standard Cox regression analysis treating OS as the endpoint. While their
analysis focuses solely on OS, it is of our interest to study the significance of CXCL12 expression on TTP as well as
the association between TTP and OS. Therefore, we wish to develop a model to assess the effect of CXCL12
expression jointly on relapse (TTP) and death (OS). Since the availability of TTP information is limited to G¼ 4
studies (the remaining 10 studies provide OS information only), we concentrate our analyses on them (Table 2).
The study sizes considerably vary as N1¼ 110, N2¼ 58, N3¼ 278, and N4¼ 557 (total 1003 patients). Table 2
shows the number of observed events for the three events types (relapse, death, and censoring). First, one can
recognize that the GSE17260 and GSE9891 studies show quite similar event rates. Compared to the two studies,
the GSE30161 study exhibits a higher rate of relapse while the TCGA study exhibits a lower rate of relapse. This
suggests a presence of heterogeneity of hazard rates among the four studies, which may not be fully explained by
the different follow-up lengths. Our investigation on original papers suggests the heterogeneity of the serous
subtype and ethnicity among the four studies. However, such covariates may not be available as the individual-
patient data. A typical strategy of meta-analysis is to take into account of the heterogeneity with unobserved
random effects.14 A joint analysis of TTP and OS under meta-analysis with random effects is suggested by
Rondeau et al.6 and implemented by R frailtypack package.22

2.3 The joint frailty model of Rondeau et al.6

This section introduces the joint frailty model of Rondeau et al.,6 a model tailored for meta-analysis. Let Zij be a
p-vector of covariates. Consider an unobserved frailty ui following a density f�(ui) with E�(ui)¼ 1 and Var�(ui)¼ �.
The hazards for TTP and OS in the joint frailty model6 are specified as

rijðtjuiÞ ¼ uir0ðtÞ expðb
0
1ZijÞ

�ijðtjuiÞ ¼ u�i �0ðtÞ expðb
0
2ZijÞ

�
ðtime-to-progression XijÞ

ðoverall survival DijÞ
ð1Þ

The parameters b1 and b2 are interpreted as fixed (constant) effects of Zij on TTP and OS across studies. The forms
of the baseline hazards r0 and �0 are not specified. The heterogeneity of the hazards among studies are quantified

Table 2. A meta-analytic data combining the four independent studies of ovarian cancer patients of Ganzfried et al.19

Dataseta
Median follow-up

(months) Sample size

The number of observed events (event rates %)

Relapse (�ij ¼ 1) Death (��ij ¼ 1) Censoring (��ij ¼ 0)

GSE17260 47 N1 ¼110 76 (69%) 46 (42%) 64 (58%)

GSE30161 83 N2 ¼58 48 (83%) 36 (62%) 22 (38%)

GSE9891 36 N3 ¼278 185 (67%) 113 (41%) 165 (59%)

TCGA 52 N4 ¼557 266 (48%) 290 (52%) 267 (48%)

Total
P4

i¼1 Ni ¼1003 575 (57%) 485 (48%) 518 (52%)

Notes: The data are loaded from R Bioconductor curatedOvarianData package of Ganzfried et al.19

aDataset is signified as GEO accession number which can be used to search the public genomics data in the GEO (Gene Expression Omnibus)

repository. Event rates (%) are the percentage of experiencing a particular event (Relapse, Death or Censoring) within a study; the sums of death and

censoring percentages are 100% since each subject can experience only one terminal event (Death or Censoring).

Table 1. Four mutually exclusive cases under semi-competing risks.

First occurring event Terminal event Tij T�ij �ij ��ij Likelihood contribution

Tumour progression Death Xij Dij 1 1 Prð Xij ¼ Tij, Dij ¼ T�ij Þ

Tumour progression Censoring Xij Cij 1 0 Prð Xij ¼ Tij, Dij 4 T�ij Þ

Death Death Dij Dij 0 1 Prð Xij 4 Tij, Dij ¼ T�ij Þ

Censoring Censoring Cij Cij 0 0 Prð Xij 4 Tij, Dij 4 T�ij Þ
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by a study-specific frailty value ui. Hence, the model is tailored for meta-analyses that estimate the fixed effect. The
intra-cluster dependence between TTP and OS arises by the common ui in the two hazard functions. The
parameter � allows a difference in the amount of heterogeneity between TTP and OS.

If the focus is only on a single event, one can apply the shared frailty model

�ijðtjuiÞ ¼ ui�0ðtÞ expðb
0ZijÞ

for clustered survival data. Meta-analysis can be performed by treating the study unit as a cluster. The shared
frailty model is extensively studied in biostatistics.12,23

Clearly, the joint fraily model (1) is a more elaborate model than the shared frailty model. The advantage of the
joint model over the usual frailty model is that one can form a bivariate model of TTP and OS, which allows us to
investigate the association and dynamics between TTP and OS. See also Rondeau et al.24 who propose a joint
model between recurrent event process and OS, and discuss the advantage of the joint model.

3 Proposed methods

We generalize the joint frailty model of Rondeau et al.6 by accounting for the intra-subject dependence between
TTP and OS in addition to the intra-cluster dependence. We also develop inference procedures by generalizing the
penalized likelihood approach of Rondeau et al.6

3.1 Joint frailty-copula model

In the joint frailty model (1), the time to tumour progression (TTP, Xij) and overall survival (OS, Dij) are
conditionally independent given ui and Zij. It is natural to think that there is residual dependence between Xij

and Dij within the subject level. One of common reasons to yield residual dependence is insufficiently collected
covariates Zij. In meta-analysis, such residual dependence is a legitimate concern since researchers may access only
a few covariates that are consistently obtained across studies. In addition, a strong link between TTP and OS is
clear as physicians may encounter death soon after tumour progression.

We relax the conditional independence assumed in Rondeau et al.6 by introducing the intra-subject dependence
with a copula model

PrðXij 4 x , Dij 4 yjui Þ ¼ C�½ expf �Rijðx juiÞ g, expf ��ijð y juiÞ g �, ð2Þ

where C� is a copula25 with an unknown parameter �, and

Rijðx juiÞ ¼

Z x

0

rijðv juiÞdv, �ijð y juiÞ ¼

Z y

0

�ijðv juiÞdv,

are the cumulative hazards, where rij and �ij follow the joint frailty model (1). We call the set of models (1) and (2)
‘‘joint frailty-copula model’’.

The copula describes the dependency between Xij and Dij given ui. For instance, a mathematically convenient
example is the Clayton copula

C�ðv, wÞ ¼ ðv
�� þ w�� � 1Þ�1=�, � � 0: ð3Þ

The copula parameter � determines the amount of dependence and is related to Kendall’s � via
�ðXij, Dijjui Þ ¼ �=ð� þ 2Þ. If �! 0, then C�(v,w)¼ vw with �ðXij,Dijjui Þ ¼ 0 and our model reduces to the joint
frailty model of Rondeau et al.6

3.2 Likelihood under the joint frailty-copula model

Let RijðtÞ ¼ R0ðtÞ expðb
0
1ZijÞ and �ijðtÞ ¼ �0ðtÞ expðb

0
2ZijÞ be cumulative hazard functions for TTP and OS,

respectively. The corresponding hazard functions are rijðtÞ ¼ dRijðtÞ=dt and �ijðtÞ ¼ d�ijðtÞ=dt. Also, let
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mi ¼
PNi

j¼1 �ij (or m
�
i ¼

PNi

j¼1 �
�
ij) be the number of occurrences of TTP (or OS) within the i-th study. Then, the log-

likelihood under the models (1) and (2) is

‘ ð�, �, �, b1, b2, r0, �0Þ ¼
XG
i¼1

XNi

j¼1

f�ij log rijðTijÞ þ �
�
ij log �ijðT

�
ijÞg

"

þ log

Z 1
0

u
miþ�m

�
i

i

YNi

j¼1

 �½uiRijðTijÞ, u
�
i �ijðT

�
ijÞ�

�ij �� ½uiRijðTijÞ, u
�
i �ijðT

�
ijÞ�

��ij

(

���½uiRijðTijÞ, u
�
i �ijðT

�
ijÞ�

�ij�
�
ijD�½uiRijðTijÞ, u

�
i �ijðT

�
ijÞ�

o
f�ðuiÞdui

i
, ð4Þ

where D�½s, t� ¼ C�½expð�sÞ, expð�tÞ�,  � ¼ D½1, 0�� =D�, D½1, 0�� ¼ �@D�=@s,  �� ¼ D½0, 1�� =D�, D½0, 1�� ¼ �@D�=@t,
�� ¼ D½1, 1�� D�=D

½1, 0�
� D½0, 1�� and D½1, 1�� ¼ @2D�=@s@t. The derivation is given in Appendix A (Supplementary

material online [available at: http://smm.sagepub.com/]). For the frailty distribution, one typically chooses the
gamma density

f�ðuiÞ ¼
1

�ð1=�Þ�1=�
u1=��1i exp �

ui
�

� �

where �> 0 is the variance.
Under the Clayton copula in equation (3), the log-likelihood function has a particularly simple form. Letting

A�ðs, tÞ ¼ expð�sÞ þ expð�tÞ � 1, one obtains D�ðs, tÞ ¼ A�ðs, tÞ
�1=�,  �ðs, tÞ ¼ expð�sÞ=A�ðs, tÞ,

 �� ðs, tÞ ¼ expð�tÞ=A�ðs, tÞ, and ��ðs, tÞ ¼ 1þ �. By substituting these forms into equation (4), the likelihood
function is readily calculated.

The case of independence copula C�(v, w)¼ vw yields to D�ðs, tÞ ¼ expð�s� tÞ and
 �ðs, tÞ ¼  

�
� ðs, tÞ ¼ ��ðs, tÞ ¼ 1. They are also derived as the limit �! 0under the Clayton copula. Then, equation

(4) reduces to the log-likelihood of Rondeau et al.6

‘ ð�, �, b1, b2, r0, �0Þ ¼
XG
i¼1

XNi

j¼1

f�ij log rijðTijÞ þ �
�
ij log �ijðT

�
ijÞg

"

þ log

Z 1
0

u
miþ�m

�
i

i exp �ui
XNi

j¼1

RijðTijÞ � u�i

XNi

j¼1

�ijðT
�
ijÞ

 !( )
f�ðuiÞdui

#
:

This implies that the proposed method covers the original one as a special case.

3.3 Approximation by splines

We suggest approximating the baseline hazards r0 and �0 using splines, which are well-established tools for
nonparametric hazard estimation.26–28 The splines yield a smooth estimate of the hazard function that is not
achieved by the discrete approximation of the nonparametric maximum likelihood estimation (NPMLE). This
advantage is appealing under the joint model that tries to capture the dynamic behavior of two hazards for TTP
and OS. In addition, since the splines are calculated efficiently, they are attractive to work on the complicated
likelihood for the joint model.

We set r0ðtÞ ¼
PLr

‘¼1 g‘M‘ðtÞ, where M‘ðtÞ, ‘ ¼ 1, 2, . . . ,Lr, are the cubic M-spline (a variant of B-spline) bases
and g‘ � 0, ‘ ¼ 1, 2, . . . ,Lr, are unknown parameters. We choose Lr¼ 5 that gives good flexibility in curve
estimation.29 The cumulative hazard is R0ðtÞ ¼

PLr

‘¼1 g‘I‘ðtÞ, where I‘ (t) is the integration of M‘ (t), called the I-
spline basis. The approximation �0ðtÞ ¼

PL�
‘¼1 h‘M‘ðtÞ, h‘ � 0, can be done similarly. Appendix B (Supplementary

material online [available at: http://smm.sagepub.com/]) provides the explicit formulas for M‘ (t) and I‘ (t) with
‘ ¼ 1, . . . , 5 ¼ Lr ¼ L�.

3.4 Penalized likelihood inference

Inference under the cubic spline approximation is implemented with the aid of the penalized maximum likelihood
(ML) estimator which maximizes
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‘ ð�, �, �, b1, b2, r0, �0Þ � �1

Z
€r0ðtÞ

2dt� �2

Z
€�0ðtÞ

2dt ð5Þ

where €f ðtÞ ¼ d2f ðtÞ=dt2, and (k1,k2) are positive smoothing parameters. The penalty terms represent the roughness
of the hazard functions and are rewritten as

Z
€r0ðtÞ

2dt ¼
XLr

k¼1

XLr

‘¼1

gkg‘

Z
€MkðtÞ €M‘ðtÞdt,

Z
€�0ðtÞ

2dt ¼
XL�
k¼1

XL�
‘¼1

hkh‘

Z
€MkðtÞ €M‘ðtÞdt:

After some calculations, the preceding formulas become simple quadratic forms in g ¼ ðg1, . . . , gLr
Þ
0 and

h ¼ ðh1, . . . , hL�Þ
0 (see an example for Lr ¼ L� ¼ 5 in Appendix B, Supplementary material online [available at:

http://smm.sagepub.com/]). The penalization incorporates the prior knowledge that the hazard does not change
very quickly over time and is typically smooth in real applications.

The standard error (SE) is obtained from the inverse of the converged Hessian of the penalized log-
likelihood,26,27 and the confidence interval is formed by the normal approximation. For instance, the 95%
confidence interval (CI) for b1 is

	̂1 � 1:96� SEð	1Þ ¼ 	̂1 � 1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f Ĥ�1PLð�1, �2Þ g	1

q

where f Ĥ�1PLð�1, �2Þ g	1 is the relevant component of the converged Hessian matrix for the penalized log-
likelihood. Similarly, the 95% CI for the baseline hazard r0(x) is

r̂0ðxÞ � 1:96� SEf r̂0ðxÞ g ¼M0ðxÞĝ� 1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�M0ðxÞf Ĥ�1PLð�1, �2Þ ggMðxÞ

q
,

where MðxÞ ¼ ðM1ðxÞ, . . . ,MLr
ðxÞÞ0.

3.5 Software and computation

We implement automatic computing routines in R joint.Cox package (version 2.0).17 All the numerical results in
this paper are produced by the package.

For a given pair of (k1,k2), the routine maximizes the penalized likelihood in equation (5) by a subroutine R nlm
with the initial values �¼ 1, �¼ 1, b1¼ b2¼ 0, r0ðtÞ ¼

PLr

‘¼1 M‘ðtÞ and �0ðtÞ ¼
PL�

‘¼1 M‘ðtÞ. The integration in
equation (4) is done by a subroutine R integrate.

An estimate of� can be highly unstable, especially for small study sizes, e.g.G¼ 5.We suggest fixing� (e.g. �¼ 0 or
�¼ 1).The case of�¼ 0 refers to the situation that the frailty influences the hazard forTTP, but not forOS.Thismight
be suitable for the case where the observed event rates for death are relatively homogeneous across studies, as in our
motivating example (Table 2). The case of �¼ 1 refers to the situation that the frailty has the same influence for TTP
and OS. In our routine, the user can specify any value of � for which the maximization of the penalized likelihood is
performed.

In practice, the following forward selection scheme is recommended for choosing �. The first step is to fit the
model with �ð0Þ ¼ 0. If the penalized log-likelihood value is reduced by fitting with �ð1Þ ¼ 0:25, then �ð0Þ ¼ 0 is the
choice. Otherwise, we try the update �ð2Þ ¼ 0:5. These steps are continued by trying �ðkþ1Þ ¼ �ðkÞ þ 0:25,
k¼ 1, 2, . . . , until the update does not improve the penalized likelihood values from the previous steps. We
used this procedure in the real data analyses.

An approximate likelihood cross-validation (LCV) has been used to choose the best smoothing parameter for
penalized likelihood inference.26,27 Since the LCV is developed in the case of the standard Cox model and has not
been extended to joint models for choosing (k1, k2), we only automatically choose k1 and k2 in two separate
standard Cox models for TTP and OS, respectively, and then use these values into the penalized likelihood. The
details can be obtained from our source codes. Our routine allows the user to specify a grid for k1 and k2, and then
shows the two LCV curves and their maximum values. One may need to try several plausible grids by visually
examining the LCV curves as the adequate choice of the grid considerably depends on many factors such as the
number of observed events.
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4 Simulations

We conducted simulations to evaluate the performance of the proposed method and to compare our proposal with
the method of Rondeau et al.6

4.1 Simulation designs

We set two different scenarios:

Scenario (I): G¼ 5 and Ni¼ 100 (or 200) for i¼ 1, 2, . . . , 5,
Scenario (II): G¼ 30 and Ni¼ 10 for i¼ 1, 2, . . . , 30.

The number of studies G¼ 5 is common in meta-analyses. For instance, Sabatier et al.30 examined the effect of
ECRG4 expression on survival by combining G¼ 6 independent studies. Our ovarian cancer meta-analysis
(Section 5) is only G¼ 4. The case of G¼ 30 corresponds to a larger pool of studies with the smaller number of
subjects.

For each study i¼ 1, 2, . . . ,G, a frailty ui followed a gamma distribution with variance �¼ 0.5. For each subject
j¼ 1, 2, . . . ,Ni, a covariate Zij followed a uniform distribution on (0, 1). Given ui and Zij, the distribution of Xij

(TTP) and Dij (OS) followed the joint frailty-copula model.

PrðXij 4 x , Dij 4 yjui Þ ¼ ½ expf �Rijðx juiÞ g þ expf ��ijð y juiÞ g � 1 ��1=�

where Rijðx juiÞ ¼ uiR0ðxÞ expð	1ZijÞ and �ijð y juiÞ ¼ u�i �0ð yÞ expð	2ZijÞ; where dR0ðxÞ=dx ¼ r0ðxÞ
¼ 1 and d�0ðyÞ=dy ¼ �0ðyÞ ¼ 1 were set to be constants. We assumed that �¼ 1 is known and not estimated
(see Section 3.5). To introduce the intra-subject dependence between TTP and OS, the association parameter
was set at �¼ 2 or 6 that corresponds to Kendall’s � equal to 0.5 or 0.75, respectively. Independent censoring
variable Cij followed a uniform distribution on (0, 5) that yielded about 16–37% censored subjects. After
generating data, we fitted the joint model by using our R package joint.Cox (Section 3.5) to estimate b1, b2, �,
r0ð�Þ, �0ð�Þ and �. We based our simulations on 500 replications. All the R codes for simulations are available upon
request to the corresponding author.

4.2 Simulation results

Table 3 shows the simulation results under Scenario (I). The parameter estimates appear to be nearly unbiased for
regression parameters 	1 and 	2. The standard deviation (SD) of the estimates decreases as the number of subjects
increases from Ni 	100 to 200 (Table 3). Also, the standard error (SE) accurately captures the SD. Accordingly,
the resulting 95% confidence intervals give correct coverage probabilities.

Table 3 also reveals that the estimates for the true copula parameter � ¼ 2 or � ¼ 6 are fairly accurate with
correct SEs and coverage probabilities. Hence, the estimates provide reliable inference on the degree of intra-
subject dependence between TTP and OS.

The estimates exhibit bias for the frailty parameter �, and the bias does not vanish even when the number of
subjects increases from Ni 	100 to 200 (Table 3). This problem is caused by the small number of studies, G¼ 5.
Owning to this reason, the SE is lower than the SD, and the confidence interval has systematic under-coverage.
However, the problem becomes less serious by increasing G up to 30 (see the case of G¼ 30, Table 4).

Figure 1 shows the plot of the estimated baseline hazard functions for the first 50 replications. Overall, the
estimated hazard functions are good approximation to the true hazards, and their variation reduces as the number
of subjects increase from Ni 	 100 to 200.

Table 4 compares the proposed method with the method of Rondeau et al.6 under Scenario (II). The proposed
estimators are nearly unbiased for 	1, 	2, �, and �. On the other hand, the method of Rondeau et al.6 yields some
modest biases, especially for 	1. The reason for the biases is attributed to the violation of the intra-subject
independence assumption made in the model of Rondeau et al.6

In summary, our simulation results have confirmed that accurate inference for regression coefficients and
hazard functions is possible even when the study size G is small. This property is important since many existing
meta-analyses have small study size. In addition, the proposed method offers better performance than the method
of Rondeau et al.6 when intra-subject dependence exists in the underlying model.

Emura et al. 2655



Remark: In spite of the superior performance of our proposal over the method of Rondeau et al.,6 the magnitude
of the biases in the method of Rondeau et al.6 is modest even under the strong intra-subject dependence (� ¼ 6,
� ¼ 0:75). The real advantage of modeling intra-subject dependence appears when the parameter for the intra-
subject dependence is utilized for prediction (Section 5).

5 Meta-analysis of ovarian cancer patients

We performed meta-analysis for ovarian cancer patients of Ganzfried et al.19 by using the proposed joint model.
Following the original paper, we defined TTP as time to recurrence and OS as time to death. Our implementation
was based on the individual-patients data available from R Bioconductor package, curatedOvarianData. The
details of the data are described in Section 2.2 and summarized in Table 2.

The meta-analysis of Ganzfried et al.19 focused on the significance of CXCL12 as a univariate predictor of OS,
where other clinical characteristics were removed. Such a univariate assessment has been an important step in the
stage of gene selection or gene filtering10,31–33 before building more elaborate predictors. Since the availability of
clinical characteristics varied substantially across the studies, we also focused on the univariate assessment of
CXCL12 on survival. As we discussed in Section 2.2, our joint analysis was based on the four ovarian cancer
studies for which both TTP and OS are available. We reported the effect of CXCL12 in terms of the relative risk
(RR), say RR¼ expð	1Þ for recurrence (TTP), and RR¼ expð	2Þ for death (OS), and their 95% confidence interval
(CI). We used the standardized expression values of CXCL12 as directly available in the data.19 The expression
values had mean 3� 10�17 and standard deviation 0.999 within the four studies. Hence, RR refers to the increase
of the risk for one standard deviation change in CXCL12 expression.

The results of fitting the proposed method under the Clayton copula are summarized in Table 5. The RR of
CXCL12 on death is significantly greater (RR¼ 1.18, 95% CI: 1.08–1.29) than the null value (RR¼ 1). Note that

Table 3. Simulation results for the proposed method under Scenario (I) (G¼ 5 studies) based on 500 replications.

Ni ¼100 Ni ¼200

Parameter Mean SD SE CP% Mean SD SE CP%

CEN¼16% 	1 ¼ 1 1.003 0.189 0.194 0.96 1.004 0.135 0.135 0.95

	2 ¼ 1 1.010 0.154 0.163 0.96 1.004 0.114 0.114 0.95

� ¼ 0:5 0.408 0.264 0.248 0.88 0.399 0.289 0.238 0.82

� ¼ 2 2.023 0.247 0.242 0.95 2.015 0.178 0.169 0.94

�1 58.8 176.1 – – 26.9 100.8 – –

�2 268.5 418.0 – – 191.9 363.4 – –

CEN¼32% 	1 ¼ �1 �1.001 0.236 0.230 0.95 �1.001 0.157 0.160 0.95

	2 ¼ �1 �1.000 0.194 0.192 0.95 �1.001 0.136 0.134 0.95

� ¼ 0:5 0.404 0.263 0.246 0.88 0.395 0.281 0.237 0.82

� ¼ 2 2.038 0.296 0.294 0.96 2.019 0.209 0.203 0.94

�1 256.2 389.9 – – 124.4 276.4 – –

�2 555.4 470.3 – – 521.7 469.9 – –

CEN¼18% 	1 ¼ 1 1.006 0.154 0.161 0.95 1.004 0.114 0.112 0.95

	2 ¼ 1 1.011 0.143 0.151 0.95 1.004 0.107 0.105 0.95

� ¼ 0:5 0.411 0.268 0.249 0.87 0.397 0.279 0.237 0.82

� ¼ 6 6.089 0.567 0.561 0.94 6.036 0.396 0.390 0.94

�1 114.1 273.9 � � 56.7 181.6 � �

�2 279.9 423.4 � � 213.5 380.4 � �

CEN¼37% 	1 ¼ �1 �1.002 0.197 0.194 0.94 �1.000 0.134 0.135 0.95

	2 ¼ �1 �1.001 0.177 0.179 0.95 �1.001 0.124 0.124 0.96

� ¼ 0:5 0.407 0.268 0.248 0.88 0.394 0.274 0.236 0.83

� ¼ 6 6.129 0.690 0.672 0.95 6.056 0.462 0.463 0.95

�1 301.5 414.4 – – 123.5 275.6 – –

�2 551.8 468.6 – – 517.8 464.7 – –

CEN¼ the percentage that both death and progression are censored; 100� Prð Xij 4 Cij , Dij 4 Cij Þ. SD¼ the sample standard deviation of the

estimates. SE¼ the average of the standard errors. CP%¼ the coverage ratio for the 95% confidence intervals.
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this effect is very close to the previously reported effect (RR¼ 1.15, 95% CI: 1.09–1.23)19 obtained under the
separate Cox regression for death. In our joint analysis, the effect of CXCL12 on recurrence is even higher
(RR¼ 1.22, 95% CI: 1.13–1.32) than that on death. Our result suggests that the expression of CXCL12 is a
potential biomarker predictive of tumour recurrence in ovarian cancer patients.

Figure 2 shows the two estimated baseline hazards for recurrence and death. The baseline hazard for recurrence
is high on early stage and gradually decreases as time passes. On the other hand, the hazard for death is initially
low and reaches a peak at around 2000 days. Hereafter, the hazard of death is consistently higher than that of
recurrence. This result agrees with the descriptive statistics of Table 2 that the majority of the first occurring events
are recurrence. Some practical suggestions to physicians are as follows: we suggest carefully monitoring patients
for cancer recurrence before 2000 days, and after 2000 days, shifting more attention to other life-threatening
symptoms. These joint assessments of the two event risks may not be straightforward by fitting two separate Cox
models to recurrence and death.

The estimate of the copula parameter was �¼ 2.35 (95% CI¼ 1.90–2.90), confirming the presence of positive
dependence between TTP and OS at patient level (�¼ 0.54, 95% CI¼ 0.49–0.59). This implies that relapse
occurring before death increases the risk of death by 3.35 times through the hazard ratio

�ijðyjXij ¼ x, Zij, uiÞ

�ijðyjXij 4 x, Zij, uiÞ
¼ � þ 1 ¼ 3:35, y � x

where �ijðyjAÞ is the predictive hazard of death at a prediction time y given that event A occurs34 (see Appendix C,
Supplementary material online [available at: http://smm.sagepub.com/], for the details).

From our analysis on baseline hazards, physicians are recommended to change a way to monitor patients at
time x¼ 2000 (days). Figure 3 highlights the effect. The predictive hazard of death with relapse

Table 4. Simulation results comparing the proposed method with the method of Rondeau et al.6 under Scenario (II) (G¼ 30 studies;

Ni ¼10 subjects) based on 500 replications.

Proposed method Method of Rondeau et al.6

Parameter Mean SD SE CP% Mean SD SE CP%

CEN¼ 16% 	1 ¼ 1 1.007 0.263 0.261 0.94 0.929 0.351 0.325 0.92

	2 ¼ 1 1.010 0.231 0.226 0.95 1.007 0.259 0.243 0.93

� ¼ 0:5 0.490 0.150 0.146 0.94 0.505 0.149 0.144 0.94

� ¼ 2 2.054 0.323 0.330 0.95 0 (fixed) – – –

�1 69.4 169.9 – – 69.4 169.9 – –

�2 178.1 350.1 – – 178.1 350.1 – –

CEN¼ 32% 	1 ¼ �1 �1.002 0.330 0.303 0.92 �0.897 0.408 0.361 0.91

	2 ¼ �1 �1.007 0.281 0.258 0.93 �1.028 0.304 0.273 0.92

� ¼ 0:5 0.495 0.162 0.157 0.95 0.505 0.158 0.151 0.94

� ¼ 2 2.061 0.386 0.395 0.95 0 (fixed) – – –

�1 259.5 391.3 – – 259.5 391.3 – –

�2 563.3 471.1 – – 563.3 471.1 – –

CEN¼ 18% 	1 ¼ 1 1.010 0.229 0.220 0.94 0.961 0.357 0.329 0.93

	2 ¼ 1 1.011 0.220 0.209 0.93 1.006 0.265 0.242 0.93

� ¼ 0:5 0.492 0.147 0.145 0.94 0.530 0.157 0.149 0.93

� ¼ 6 6.172 0.705 0.760 0.95 0 (fixed) – – –

�1 131.4 275.8 – – 131.4 275.8 – –

�2 195.5 362.2 – – 195.5 362.2 – –

CEN¼ 37% 	1 ¼ �1 �1.010 0.286 0.259 0.92 �0.928 0.429 0.374 0.90

	2 ¼ �1 �1.014 0.268 0.242 0.92 �1.054 0.316 0.274 0.89

� ¼ 0:5 0.496 0.160 0.157 0.96 0.536 0.165 0.159 0.94

� ¼ 6 6.218 0.824 0.904 0.96 0 (fixed) – – –

�1 334.7 428.0 – – 334.7 428.0 – –

�2 562.2 472.4 – – 562.2 472.4 – –

CEN¼ the percentage that both death and progression are censored; 100� Prð Xij 4 Cij , Dij 4 Cij Þ. SD¼ the sample standard deviation of the

estimates. SE¼ the average of the standard errors. CP%¼ the coverage ratio for the 95% confidence intervals.
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�ijðyjXij ¼ x, Zij, uiÞ is remarkably higher than the predictive hazard of death without relapse
�ijðyjXij 4 x, Zij, uiÞ. Figure 3 also shows that the degree of the increase in the risk owning to cancer relapse is
much greater than the effect owning to the change in CXCL12 expression. In fact, given the relapse information,
the effect of CXCL12 expression on death seems to be attenuated as the two hazard functions for CXCL12¼�1
and CXCL12¼þ1 cross one another. These results highlight the importance of preventing relapse for 2000 days to
prolong patients’ OS. Note that a similar risk prediction scheme of death according to relapse information at a
given prediction time was previously developed in other joint models.35,36 Such a prediction scheme is possible only
when intra-subject dependence is modeled as in the proposed model.

When we perform the method of Rondeau et al.6 by ignoring the intra-subject dependence (i.e. assuming �¼ 0
as in Section 3.2), the maximized penalized likelihood value reduces substantially (from �8604.093 to �8744.023).
Nevertheless, the resulting RRs of CXCL12 are very similar to those obtained under the proposed method
(Table 5). This phenomenon suggests the robustness of the regression estimates in the method of Rondeau
et al.6 against misspecification of the intra-subject dependence.

6 Generalization to other data settings

The proposed methodologies discussed in Section 3 focuses on the semicompeting risks data under the setting of
Rondeau et al.6 In this section, we show that the present methodologies are reduced or extended to other

Figure 1. Simulation results for estimating the baseline hazard r0ðxÞ based on 50 replications. Case (a): 	1 ¼ 1, 	2 ¼ 1, � ¼ 2,

r0ðxÞ ¼ 1 and �0ð yÞ ¼ 1; Ni ¼ 100 (upper left), Ni ¼ 200(upper right). Case (b): 	1 ¼ �1, 	2 ¼ �1, � ¼ 2, r0ðxÞ ¼ 1 and �0ð yÞ ¼ 1;

Ni ¼ 100 (lower left), Ni ¼ 200(lower right)
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important directions, including the analysis of (i) standard semicompeting risks data, (ii) clustered competing risks
data, (iii) standard competing risks data, (iv) clustered semicompeting risks data with left-truncation, and (v)
recurrent event data.

As in Section 2, we let Xij be TTP, Dij be OS, and Cij be censoring time for j ¼ 1, 2, . . . ,Ni and i ¼ 1, 2, . . . ,G.
The difference of the settings comes from different ways to set the study size Ni and different sampling schemes for
a triplet (Xij, Dij, Cij). For instance, in the semicompeting risks setting, a pair (Xij, Dij) is available if a sample
exhibits the order Xij<Dij<Cij. In the competing risks setting, however, only the first occurring event
minðXij, DijÞ is available for the same sample.

6.1 Standard semicompeting risks data

If data consist of a single study (G¼ 1) with the study size N1 ¼ N and there is no frailty (� ¼ 0), the data structure
ðTj, T

�
j , �j, �

�
j Þ 	 ðT1j, T

�
1j, �1j, �

�
1jÞ, j ¼ 1, 2, . . . ,N follows the standard semicompeting risks framework of Fine

Figure 2. Baseline hazard functions for TTP (recurrence) and OS (death) based on the meta-analytic data of ovarian cancer patients.

The dotted lines (red or blue color) show the 95% confidence intervals.

Table 5. The joint analysis of recurrence (TTP) and death (OS) for the meta-analytic data (four studies, 1003 patients) for ovarian

cancer patients of Ganzfried et al.19

Proposed method:

Estimate (95% CI)

Method of Rondeau et al.6:

Estimate (95% CI)

RRa for relapse (TTP) : expð	1Þ 1.22 (1.13–1.32) 1.24 (1.14–1.35)

RRa for death (OS) : expð	2Þ 1.18 (1.08–1.29) 1.17 (1.07–1.29)

Heterogeneity: � ¼ Var�ð ui Þ 0.033 (0.006–0.186) 0.028 (0.004–0.180)

Copula parameter: � 2.35 (1.90–2.90) 0.00 (assumed fixed)

RR for death after relapse: � þ 1 3.35 (2.90–3.90) 1.00 (assumed fixed)

Kendall’s tau: � ¼ �= ð� þ 2Þ 0.54 (0.49–0.59) –

Maximum penalized log-likelihood �8604.093 �8744.023

aRR (Relative Risk) of CXCL12 expression on the hazards are examined. ‘‘RR>1’’ indicates that patients with high CXCL12 expression have poor

survival outcomes. The smoothing parameters are estimated as �1 ¼ 2:76� 1016 and �2 ¼ 3:45� 1016 for both methods.
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et al.16 Under this simplified context, the proposed log-likelihood (4) reduces to that of Chen,37 as shown in
Appendix D (Supplementary material online [available at: http://smm.sagepub.com/]). While Chen37 suggests the
NPMLE, we alternatively propose the penalized likelihood estimation. Other estimation schemes are also available
(e.g. Hsieh et al.38).

6.2 Clustered competing risks data

Suppose that we observe Tij ¼ minðXij, Dij, CijÞ, the first-occurring event time among TTP, OS and censoring, and
the event-type indicators �ij ¼ IðTij ¼ XijÞ and �

�
ij ¼ IðTij ¼ DijÞ. This is the competing risks setup with two failure

types (progression and death) subject to independent right-censoring. Although death might still be observed even
after progression, possible treatment interventions at the time of progression may confound the original
interpretation of death.1,4 In this sense, death and progression censor each other, leading to the competing risks
data (Table 6). This implies that the competing risks data has less information than the semicompeting risks data.

Given a copula parameter �, the log-likelihood is expressed as

‘ ð�, �, b1, b2, r0, �0j�Þ ¼
XG
i¼1

XNi

j¼1

f�ij log rijðTijÞ þ �
�
ij log �ijðTijÞg

"

þ log

Z 1
0

u
miþ�m

�
i

i

YNi

j¼1

 �½uiRijðTijÞ, u
�
i �ijðTijÞ�

�ij �� ½uiRijðTijÞ, u
�
i �ijðTijÞ�

��ij

(

�D�½uiRijðTijÞ, u
�
i �ijðTijÞ�

�
f�ðuiÞdui

�
:

ð6Þ

Figure 3. Predictive hazard functions for OS (death) when relapse information is given at time x¼ 2000 days. Four hazard functions

are plotted according to the given relapse information (relapsed vs. not relapsed at time x¼ 2000 days) and CXCL12 gene expression

(Zij¼þ1 vs. Zij¼�1). The expressions for the hazard functions are

�ijð yjXij ¼ 2000, Zij , ui Þ ¼ ð � þ 1 Þ�ijð yjXij 4 2000, Zij , ui Þ,

and

�ijð yjXij 4 2000, Zij , ui Þ ¼ u�i �0ð yÞ expð	2ZijÞ
expf ��ijð y juiÞ g

expf �Rijð2000 juiÞ g þ expf ��ijð y juiÞ g � 1
,

evaluated at ui ¼ 1;where all the parameters are estimated ðsee Appendix C for detailsÞ.
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When performing inference based on the penalized likelihood as in equation (5), we must assume that the copula
parameter � is known. This is because competing risks data may provide little information about the dependence
between the competing events.20 We suggest a sensitivity analysis that examines a range of plausible �, as commonly
done in the competing risks literature.39–43 Our simulation results reveal that the penalized likelihood inference of
Sections 3.3–3.4 exhibits sound statistical performance if the given parameter � is correctly specified (not shown).

6.3 Standard competing risks data

As a simplified setting of Section 6.2, we assume that the data consist of a single study (G¼ 1) containing N
subjects without frailty (� ¼ 0). Then, the data ðTj, �j, �

�
j Þ 	 ðT1j, �1j, �

�
1jÞ, j ¼ 1, 2, . . . ,N follows the standard

competing risks setups. Under this simplified setting, the log-likelihood (6) reduces to that of Chen,42 as shown in
Appendix E (Supplementary material online [available at: http://smm.sagepub.com/]).

Under the standard competing risks setting, several copula models with marginal Cox proportional hazards have
been considered.10,41,42,44 Escarela and Carriere44 proposed the parametric likelihood inference under Weibull
marginal distributions. Given a copula parameter �, Chen42 proposed the NPMLE for marginal inference. In our
approach, we alternatively propose the penalized likelihood estimation. Due to the unidentifiability of �, we suggest
sensitivity analysis as mentioned in Section 6.2.

One can avoid the identifiability issue by fitting the Cox model on the sub-distribution hazard.45 For this
reason, the Cox model on the sub-distribution is more appealing than the Cox model on the marginal hazard,
and is frequently used in biostatistics; see Bakoyannis and Touloumi46 for applications to medicine and Binder
et al.47 for applications to bioinformatics. Do Ha et al.48 developed statistical inference methods for the clustered
competing risks data with the sub-distribution hazard approach which can also be used for meta-analysis or multi-
center trials.

6.4 Clustered semicompeting risks data with left truncation

Left truncation usually occurs if the time scale of TTP and OS is age, where the inference focuses on the age-
specific hazard. In this case, left-truncation (Lij) corresponds to entry age, and the available samples are subject to
the constraint Lij 
 Tij. Hence, with left truncation, the observed data are ðLij, Tij, T

�
ij, �ij, �

�
ijÞ, subject to Lij 
 Tij,

for j ¼ 1, 2, . . . ,Ni and i ¼ 1, 2, . . . ,G. The modified expression of the log-likelihood under left-truncation becomes
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See Appendix A (Supplementary material online [available at: http://smm.sagepub.com/]) for the derivation.
Under the independent copula C�ðv, wÞ ¼ vw, we have D�ðs, tÞ ¼ expð�s� tÞ and  �ðs, tÞ ¼

 �� ðs, tÞ ¼ ��ðs, tÞ ¼ 1. Then, the preceding expression is exactly the same as the log-likelihood obtained in
Appendix 2 of Rondeau et al.6

Table 6. Three mutually exclusive cases under competing risks.

First occurring event Tij �ij ��ij Likelihood contribution

Progression Xij 1 0 Prð Xij ¼ Tij, Dij 4 Tij Þ

Death Dij 0 1 Prð Xij 4 Tij, Dij ¼ Tij Þ

Censoring Cij 0 0 Prð Xij 4 Tij, Dij 4 Tij Þ
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6.5 Recurrent event data

The semicompeting risks framework of Section 2 and the proposed method in Section 3 can handle recurrent
events data under the gap time scale.22,24 For each subject i ði ¼ 1, 2, . . . ,GÞ, let Xij be the gap time between
(j� 1)-th and j-th event times for j ¼ 1, 2, . . . ,Ni. With the information about the terminal event, the induced gap
times for death Dij and censoring Cij are similarly defined. The data consists of ðTij, T

�
ij, �ij, �

�
ijÞ, where

Tij ¼ minðXij, Dij, CijÞ, �ij ¼ IðTij ¼ XijÞ, T
�
ij ¼ minðDij, CijÞ and �

�
ij ¼ IðT�ij ¼ DijÞ. The gap times Xij, j<Ni, are

uncensored (�ij ¼ 1) while the gap time XiNi
is censored ( �ij ¼ 0 ) by either death or censoring.

Under the recurrent event setting, the interpretation of the joint frailty-copula model largely differs from the
meta-analytic setting. First, the frailty ui in equation (1) represents the effect of unmeasured covariates at patient
level. Thus, this frailty introduces patient-level dependence among recurrences and patient-level dependence
between recurrence and death. Second, the copula model (2) describes the residual dependence induced by
unmeasured recurrence-specific covariates. That is, even after covariates Zij and frailty ui are given, a pair of
gap times ðXij, DijÞ is still dependent. This dependence would be ignored if one could obtain sufficient amount of
recurrence-specific covariates in each recurrence step j.

For demonstration, we analyze G¼ 403 patients with colorectal cancer who had operations in a hospital in
Spain. The data are originally studied by González et al.,49 and are now available in R frailtypack package.22 The
patients are followed up from the date of surgery to either the study end or the time of death whichever comes first.
During the follow-up, patients may have several readmissions (recurrences) related to colorectal cancer. The
number of recurrences varies from Ni ¼ 1 (no readmission) to Ni ¼ 23 (22 readmissions).

The major goal of González et al.49 is to investigate the effect of gender on readmission times. They used the
Cox proportional hazards model with the gender as a covariate and the frailty as a source of dependence among
readmissions (in gap times) for each patient. Their analysis showed that men have higher hazard for readmissions
relative to women (RR¼ 1.61, 95% CI: 1.21–2.15). We reexamined the conclusion of González et al.49 under the
joint frailty-copula model of readmissions and death in which the fraily accounts for the subject-level dependence,
and the copula accounts for the recurrence-level dependence.

The results of fitting the proposed method under the Clayton copula are summarized in Table 7. We see that the
gender effect of men on readmissions (RR¼ 1.66, 95% CI: 1.26–2.20) is very similar to the original result of
González et al.49 The similar results are obtained by the method of Rondeau et al.6 (Table 7, using joint.Cox
package or frailtypack package). Hence, our results confirm the conclusion of González et al.49 under our joint
frailty-copula model. Figure 4 depicts that the baseline hazard for readmission is consistently higher than that of
death. This joint assessment of the two event risks may not be straightforward by the usual Cox regression analysis
of González et al.49

The proposed method shows significant amount of the estimated frailty variance (�¼ 1.16, 95% CI: 0.93–1.45).
This reveals the presence of heterogeneity between patients associated with unmeasured (omitted) covariates. The

Table 7. The joint analysis of readmission and death for the colorectal cancer data of González et al.49 (403 patients).

Proposed method with

the Clayton copula:

Using joint.Cox

Method of

Rondeau et al.6:

Using joint.Cox

Method of

Rondeau et al.6:

Using frailtypack

Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

RRa for readmission: expð	1Þ 1.66 (1.26–2.20) 1.65 (1.24–2.19) 1.82 (1.36–2.42)

RRa for death: expð	2Þ 1.88 (0.84–4.23) 1.79 (0.80–4.02) 1.45 (0.89–2.35)

Heterogeneity: � ¼ Var�ð ui Þ 1.16 (0.93–1.45) 1.14 (0.91–1.42) 1.01 (0.82–1.20)

� 3.5 (fixed) 3.5 (fixed) 1.35 (0.94–1.76)

Copula parameter: � 0.57 (0.35–0.94) 0.00 (fixed) 0.00 (fixed)

RR for death after readmission: � þ 1 1.57 (1.35–1.94) 1.00 (fixed) 1.00 (fixed)

Kendall’s tau: � ¼ �=ð � þ 2 Þ 0.22 (0.14–0.31) – –

Maximum penalized log-likelihood �5541.957 �5558.205 –

aRR (Relative Risk) of men (relative to women) on the hazards are examined. ‘‘RR>1’’ indicates that men have more readmissions or poor survival

outcomes over women do. The smoothing parameters are estimated as �1 ¼ 3:4� 1013 and �2 ¼ 6:9� 1013 for both methods by using R joint.Cox

package.
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method of Rondeau et al.6 yields very similar estimates for the frailty variance. This variance induces dependence
among successive readmissions as well as dependence between readmissions and deaths at patient-level.

The estimated copula parameter in the proposed method suggests that there exists weak residual dependence
between readmission and death at recurrence level (Kendall’s �¼ 0.22, 95% CI¼ 0.14–0.31). One possible cause of
this residual dependence is the use of the same set of covariates for all the recurrence steps, i.e. Zij ¼ Zi1 for j¼ 1,
2, . . . ,Ni. This residual dependence could be removed, for instance, by incorporating time-dependent covariates
which are updated at the last discharge date. In the absence of such covariates, the proposed copula model adjusts
for the residual dependence and improves the log-likelihood value significantly over the model of Rondeau et al.6

(Table 7).
The proposed method yields the copula parameter �¼ 0.57 (95% CI¼ 0.35–0.94), which implies that each

readmission occurring after discharge increases the risk of death by 1.57 (¼ �þ1) times (see Appendix C,
Supplementary material online, for details [available at: http://smm.sagepub.com/]). This recurrence-level risk
prediction of death accounting for the prior readmission event is an important advantage of fitting the copulamodel.

7 Conclusion and discussion

We propose a copula-based joint model between time to tumour progression (TTP) and overall survival (OS) for
meta-analysis with semicompeting risks. As the present paper focuses on meta-analyses combining heterogeneous
studies, existing semicompeting risks approaches under bivariate survival models are not straightforwardly
applied. In this respect, we build our new model on the basis of the joint frailty model of Rondeau et al.6 that
incorporate the study-specific frailty for meta-analysis. Our copula approach further extends the model of
Rondeau et al.6 by taking into account for intra-subject (patient-level) dependence between TTP and OS via
copulas. As seen from our formulations of the Clayton copula model, the flexibility and mathematical
convenience of copulas allow one to perform meta-analyses under the complex joint models with minimal
computational cost. The simulations show that the penalized likelihood inference with spline approximations
to the baseline hazards, originally developed by Rondeau et al.,6 can perform well under our broader class of
models. Remarkably, the simulations reveal the accuracy of the proposed methods even under a small number of
studies. Since many meta-analyses for medical research consist of a small number studies (e.g. five studies), the
methodologies can be safely applied to these real cases.

Figure 4. Baseline hazard functions for readmission and death (OS) based on the colorectal cancer patients of González et al.49 The

dotted lines (red or blue color) show the 95% confidence intervals.
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The ovarian cancer data meta-analysis revealed a significant amount of intra-subject dependence (�¼ 0.54, 95%
CI¼ 0.49–0.59) between TTP and OS. The estimated value of � can be used to test the intra-subject independence
assumption imposed in the model of Rondeau et al.6 If the amount of � is not significantly different from zero,
then the simpler model of Rondeau et al.6 is recommended. Another way to test the intra-subject independence
assumption is based on the likelihood ratio statistics with reference to the chi-square distribution with one degree
of freedom (the case of one-parameter copulas).

With the significant amount of intra-subject dependence between TTP and OS found in the ovarian cancer data,
the proposed copula model allowed a dynamic prediction of death using prior occurrence of relapse at patient-
level. In particular, our copula model revealed that relapse occurring before death increased the risk of death by
3.35 times (95% CI¼ 2.90–3.90). Importantly, this change of risk due to relapse was much greater than the effect
owning to CXCL12 gene expression (Figure 3). This finding motivates the development of a more formal dynamic
prediction tool as an accurate way to predict death. This topic will be studied in the future.

Modeling for the intra-subject association between TTP and OS is important in many different ways: to
understand the disease progression mechanisms,5 to perform a dynamic prediction of death from prior
relapse,35,36 and to help in the validation of the individual-level surrogacy.3,9 With these demands in medical
research, the proposed copula approach offers a tailored statistical model such that the analysis results can inform
medical researchers of the amount of association between TTP and OS. Our simulations (Tables 3–4) show that
the statistical inference for the intra-subject association between TTP and OS is made reliably.

The joint information of TTP and OS is not always recorded in publicly available data. For instance, Sabatier
et al.30 performed a meta-analysis combining six studies that analyzed the effect of ECRG4 gene expression on
both TTP (breast cancer relapse) and OS in breast cancer patients (see Table S1 of their paper). Among their six
available studies, one study (GSE1456, n¼ 159) offers both TTP (breast cancer relapse) and OS information, one
study (GSE3494, n¼ 251) offers OS information only, the study (GSE4922, n¼ 249) offers PFS information and
the study (GSE21653, n¼ 266) offers PFS information only. Sabatier et al.30 conducted separate meta-analyses on
PFS and OS based on the available subsets of studies. The joint analysis of TTP and OS are more desired by fitting
a single joint model to all the studies. However, it is a challenging topic to develop appropriate adjustments to the
likelihood under the missing mechanisms.

Supplementary material

Supplementary materials include Appendix A (Derivation of the log-likelihood function), Appendix B (Cubic
spline bases), Appendix C (Prediction and cross-ratio function), Appendix D (Log-likelihood under the standard
semicompeting risks data without clustering) and Appendix E (Log-likelihood of the standard competing risks
data without clustering).
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Appendix A: Derivation of the log-likelihood function 
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Integrating out the unobserved frailty, the contribution of i -th study to the likelihood is 
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Equation (4) follows by taking logarithm and summing up for Gi ...,,2,1= .  

If data is subject to left-truncation, it contains left-truncation times )...,,( 1 iiNii LL=L . 
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Accounting for the truncation constraints, the contribution to the likelihood is modified as 
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This immediately produces the modified log-likelihood under left-truncation. 
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Appendix B: Cubic spline bases 
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Figure A depicts the M- and I-spline basis functions with knots 11 =ξ , 22 =ξ , and 33 =ξ . 
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Figure A. The plots for five M-spline basis functions (left-panel) and I-spline basis functions 

(right-panel) with equally spaced knots 11 =ξ , 22 =ξ , and 33 =ξ . 
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Appendix C: Prediction and cross-ratio function 

We consider prediction of death at time xy ≥  conditional on events occurring time x : 

1) Predictive hazard of death with relapse at x : 
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The hazard ratio is 
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This is the so-called “cross-ratio” function (Oakes, 1986) which is interpreted as 

� 1>Θθ ; intra-subject positive association (relapse increases the risk of death), 

� 10 <Θ< θ ; intra-subject negative association (relapse decreases the risk of death), 

� 1=Θθ ; intra-subject independence (relapse is not related to death). 

Under the Clayton copula, it is easy to show that the cross-ratio function is a constant,  

θα
θ +=ΛΘ 1])(),([ yuxRu ijiiji . 

Indeed, the Clayton model is derived as the constant odds ratio model (Clayton, 1978). 

 

Appendix D: Log-likelihood under the standard semicompeting risks data without 

clustering 

The proposed log-likelihood of Equation (4) reduces to 
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where )exp()()( 10 jj tRtR Zβ′= , )exp()()( 20 jj tt Zβ′Λ=Λ , dtdRr jj /= , and dtd jj /Λ=λ . The 

preceding log-likelihood is equivalent to that derived by Chen (2012) under the mode 

]})(exp{},)(exp{[),Pr( yxRCyDxX jjjj Λ−−=>> θ .                       (C) 

 

Appendix E: Log-likelihood of the standard competing risks data without clustering 

The log-likelihood of Equation (6) reduces to 
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where all the mathematical symbols follow Appendix C. The preceding expression is the log-

likelihood proposed by Chen (2010) under the joint model (C).  
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