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Abstract Doubly truncated data consist of samples whose observed values fall
between the right- and left- truncation limits. With such samples, the distribution
function of interest is estimated using the nonparametric maximum likelihood esti-
mator (NPMLE) that is obtained through a self-consistency algorithm. Owing to the
complicated asymptotic distribution of the NPMLE, the bootstrap method has been
suggested for statistical inference. This paper proposes a closed-form estimator for
the asymptotic covariance function of the NPMLE, which is computationally attrac-
tive alternative to bootstrapping. Furthermore, we develop various statistical inference
procedures, such as confidence interval, goodness-of-fit tests, and confidence bands
to demonstrate the usefulness of the proposed covariance estimator. Simulations are
performed to compare the proposed method with both the bootstrap and jackknife
methods. The methods are illustrated using the childhood cancer dataset.
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1 Introduction

Statistical methodologies for doubly truncated data have been an active research area
with a variety of applications. Efron and Petrosian (1999) developed inference methods
based on doubly truncated data, highlighting its importance in astronomy. In particular,
due to the resolution of telescopes, the luminosity of stars may be undetected if it
is either too dim or too bright, leading to double-truncation (i.e., both upper and
lower truncations). Stovring and Wang (2007) considered a type of doubly truncated
data to analyze the incidence and lifetime risk of diabetes that are useful statistics
for public health. The childhood cancer data of North Portugal provides a similar
example (Moreira and Uña-Álvarez 2010). Recently, Zhu and Wang (2012) identified
a sampling bias due to double-truncation in the analysis of cancer registry data and
proposed inference procedures that can properly analyze such data. In general, double-
truncation is very common in fields such as astronomy, demography, and epidemiology.
The methodological and theoretical developments for analyzing doubly-truncated data
are attributed to Moreira and Uña-Álvarez (2010, 2012), Moreira and Keilegom (2013),
Shen (2010, 2011, 2012), Emura and Konno (2012), Austin et al. (2013), and Moreira
et al. (2014).

We illustrate the double-truncation occurring in the childhood cancer data discussed
in Moreira and Uña-Álvarez (2010). Their data include the ages at diagnosis (T ∗) of
children who were diagnosed with cancer within a follow-up period between January
1, 1999 and December 31, 2003 (Fig. 1). However, they do not have any information
on children who are diagnosed with cancer outside this period. Hence, the sample
inclusion criterion is written as U∗ ≤ T ∗ ≤ V ∗, where U∗ is the age on January 1,
1999 and V ∗ = U∗+1825 (days) is age on December 31, 2003, leading to the double-
truncation of T ∗ by left-truncation limit U∗ and right-truncation limit V ∗. Ignoring
truncation causes bias in statistical inference.

Note that double-truncation is essentially different from double-censoring (i.e.,
both left- and right- censorings) and interval censoring. Double-truncation yields
inclusion/exclusion of samples while double-censoring and interval censoring pro-
duce incomplete lifetimes of the included samples (Commenges 2002).

Efron and Petrosian (1999) first introduced the nonparametric maximum likelihood
estimator (NPMLE) for F(t) = Pr(T ∗ ≤ t) under double-truncation. Their NPMLE,
denoted by F̂(t), takes into account the sampling bias due to double-truncation. Shen’s
Theorems 2 and 3 (2010) showed the uniform consistency and the asymptotic nor-
mality of the NPMLE. The asymptotic distribution is complicated, so his formula
of the asymptotic variance is not explicitly written down. Moreira and Uña-Álvarez
(2010) recognized the analytical difficulty in the asymptotic variance and then pro-
posed the simple bootstrap and obvious bootstrap methods to construct the pointwise
confidence interval of F(t). They reported that the simple bootstrap technique is more
reliable and more technically convenient than the obvious bootstrap technique. Shen
(2012) circumvented the difficulty of estimating the asymptotic variance and then uti-
lized the empirical likelihood ratio test to construct the pointwise confidence interval.
Although his method may provide more accurate coverage performance than simple
bootstrapping, it does not provide a variance estimator.
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b0 : birth date 

d : date of diagnosis  

T*: age at diagnosis  

U*: age on January 1, 1999  

V* = U*+1825: age on December 31, 2003 

Jan 1, 1999 d Dec 31, 2003 b0 

T*

U*

V*

Fig. 1 The childhood cancer cases of North Portugal (Moreira and Uña-Álvarez 2010)

In this paper, we derive a closed-form estimator for Cov{ F̂(s), F̂(t) }. For s = t ,
the estimator yields a computationally attractive alternative to the bootstrap or jack-
knife variance estimator. Furthermore, the estimated covariance structure is utilized to
propose goodness-of-fit tests and confidence bands, both of which have not yet been
developed in the literature.

The rest of the paper is organized as follows. Section 2 briefly reviews the NPMLE
developed by Efron and Petrosian (1999). Section 3 presents the proposed covariance
estimator. Section 4 applies the proposed estimator to develop various inference pro-
cedures, including confidence interval, goodness-of-fit tests, and confidence bands.
Simulations and data analysis are given in Sects. 5 and 6, respectively. Section 7
concludes the paper.

2 The NPMLE

This paper considers doubly truncated data in which individuals can only be included
in the sample if their observations fall within certain random intervals. Specifically, let
T ∗ be a random variable of lifetime,U∗ be the left-truncation limit, and V ∗ be the right-
truncation limit. One can observe the triplet (U∗, T ∗, V ∗) only if U∗ ≤ T ∗ ≤ V ∗
holds. Therefore, the sample consists of { (Uj , Tj , Vj ) : j = 1, . . . , n } subject
to Uj ≤ Tj ≤ Vj . With this sampling scheme, the observations are independent and
identical replications from the distribution function Pr(U∗ ≤ u, T ∗ ≤ t, V ∗ ≤
v|U∗ ≤ T ∗ ≤ V ∗ ). If Pr(V ∗ = ∞) = 1, T ∗ is only subject to left-truncation by
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U∗; if Pr(U∗ = 0) = 1, T ∗ is only subject to right-truncation by V ∗. Hence, doubly
truncated data accommodates one-sided truncation. We assume throughout that T ∗
and (U∗, V ∗) are independent as commonly imposed in the literature (Shen 2011).

Efron and Petrosian (1999) first proposed the NPMLE for F(t) = Pr(T ∗ ≤ t).
Consider a discrete distribution putting probability masses f = ( f1, . . . , fn )T on
the observed points ( T1, . . . , Tn ). Let Jim = I{Ui ≤ Tm ≤ Vi }, where I{ A } = 1 if
A is true, and I{ A } = 0 if A is false. Also, let Fi = ∑n

m=1 fm Jim be the masses in f on
[Ui , Vi ] for i = 1, . . . , n. Then, it follows that F = J f , where F = (F1, . . . , Fn)T

and J is an n × n matrix whose (i, j) component is Ji j .
Let f̂ = ( f̂1, . . . , f̂n)T be a maximizer of the likelihood function

Ln(f) =
n∏

j=1

f j
Fj

,

subject to 1 = ∑n
j=1 f j = 1T

n f , where 1n = (1, ..., 1)T is n-vector of ones. The
derivative of the log-likelihood is

∂ log Ln(f)
∂f

= f−1 − J TF−1, (1)

where f−1 = ( f −1
1 , . . . , f −1

n )T and F−1 = (F−1
1 , . . . , F−1

n )T. This equation leads
to the following algorithm for obtaining f̂ :
Self-consistency algorithm (Efron and Petrosian 1999)

Step 0: Set f̂(0) = (1/n, . . . , 1/n)T and F̂(0) = J f̂(0),
Step 1: Obtain f̂(1) by f−1

(1) = JTF−1
(0) and then replace f̂(1) with f̂(1)/( 1T

n f̂(1) ); set

F̂(1) = J f̂(1),
Step 2: Repeat Step 1 to update f̂(�+1) from the previous step for � = 1, 2, ...;
stop the algorithm when ||f̂(�+1) − f̂(�)|| < ε for a small ε > 0 and some norm
|| · ||.

The NPMLE of F(t) = Pr(T ∗ ≤ t) is defined as F̂(t) = ∑n
j=1 I(Tj ≤ t) f̂ j .

Moreira and Uña-Álvarez (2010) suggested a simple bootstrap to estimate the confi-
dence interval of F(t). A convenient alternative to bootstrapping is the jackknife. The
bootstrap and jackknife algorithms are given in Appendix A.

3 Asymptotic covariance estimator of the NPMLE

This section derives a new estimator for Cov{ F̂(s), F̂(t) } in a closed form.

3.1 Observed information matrix

The likelihood Eq. (1) used in the self-consistency algorithm is derived by treating
f = ( f1, . . . , fn )T as n unknown parameters. The constraint

∑n
j=1 f j = 1 is
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then incorporated into the algorithm through standardization f̂(1)/( 1T
n f̂(1) ) at Step 1.

Alternatively, we modify the likelihood Eq. (1) by directly incorporating the constraint∑n
j=1 f j = 1 and regarding f(−n) = ( f1, . . . , fn−1)

T as (n−1)unknown parameters.

Here, we set fn = 1 − 1T
n−1f(−n). This treatment is crucial for deriving the proposed

variance estimator. Without loss of generality, we assume that f̂ = ( f̂1, . . . , f̂n)T

represents masses at the ordered values of T(1) < · · · < T(n). Especially, f̂n is the
mass corresponding to the largest observation T(n) = max j Tj .

Using ∂Fi/∂ f j = Ji j − Jin for j = 1, ..., n − 1, the score function becomes

∂ log Ln(f)
∂ f j

= 1

f j
−

[
n∑

i=1

Ji j
Fi

]

fn=1−1T
n−1f(−n)

−
[

1

fn
−

n∑

i=1

Jin
Fi

]

fn=1−1T
n−1f(−n)

.

This is written in the matrix form as

∂ log Ln(f)
∂f(−n)

= D [f−1 − JTF−1] fn=1−1T
n−1f(−n)

,

where D = [In−1
... − 1n−1], f−1 = ( 1/ f1, . . . , 1/ fn )T, and F−1 =

( 1/F1, . . . , 1/Fn )T. Also, for j, j ′ ∈ { 1, ..., n − 1 },

−∂2 log Ln(f)
∂ f j ′∂ f j

= I( j = j ′ )
f 2
j

+
[

1

f 2
n

]

fn=1−1T
n−1f

−
[

n∑

i=1

(Ji j − Jin)(Ji j ′ − Jin)

F2
i

]

fn=1−1T
n−1f

.

Hence, the observed information matrix is

in(f) = − ∂2 log Ln(f)

∂f(−n)∂fT
(−n)

= D

{

diag

(
1

f2

)

− JTdiag

(
1

F2

)

J

}∣
∣
∣
∣
fn=1−1T

n−1f
DT, (2)

where diag(a) is a diagonal matrix with the diagonal elements a.

3.2 The asymptotic covariance estimator

We derive the asymptotic covariance structure of
√
n( F̂(t) − F(t) ) and its plug-in

estimator. Let σF ( · )[h] : [0,∞) → [0,∞) be defined as

σF (x)[h] = E

[

I(U∗ ≤ x ≤ V ∗)
{

h(x)
∫
I(U∗ ≤ s ≤ V ∗)dF(s)

−
∫
I(U∗ ≤ s ≤ V ∗)h(s)dF(s)

{∫ I(U∗ ≤ s ≤ V ∗)dF(s) }2

}]

,
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where h : [0, ∞) → R is a bounded function. Note that σF ( · )[h] is the Fisher
information (Murphy 1995, p. 189) with h being the index of infinite-dimensional
parameters. Appendix B1 shows that

√
n( F̂(t) − F(t) ) converges weakly to a

Gaussian process GF (t) with E[ GF (t) ] = 0 and

E[ GF (s)GF (t) ] =
∫

ws(x)σ
−1
F (wt )(x)dF(x),

where ws(x) ≡ I(x ≤ s) and σ−1
F (wt ) solves σF (x)[h] = wt (x) for h.

Consider the empirical estimator of σF (x)[h] as

σ̂F (x)[h] = 1

n

n∑

i=1

I(Ui ≤ x ≤ Vi )

{
1

F̂i
h(x) − 1

F̂2
i

n∑

k=1

Jikhk f̂k

}

,

where hk = h(Tk). Then, the plug-in covariance estimator is

Ê[ GF (s)GF (t) ] =
∫

ws(x)σ̂
−1
F (wt )(x)d F̂(x) =

n∑

j=1

ws(Tj )σ̂
−1
F (wt )(Tj ) f̂ j .

After some matrix calculations given in Appendix B2, one can verify

n∑

j=1

ws(Tj )σ̂
−1
F (wt )(Tj ) f̂ j = WT

s

{
in(f̂)
n

}−1

Wt ,

where Wt = ( I(T(1) ≤ t) − I(T(n) ≤ t), . . . , I(T(n−1) ≤ t) − I(T(n) ≤ t) )T and
in(f) is given in Eq. (2). Therefore, we obtain a plug-in covariance estimator

Ĉov{ F̂(s), F̂(t) } = WT
s

[

D

{

diag

(
1

f̂2

)

− JTdiag

(
1

F̂2

)

J

}

DT
]−1

Wt , (3)

and a variance estimator

V̂Info{ F̂(t) } = WT
t

[

D

{

diag

(
1

f̂2

)

− JTdiag

(
1

F̂2

)

J

}

DT
]−1

Wt . (4)

Remark: Murphy (1995), Zeng and Lin (2006), Chen (2010), and Emura and Wang
(2012) use similar techniques to derive variance estimators. However, none of them
results in an explicit form like Eqs. (3) and (4).

4 Inference based on the asymptotic covariance estimator

This section examines various inference procedures based on the proposed covariance
estimator.
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4.1 Pointwise confidence interval

Applying the variance estimator V̂Info{F̂(t)} in Eq. (4) and the asymptotic normality,
we propose a pointwise confidence interval. Log-transformation and arcsine-square
root transformation are known to improve the coverage performance over the linear
confidence interval (Klein and Moeschberger 2003, pp. 104–108). Here, we apply the
log-transformed interval based on log F̂(t)− log F(t) ∼ N ( 0, V̂Info{ F̂(t) }/F̂(t)2).
Hence, the (1 − α)100% confidence interval for F(t) is

( F̂(t) exp[ −zα/2V̂
1/2
Info{F̂(t)}/F̂(t) ], F̂(t) exp[ zα/2V̂

1/2
Info{F̂(t)}/F̂(t) ] ),

where zα/2 is the (1 − α/2)100% point of the standard normal distribution.

4.2 Goodness-of-fit test

We consider a goodness-of-fit test for

H0 : F = F0 vs. H1 : F �= F0,

where F0 is a known continuous distribution function. Applying the continuous map-
ping theorem to the results of Sect. 3.2, we have

√
n sup

t
| F̂(t) − F(t)| d−→ sup

t
|GF (t)|.

The asymptotic distribution can be easily simulated after estimating the covariance
structure of GF0(t) with Eq. (3). Ideally, the asymptotic distribution is approximated
by that of max j |GF0(t j )| for fixed fine grids t j : j = 1, ..., N with large N . Here,
we suggest a practically convenient choice of t j = T( j), j = 1, ..., n−1, which leads
to a simple algorithm and achieves good finite sample performance. The algorithm is
stated as follows:
Kolmogorov–Smirnov test for H0 : F = F0 vs. H1 : F �= F0;

Step 1: Calculate K = supt | F̂(t) − F0(t)| and in(f̂).
Step 2: Generate G(b) = (G(b)

1 , . . . ,G(b)
n−1) ∼ N (0n−1, Hin(f̂)−1HT) for b= 1,

. . . , B, and compute K (b) = maxi=1,..,n−1|G(b)
i |, where H = ( WT(1)

, . . . ,

WT(n−1)
)T.

Step 3: Reject H0 : F = F0 with level α if
∑B

b=1 I( K (b) > K )/B < α.

Similarly, we can test H0 : F = F0 using the Cramér–von Mises statistic

C = n

∞∫

0

{ F̂(t) − F0(t) }2dFn(t) =
n∑

j=1

{ F̂(Tj ) − F0(Tj ) }2,

where Fn(t) = ∑n
j=1 I(Tj ≤ t)/n is the empirical distribution function.
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Cramér–von Mises test for H0 : F = F0 vs. H1 : F �= F0;

Step 1: Calculate C = ∑n
j=1 { F̂(Tj ) − F0(Tj ) }2 and in(f̂).

Step 2: Generate G(b) = (G(b)
1 , . . . , G(b)

n−1) ∼ N (0n−1, Hin(f̂)−1HT) for
b = 1, . . . , B, and then compute C (b) = (G(b))TG(b).
Step 3: Reject H0 : F = F0 with level α if

∑B
b=1 I( C

(b) > C )/B < α.

4.3 Confidence band

The confidence band covers the true function F(t) at all t for a specified confidence
level (1 − α). We follow the construction of two most well-known confidence bands
for the survival function under right-censoring, namely, the equal precision (EP) band
and Hall–Wellner (HW) band (Nair 1984; Klein and Moeschberger 2003, Sect. 4.4).

Let ψ(u) be a nonnegative continuous function. Applying the continuous mapping
theorem to the results of Sect. 3.2, we have

√
n sup

t
| ψ{ F(t) }{ F̂(t) − F(t) }| d−→ sup

t
|ψ{ F(t) }GF (t)|.

Then, the confidence bands are obtained by solving

1 − α = Pr

{

sup
t

| ψ{ F(t) }{ F̂(t) − F(t) }| ≤ c1−α(ψ)

}

,

where c1−α(ψ) is the (1 − α)100% point of sup
t

|ψ{ F(t) }GF (t)/
√
n|.

The EP band corresponds to ψ(u) = { u( 1−u ) }−1/2. In practice, it is desirable to
make ψ(u) bounded. Following Nair (1984), we alternatively use ψEP (u) = { ( u ∨
p1 )( 1 − u ∧ p2 ) }−1/2, 0 < p1 < p2 < 1, to yield the EP band

F̂(t) ± c1−α(ψEP )

√

{ F̂(t) ∨ p1 }{ 1 − F̂(t) ∧ p2 }.

We set p1 =0.1 or 0.2 and p2 =0.8 or 0.9 as suggested by Nair (1984).
The HW band corresponds to ψHW (u) ≡ 1, which is the version of Kolmogorov–

Smirnov band for uncensored data. The HW band is

F̂(t) ± c1−α(ψHW ),

where c1−α(ψHW ) is obtained as the (1 −α)100% point for { K (b); b = 1, . . . , B }
in Step 2 of the Kolmogorov–Smirnov test.

The bootstrap is useful to validate the coverage performance of the confidence
bands above. First, the bootstrap NPMLEs, denoted as { F̂∗

b , b = 1, . . . , B },
are computed (see Step 1 of Appendix A). Then, approximately (1 − α)100% of
the bootstrap NPMLEs should fall inside the band. This validation scheme will be
illustrated with real data analysis.
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5 Simulations

Extensive simulations have been conducted to investigate the performances of the
proposed methods and to compare them with the bootstrap and jackknife methods.

We adopt the same design used in Moreira and Uña-Álvarez (2010). They con-
sider models U∗ ∼ Unif(0, a), T ∗ ∼ Unif(0, 1), and V ∗ ∼ Unif(b, 1), where
(a, b) = (0.25, 0.75), (0.5, 0.5) or (0.67, 0.33). The corresponding sample inclu-
sion probabilities are Pr(U∗ ≤ T ∗ ≤ V ∗) = (1 − a + b)/2 =0.75, 0.5 and 0.33,
respectively. They also consider a model U∗ ∼ Unif(−5, 15), T ∗ ∼ Unif(0, 15),
and V ∗ = U∗ + c, where c =5. This model is important since it yields a situation
similar to the childhood cancer example.

Based on simulated samples, we compute the relevant quantities (NPMLE, confi-
dence interval, goodness-of-fit statistic, and confidence band) for 500 repetitions. We
choose B = 1000 for the number of resamplings.

5.1 Performance of the covariance estimator

For r (= 1, . . . , 500 )-th repetition, we compute the NPMLE F̂(s)(r), F̂(t)(r) and
the covariance estimator Ĉov{ F̂(s), F̂(t) }(r) in Eq. (3). We compare the average of
the estimated covariance

1

500

500∑

r=1

Ĉov
{
F̂(s), F̂(t)

}

(r)

with the sample covariance

1

500

500∑

r=1

{
F̂(s)(r) − ¯̂F(s)

} {
F̂(t)(r) − ¯̂F(t)

}
.

where ¯̂F(s) = ∑500
r=1 F̂(s)(r)/500. As shown in Table 1, the differences between the

estimated covariance and the sample covariance are very small for all configurations.
The sample covariance between F̂(s)(r) and F̂(t)(r) increases as the distance |t − s|
decreases, which is a similar behavior to that of the empirical distribution function
from un-truncated data.

5.2 Comparison with the bootstrap and jackknife methods

We compare the performance of the proposed variance estimator (V̂Info{F̂(t)}), the
bootstrap estimator (V̂Boot{F̂(t)}) and the jackknife estimator (V̂Jack{F̂(t)}) for fixed
t . We compute the average of the estimated standard deviation (SD)

1

500

500∑

r=1

√

V̂ {F̂(t)}(r)

123



406 T. Emura et al.

Table 1 Simulation results of the proposed covariance estimator based on 500 replications

n = 100 n = 250

(s, t) Sample
covariance

Estimated
covariance

Sample
covariance

Estimated
covariance

a= 0.25, b = 0.75 (0.2, 0.5) 0.00565 0.00595 0.00195 0.00180

(0.4, 0.5) 0.00655 0.00668 0.00234 0.00215

(0.2, 0.8) 0.00279 0.00366 0.00112 0.00110

a= 0.5, b = 0.5 (0.2, 0.5) 0.00641 0.00704 0.00266 0.00258

(0.4, 0.5) 0.00833 0.00877 0.00335 0.00336

(0.2, 0.8) 0.00378 0.00450 0.00184 0.00169

a= 0.067, b = 0.33 (0.2, 0.5) 0.00366 0.00374 0.00157 0.00141

(0.4, 0.5) 0.00677 0.00645 0.00283 0.00245

(0.2, 0.8) 0.00356 0.00350 0.00159 0.00130

c = 5 (3.0, 7.5) 0.01166 0.01291 0.00525 0.00511

(6.0, 7.5) 0.02027 0.02068 0.00860 0.00845

(3.0, 12.0) 0.00558 0.00654 0.00269 0.00260

Data are generated from U∗ ∼ Unif(0, a), T ∗ ∼ Unif(0, 1), and V ∗ ∼ Unif(b, 1) in the first three cases,
and from U∗ ∼ Unif(−5, 15), T ∗ ∼ Unif(0, 15), and V ∗ = U∗ + c in the last case

Sample covariance = 1
500

∑500
r=1 {F̂(s)(r) − ¯̂F(s)(r)}{F̂(t)(r) − ¯̂F(t)(r) }

Estimated covariance = 1
500

∑500
r=1 Ĉov{ F̂(s), F̂(t) }(r)

where V̂ {F̂(t)}(r) is a variance estimator for the r th repetition, and compare it with
SD{F̂(t)}, the sample standard deviation (SD) for F̂(t)(r), r = 1, ..., 500. The
performance of the three methods are measured with the mean squared error

MSE = 1

500

500∑

r=1

( √

V̂ {F̂(t)}(r) − SD{F̂(t)}
)2

.

We also compare the performance of the three methods in terms of the coverage
performance of the 95% confidence interval.

Tables 2 and 3 show the results under the models U∗ ∼ Unif(0, a), T ∗ ∼
Unif(0, 1), and V ∗ ∼ Unif(b, 1), where (a, b) = (0.25, 0.75) and (0.5, 0.5),
respectively. All the three variance estimators correctly capture the estimates of
SD{F̂(t)}. Among the three estimators, the jackknife has the smallest bias. In terms of
MSE, the bootstrap is the best for small samples, while the proposed method tends to
be the best for large samples. For instance, the bootstrap is the best for n = 100, while
the proposed method is the best for n =200, 250 and 300 (Table 2). The jackknife has
the largest MSE in most configurations.

All the three methods generally produce the nominal 95% coverage performance
at t = 0.5 (F(t) = 0.5). However, at the tail t = 0.2 (F(t) = 0.2), the bootstrap method
often results in serious under-coverage. The magnitude of the under-coverage of the
bootstrap is similar to that reported in the simulation results of Moreira and Uña-
Álvarez (2010). Both the proposed and the jackknife methods alleviate the under-
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Table 2 Simulation results under U∗ ∼ Unif(0, a), T ∗ ∼ Unif(0, 1), and V ∗ ∼ Unif(b, 1) with a=
0.25 and b = 0.75 based on 500 replications

n = 100 n = 150 n = 200 n = 250 n = 300

F(t) = 0.5

SD 0.083 0.064 0.053 0.050 0.046

ESD Proposed 0.070 0.057 0.050 0.045 0.042

Bootstrap 0.070 0.059 0.051 0.046 0.043

Jackknife 0.075 0.061 0.053 0.047 0.044

MSE Proposed 0.00219 0.00086 0.00033 0.00028 0.00026

Bootstrap 0.00104 0.00070 0.00048 0.00038 0.00035

Jackknife 0.00296 0.00185 0.00094 0.00075 0.00073

95%Cov Proposed 0.930 0.942 0.950 0.946 0.938

Bootstrap 0.920 0.938 0.950 0.942 0.948

Jackknife 0.930 0.950 0.948 0.946 0.940

F(t) = 0.2

SD 0.090 0.065 0.057 0.052 0.048

ESD Proposed 0.069 0.056 0.049 0.045 0.041

Bootstrap 0.069 0.058 0.051 0.046 0.042

Jackknife 0.074 0.061 0.053 0.047 0.043

MSE Proposed 0.00394 0.00091 0.00073 0.00052 0.00044

Bootstrap 0.00213 0.00113 0.00094 0.00067 0.00055

Jackknife 0.00522 0.00248 0.00189 0.00115 0.00103

95%Cov Proposed 0.938 0.942 0.946 0.932 0.942

Bootstrap 0.898 0.910 0.928 0.908 0.924

Jackknife 0.940 0.948 0.952 0.938 0.950

ESD = 1
500

∑500
r=1

√
V̂ {F̂(t)}(r)

MSE = 1
500

∑500
r=1 (

√
V̂ {F̂(t)}(r) − SD{F̂(t)} )2

95%Cov = Empirical coverage probability of the 95% confidence interval

coverage at the tail. Interestingly, the jackknife is quite competitive with the proposed
method in terms of coverage performance despite the poor performance of the MSE.

Table 4 shows the results under the modelU∗ ∼ Unif(−5, 15), T ∗ ∼ Unif(0, 15),
and V ∗ = U∗+5. All the three variance estimators are nearly unbiased and their MSEs
are very similar. Although the bootstrap seems to provide the best result in terms of
the MSE, the three methods are quite competitive. In terms of coverage probability,
the bootstrap tends to be the best.

Although we found no single best method across all criteria, the advantage of
the proposed method over other methods appears for larger samples (n = 250 and
300). The MSE of the proposed method is smallest in majority of cases. Unlike the
bootstrap that may exhibit serious under-coverage at the tails, the proposed method
can alleviate the problem for large sample sizes. As for the computational cost among
the three methods, the proposed method is the lowest since it merely performs the
matrix algebra in Eq. (4). On the other extreme, the bootstrap requires performing the
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Table 3 Simulation results under U∗ ∼ Unif(0, a), T ∗ ∼ Unif(0, 1), and V ∗ ∼ Unif(b, 1) with a= 0.5
and b = 0.5 based on 500 replications

n = 100 n = 150 n = 200 n = 250 n = 300

F(t) = 0.5

SD 0.093 0.078 0.068 0.059 0.055

ESD Proposed 0.084 0.070 0.060 0.054 0.049

Bootstrap 0.086 0.071 0.061 0.055 0.050

Jackknife 0.092 0.076 0.063 0.057 0.051

MSE Proposed 0.00237 0.00227 0.00141 0.00069 0.00059

Bootstrap 0.00125 0.00104 0.00061 0.00054 0.00040

Jackknife 0.00385 0.00326 0.00161 0.00150 0.00087

95%Cov Proposed 0.932 0.934 0.950 0.952 0.958

Bootstrap 0.934 0.944 0.954 0.952 0.958

Jackknife 0.934 0.944 0.950 0.964 0.962

F(t) = 0.2

SD 0.093 0.074 0.065 0.059 0.052

ESD Proposed 0.080 0.066 0.058 0.052 0.048

Bootstrap 0.084 0.069 0.060 0.054 0.049

Jackknife 0.090 0.073 0.061 0.055 0.050

MSE Proposed 0.00270 0.00132 0.00077 0.00055 0.00035

Bootstrap 0.00237 0.00152 0.00087 0.00071 0.00046

Jackknife 0.00551 0.00366 0.00138 0.00119 0.00051

95%Cov Proposed 0.932 0.938 0.946 0.928 0.926

Bootstrap 0.908 0.902 0.934 0.924 0.910

Jackknife 0.944 0.950 0.952 0.942 0.938

ESD = 1
500

∑500
r=1

√
V̂ {F̂(t)}(r)

MSE = 1
500

∑500
r=1 (

√
V̂ {F̂(t)}(r) − SD{F̂(t)} )2

95%Cov = Empirical coverage probability of the 95% confidence interval

self-consistency algorithms over B = 1,000 resamplings. Hence, the proposed method
would be useful when the sample size is large.

5.3 Performance of the goodness-of-fit test

First, we examine the type I error of the goodness-of-fit tests introduced in Sect. 4.2.
For each run, we record the rejection/acceptance status of the goodness-of-fit tests
at the 100α% level, and calculate the rejection rates among 500 repetitions. We also
compare the null means of the tests (denoted by E[C] and E[K ]) with the resampling
means (denoted by E[C (b)] and E[K (b)]).

As shown in Table 5, the rejection rates (type I error rates) are in good agreement
with the selected nominal sizes (α = 0.01, 0.05, and 0.10). In addition, the sample means
E[C] and E[K ] are close to the resampling means E[C (b)] and E[K (b)], respectively.
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Table 4 Simulation results under U∗ ∼ Unif(−5, 15), T ∗ ∼ Unif(0, 15), and V ∗ = U∗ + 5 based on
500 replications

n = 100 n = 150 n = 200 n = 250 n = 300

F(t) = 0.5

SD 0.146 0.121 0.103 0.096 0.086

ESD Proposed 0.146 0.120 0.105 0.094 0.086

Bootstrap 0.147 0.120 0.105 0.094 0.086

Jackknife 0.156 0.125 0.108 0.096 0.088

MSE Proposed 0.00064 0.00023 0.00013 0.000065 0.000046

Bootstrap 0.00048 0.00020 0.00010 0.000069 0.000046

Jackknife 0.00089 0.00026 0.00014 0.000067 0.000047

95%Cov Proposed 0.904 0.932 0.946 0.928 0.928

Bootstrap 0.940 0.944 0.950 0.950 0.930

Jackknife 0.910 0.936 0.946 0.940 0.936

F(t) = 0.2

SD 0.101 0.084 0.071 0.064 0.057

ESD Proposed 0.100 0.081 0.070 0.062 0.057

Bootstrap 0.106 0.083 0.072 0.063 0.058

Jackknife 0.107 0.084 0.072 0.064 0.058

MSE Proposed 0.00109 0.00048 0.00027 0.00018 0.00012

Bootstrap 0.00097 0.00044 0.00024 0.00017 0.00012

Jackknife 0.00133 0.00053 0.00028 0.00018 0.00013

95%Cov Proposed 0.938 0.944 0.946 0.942 0.948

Bootstrap 0.958 0.946 0.954 0.944 0.948

Jackknife 0.956 0.954 0.952 0.942 0.954

ESD = 1
500

∑500
r=1

√
V̂ {F̂(t)}(r)

MSE = 1
500

∑500
r=1 (

√
V̂ {F̂(t)}(r) − SD{F̂(t)} )2

95%Cov = Empirical coverage probability of the 95 % confidence interval

However, under (a, b) = (0.67, 0.33), the Cramér–von Mises test leads to somewhat
higher rejection rates than the nominal sizes. Overall, the Kolmogorov–Smirnov test
produces a slightly conservative result.

Next, we examine the power under alternative hypotheses. We focus on the case of
(a, b) = (0.5, 0.5) under the null F0(t) = tI(0 < t < 1) and alternatives

(1) F1(t) = t1/γ I(0 < t < 1), γ =1/1.8, 1/1.6, …, 1, …, 1.6, 1.8.
(2) F2(t) = tI(0 < t < γ )/γ , γ =1, 0.975, 0.95, …, 0.75, 0.725.

As shown in Fig. 2, the power increases as γ departs from the null model of γ = 1.
The curves for α = 0.05 (right panels) are consistently higher than those for α = 0.01
(left panels). It is found that the Cramér–von Mises test exhibits higher power than the
Kolmogorov–Smirnov test under the alternative model (1). This conclusion, however,
should not be overemphasized as the type I error rates of the Cramér–von Mises test
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Table 5 Simulation results for the proposed goodness-of-fit tests under the null hypothesis based on 500
replications

Cramér–von Mises
test (C)

Kolmogorov–
Smirnov test (K )

n n

100 150 250 100 150 250

(a, b) =
(0.25, 0.75)

Reject rate at α = 0.10 0.096 0.097 0.100 0.075 0.075 0.095

Reject rate at α = 0.05 0.045 0.047 0.056 0.031 0.037 0.043

Reject rate at α = 0.01 0.006 0.011 0.018 0.006 0.005 0.015

E[C] or E[K ] 0.608 0.623 0.667 0.118 0.099 0.081

E[C(b)] or E[K (b)] 0.625 0.614 0.605 0.115 0.096 0.077

(a, b) =
(0.5, 0.5)

Reject rate at α = 0.10 0.120 0.105 0.088 0.089 0.081 0.078

Reject rate at α = 0.05 0.063 0.055 0.045 0.037 0.033 0.030

Reject rate at α = 0.01 0.015 0.014 0.008 0.006 0.007 0.005

E[C] or E[K ] 1.078 1.206 1.306 0.143 0.121 0.098

E[C(b)] or E[K (b)] 1.167 1.281 1.331 0.137 0.116 0.093

(a, b) =
(0.67, 0.33)

Reject rate at α = 0.10 0.140 0.150 0.120 0.090 0.065 0.105

Reject rate at α = 0.05 0.095 0.085 0.060 0.040 0.035 0.040

Reject rate at α = 0.01 0.015 0.020 0.030 0.010 0.005 0.010

E[C] or E[K ] 1.006 1.109 0.989 0.142 0.118 0.091

E[C(b)] or E[K (b)] 1.001 0.984 0.820 0.135 0.113 0.087

c = 5 Reject rate at α = 0.10 0.108 0.119 0.119 0.096 0.106 0.110

Reject rate at α = 0.05 0.063 0.057 0.059 0.052 0.055 0.055

Reject rate at α = 0.01 0.015 0.014 0.014 0.010 0.011 0.013

E[C] or E[K ] 0.417 0.411 0.412 0.104 0.084 0.067

E[C(b)] or E[K (b)] 0.403 0.403 0.401 0.103 0.085 0.066

The average of the Cramér–von Mises statistics is denoted by E[C]. The average of its resampling version
is denoted by E[C(b)]. E[K ] and E[K (b)] are defined similarly for the Kolmogorov–Smirnov statistics

are slightly higher than those of the Kolmogorov–Smirnov test. The results for other
(a, b) are similar.

5.4 Performance of the confidence band

We investigate the coverage performance of the EP and HW bands introduced in
Sect. 4.3. The EP band is calculated under p1 =0.2 and p2 =0.8. For each run,
we check if the bands completely cover the true F . The coverage rates over the 500
replications are given in Table 6. Overall, the coverage rates reflect the nominal levels
and are particularly accurate when 1 − α = 0.99. The EP band has slightly more
accurate coverage compared to the HW band, especially at levels 1 − α = 0.90 and
0.95. This is because the HW band exhibits slight over-coverage, which parallels the
conservative results of the Kolmogorov–Smirnov test.
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Fig. 2 The power curves for the proposed goodness-of-fit tests with sizes α =0.01 (left panel) and α =0.05
(right panel) based on n = 150. The value γ = 1 corresponds to the null, while γ �= 1 corresponds to the
alternative. (1) Alternative F1(t) = t1/γ I(0 < t < 1), γ =1/1.8, 1/1.6, …, 1, …, 1.6, 1.8. (2) Alternative
F2(t) = tI(0 < t < γ )/γ , γ =1, 0.975, 0.95, …, 0.75, 0.725

6 Data analysis

We analyzed the childhood cancer data from Moreira and Uña-Álvarez (2010) as
described in Sect. 1. The sample consists of 409 children with { (Uj , Tj , Vj ) :
j = 1, . . . , 409 } subject to double-truncation Uj ≤ Tj ≤ Vj , where Tj is the age
(in days) at diagnosis, Uj is the age at the start of follow-up (January 1, 1999), and
Vi = Ui + 1825 is the age at the end of follow-up (December 31, 2003). The primary
interest here is inference of the distribution function F(t) = Pr(T ∗ ≤ t), where T ∗ is
the pre-truncated age at diagnosis. We depict the NPMLE F̂(t) in Fig. 3. The resulting
curve is virtually identical to that reported in Moreira and Uña-Álvarez (2010). They
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Table 6 Coverage rates of the proposed confidence bands at the 100(1−α)% level based on 500 replications

Nominal level n = 100 n = 150 n = 250

EP (equal precision) band

a = 0.25, b = 0.75 1 − α = 0.900 0.904 0.924 0.902

1 − α = 0.950 0.958 0.952 0.950

1 − α = 0.990 0.990 0.990 0.984

a = 0.5, b = 0.5 1 − α = 0.900 0.908 0.910 0.918

1 − α = 0.950 0.964 0.954 0.960

1 − α = 0.990 0.990 0.988 0.990

a = 0.67, b = 0.33 1 − α = 0.900 0.915 0.905 0.910

1 − α = 0.950 0.950 0.955 0.950

1 − α = 0.990 0.985 0.995 0.985

c = 5 1 − α = 0.900 0.894 0.894 0.876

1 − α = 0.950 0.928 0.940 0.932

1 − α = 0.990 0.984 0.986 0.986

HW (Hall–Wellner) band

a = 0.25, b = 0.75 1 − α = 0.900 0.927 0.926 0.905

1 − α = 0.950 0.969 0.963 0.957

1 − α = 0.990 0.994 0.995 0.985

a = 0.5, b = 0.5 1 − α = 0.900 0.912 0.919 0.922

1 − α = 0.950 0.963 0.967 0.970

1 − α = 0.990 0.994 0.993 0.995

a = 0.67, b = 0.33 1 − α = 0.900 0.910 0.935 0.895

1 − α = 0.950 0.960 0.965 0.960

1 − α = 0.990 0.990 0.995 0.990

c = 5 1 − α = 0.900 0.904 0.894 0.890

1 − α = 0.950 0.948 0.945 0.945

1 − α = 0.990 0.990 0.989 0.987

provide pointwise confidence intervals using the bootstrap. In this paper, we provide
additional inference procedures using goodness-of-fit tests and confidence bands.

For goodness-of-fit tests, we set the following two hypotheses:

H01 : F(t) = t

5475
I(0 < t < 5475) + I(t ≥ 5475)

and

H02 : F(t) =
(

t

5475

)3/4

I(0 < t < 5475) + I(t ≥ 5475),

where 5,475 = 15×365 (days) is the maximum age to be defined as childhood cancer
(15 years old). Here, H01 implies that childhood cancer occurs uniformly over all ages
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Fig. 3 The NPMLE F̂(t) of the distribution function of ages at diagnosis for childhood cancer (solid line).
The hypothesized curves are H01 : F(t) = (t/5475) I(0 < t < 5475) + I(t ≥ 5475) (dashed line),
H02 : F(t) = (t/5475)3/4I(0 < t < 5475) + I(t ≥ 5475) (dotted line)

Fig. 4 The NPMLE and its 95% confidence bands. The dotted line is the EP (equal precision) band and
the dashed line is the HW (Hall–Wellner) band

under 15 years, while H02 implies that the occurrence of childhood cancer decreases
as their age increases. Figure 3 depicts the two hypothesized curves along with the
NPMLE. The curve for H02 fits better than the curve forH01. Indeed, the Cramér–von
Mises test rejects H01 at 10 % significance level (P-value = 0.094), while does not reject
H02 (P-value = 0.732). Similar results are found through the Kolmogorov–Smirnov
test (P-value = 0.099 for H01 and P-value = 0.797 for H02).

Figure 4 displays the 95 % EP and HW bands based on the algorithm in Sect. 4.3.
The EP band is calculated under p1 =0.1 and p2 =0.9. The EP and HW bands
are generally competitive, but the EP band is slightly narrower in the tails. This is
qualitatively similar to the EP and HW bands for right-censored data. Now, we validate
the coverage performance using the bootstrap as mentioned in Sect. 4.3. The EP band
covers 950 out of the 1000 bootstrap NPMLEs and the HW band covers 964 out of
the 1000 bootstrap NPMLEs. Hence, the coverage level is close to the nominal 95 %.

We compare the three variance estimators (proposed, bootstrap and jackknife) for
selected values of t . The computation time required for the three estimators are also
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Table 7 Variance estimates of the NPMLE based on the childhood cancer data

Proposed: Bootstrap: Jackknife:√

V̂Info{F̂(t)}
√

V̂Boot{F̂(t)}
√

V̂Jack{F̂(t)}

Variance estimate at t = 750.0 0.0469 0.0464 0.0473

Computation time (s) (0.25) (342.16) (118.37)

Variance estimate at t = 2,083.5 0.0817 0.0814 0.0815

Computation time (s) (0.22) (313.53) (115.83)

Variance estimate at t = 4,251.0 0.0599 0.0665 0.0644

Computation time (s) (0.23) (317.48) (117.37)

The three variance estimators are calculated at t = 750.0, t = 2,083.5, and t = 4,251.0, corresponding to the
20, 50, and 80 percentiles of observed ages at diagnosis, respectively. Required computation times for the
three methods are also compared

compared. As shown in Table 7, the three estimates produce very similar results for
all t . On the other hand, the computation time required for the proposed method is
much shorter than those of the resampling-based methods.

7 Conclusion

This paper introduced a simple and explicit covariance estimator of the NPMLE using
the observed information matrix. This technique provides various inference proce-
dures, including pointwise confidence interval, goodness-of-fit, and confidence band.

Our simulations showed that the major advantage of the proposed variance estimator
over the bootstrap and jackknife was for the larger samples (n = 250 and 300). The
data analysis demonstrated the reduced computational time for the proposed method
vis-à-vis the bootstrap and jackknife methods. Hence, the proposed method is most
useful when the sample size is very large, which often occurs in demography and
epidemiology (e.g., Stovring and Wang 2007). In such large-scale studies, the proposed
method may be the best possible choice for statistical inference.

For goodness-of-fit procedures, we developed the Kolmogorov–Smirnov and
Cramér–von Mises tests with the null distributions simulated by the proposed covari-
ance structure. The simulations showed that these tests have proper type I error rates
and power. Applying the tests to the childhood cancer data, we rejected the scien-
tific assumption that childhood cancer occurs uniformly over all ages below 15 years.
This conclusion could not have been derived without developing the goodness-of-fit
procedures.
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Appendix A: Bootstrap and jackknife algorithms

Simple bootstrap algorithm (Moreira and Uña-Álvarez 2010):

Step 1: For each b = 1, . . . , B, draw bootstrap resamples { (U∗
jb, T ∗

jb, V ∗
jb) :

j = 1, . . . , n } from { (Uj , Tj , Vj ) : j = 1, . . . , n }, and then compute the
NPMLE F̂∗

b (t) from them.
Step 2: Compute the bootstrap variance estimator

V̂Boot{F̂(t)} = 1

B − 1

B∑

b=1

{F̂∗
b (t) − F̄∗(t)}2,

where F̄∗(t) = 1
B

∑B
b=1 F̂

∗
b (t), and take the (α/2)×100% and (1−α/2)×100%

points of { F̂∗
b (t) : b = 1, . . . , B } for the(1 − α) × 100% confidence interval.

Jackknife algorithm:

Step 1: For each i = 1, . . . , n, delete the i th sample from { (Uj , Tj , Vj ) :
j = 1, . . . , n }, and then compute the NPMLE F̂(−i)(t) from the remaining n−1
samples.
Step 2: Compute the jackknife variance estimator

V̂Jack{F̂(t)} = n − 1

n

n∑

i=1

{F̂(−i)(t) − F̄(·)(t)}2,

where F̄(·)(t) = 1
n

∑n
i=1 F̂(−i)(t), and the log-transformed (1 − α) × 100% con-

fidence interval

( F̂(t) exp[ −zα/2V̂
1/2
Jack{F̂(t)}/F̂(t) ], F̂(t) exp[ zα/2V̂

1/2
Jack{F̂(t)}/F̂(t) ] ).

Appendix B: Asymptotic theory

Appendix B1. Weak convergence of
√
n( F̂(t) − F(t) )

Although not stated explicitly, we assume that the identifiability conditions (Shen
2010, p. 836) are satisfied. Consider the log-likelihood function

�n(F)/n =
n∑

i=1

(log f j − log Fj )/n.

For any h ∈ Q, where Q is the set of all uniformly bounded functions, let H(t) =∫ t
0 h(s)dF(s) and Ĥ(t) = ∫ t

0 h(s)d F̂(s) where h satisfies the constraint Ĥ(∞) = 1.

Suppose that F̂ is the maximizer of �n(F). Then for any h ∈ Q and ε ≥ 0, we have
�n(F̂ + εĤ) ≤ �n(F̂). Hence, the score function ∂�n(F + εH)/∂ε|ε=0 is equal to
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	n(F)[h] ≡ 1

n

n∑

i=1

[

h(Ti ) −
∫
I(Ui ≤ s ≤ Vi )h(s)dF(s)
∫
I(Ui ≤ s ≤ Vi )dF(s)

]

,

for any h ∈ Q. The expectation is defined as

	(F)[h] ≡ E

[

h(T ∗) −
∫
I(U∗ ≤ s ≤ V ∗)h(s)dF(s)
∫
I(U∗ ≤ s ≤ V ∗)dF(s)

]

.

Consider 	n(F)[h] as a random function defined on Q. Accordingly, consider a ran-
dom map 
 → l∞(Q), defined by F �→ 	n(F)[·]. Then, the equation 	n(F)[·] = 0
is considered the estimating function that takes its value on l∞(Q). It follows that the
NPMLE is the Z-estimator that satisfies 	n(F̂)[·] = 0 (van der Vaart and Wellner
1996, p. 309). In the following, we assume that certain regularity conditions for the
asymptotic theory for the Z-estimator hold, which include the asymptotic approxi-
mation condition, the Fréchet differentiability of the map, and the invertibility of the
derivative map.

Then, one can write

0 = n1/2	n(F̂)[h] = n1/2	n(F)[h] + n1/2	̇F (F̂ − F)[h] + oP (1), (5)

where 	̇F (F̂ − F)[h] is the derivative of 	n(F)[h] at F with direction F̂ − F . It
follows from the form of 	(F)[·] that

	̇F (F̂ − F)[h] = d

dt
	{ F̂ + t (F̂ − F) }[h]|t=0 = −

∫

σF (x)[h]d(F̂ − F)(x).

(6)

It follows from Eqs. (5) and (6) that the NPMLE satisfies the asymptotic linear expres-
sion

√
n

∫

σF (x)[h]d(F̂ − F)(x)

= 1√
n

n∑

i=1

[

h(Ti ) −
∫
I (Ui ≤ s ≤ Vi )h(s)dF(s)
∫
I (Ui ≤ s ≤ Vi )dF(s)

]

+ oP (1), (7)

where the right-side converges weakly to a mean zero Gaussian process with the
covariance structure

E

[

h(T ∗)−
∫
I(U∗ ≤s≤V ∗)h(s)dF(s)
∫
I(U∗ ≤s≤V ∗)dF(s)

] [

h′(T ∗)−
∫
I(U∗ ≤s≤V ∗)h′(s)dF(s)
∫
I(U∗ ≤s≤V ∗)dF(s)

]

=
∫

σF (x)[h]h′(x)dF(x),

for bounded functions h and h′. The desired weak convergence of
√
n( F̂(t) − F(t) )

is obtained by setting h = σ−1
F (wt ) in Eq. (7).
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Appendix B2: Proof of
∑n

j=1 ws(Tj )σ̂
−1
F (wt )(Tj ) f̂ j = WT

s

{
in(f)
n

}−1
Wt

It follows that

σ̂F (Tj )[h]= 1

n

n∑

i=1

Ji j

{
h j

F̂i
− 1

F̂2
i

n∑

k=1

Jikhk f̂k

}

= 1

n

[
h j f̂ j

f̂ 2
j

−
n∑

i=1

n∑

k=1

Ji j Jik

F̂2
i

hk f̂k

]

.

(8)

Note that

JTdiag

(
1

F2

)

J =

⎡

⎢
⎢
⎢
⎣

∑n
i=1

Ji1 Ji1
F2
i

· · · ∑n
i=1

Ji1 Jin
F2
i

...
. . .

...
∑n

i=1
Jin Ji1
F2
i

· · · ∑n
i=1

Jin Jin
F2
i

⎤

⎥
⎥
⎥
⎦

.

Hence, Eq. (8) with h = h′ and σF (x)[h′] = wt (x) = I(x ≤ t) yield

⎡

⎢
⎣

wt (T1)
...

wt (Tn)

⎤

⎥
⎦ = 1

n

[{

diag

(
1

f̂2

)

− JTdiag

(
1

F̂2

)

J

}∣
∣
∣
∣
f̂n=1−1T

n−1 f̂

]
⎡

⎢
⎣

h1 f̂1
...

hn f̂n

⎤

⎥
⎦

= 1

n

[{

diag

(
1

f̂2

)

− JTdiag

(
1

F̂2

)

J

}∣
∣
∣
∣
f̂n=1−1T

n−1 f̂

]

DT

⎡

⎢
⎣

h1 f̂1
...

hn−1 f̂n−1

⎤

⎥
⎦,

where the last equation uses the constraint
∑n

j=1 h j f̂ j = 0. Multiplying D for both
sides, and taking the inverse of the information matrix,

⎡

⎢
⎣

σ̂−1
F (wt )(T1) f̂1

...

σ̂−1
F (wt )(Tn−1) f̂n−1

⎤

⎥
⎦ =

{
in(f̂)
n

}−1
⎡

⎢
⎣

wt (T1) − wt (Tn)
...

wt (T1) − wt (Tn)

⎤

⎥
⎦ .

It follows that

n∑

j=1

ws(Tj )σ̂
−1
F (wt )(Tj ) f̂ j =

n−1∑

j=1

{ ws(Tj ) − ws(Tn) }σ̂−1
F (wt )(Tj ) f̂ j

= [
ws(T1) − ws(Tn) · · · ws(Tn−1) − ws(Tn)

]
{
in(f̂)
n

}−1
⎡

⎢
⎣

wt (T1) − wt (Tn)
...

wt (T1) − wt (Tn)

⎤

⎥
⎦

= WT
s

{
in(f̂)
n

}−1

Wt .
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