
Journal of Multivariate Analysis 132 (2014) 229–241

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

An improved nonparametric estimator of sub-distribution
function for bivariate competing risk models
Takeshi Emura a,∗, Fan-Hsuan Kao a, Hirofumi Michimae b

a Graduate Institute of Statistics, National Central University, Taiwan
b School of Pharmacy, Department of Clinical Medicine (Biostatistics), Kitasato University, Japan

a r t i c l e i n f o

Article history:
Received 18 July 2013
Available online 6 September 2014

AMS subject classifications:
62N01
62N02
62G05
62G20
62C05

Keywords:
Bivariate survival function
Right censoring
Survival analysis

a b s t r a c t

For competing risks data, it is of interest to estimate the sub-distribution function of a
particular failure event, which is the failure probability in the presence of competing risks.
However, ifmultiple failure events per subject are available, estimation procedures become
challenging even for the bivariate case. In this paper,we consider nonparametric estimation
of a bivariate sub-distribution function, which has been discussed in the related literature.
Adopting a decision-theoretic approach,we propose a newnonparametric estimatorwhich
improves upon an existing estimator. We show theoretically and numerically that the
proposed estimator has smaller mean square error than the existing one. The consistency
of the proposed estimator is also established. The usefulness of the estimator is illustrated
by the salamander data and mouse data.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Statistical analysis of competing risks data is common in biology, where individuals experience multiple failure causes.
For instance, larvae grown in a cage may experience either metamorphosis or death, whichever comes first [15]. These two
failure causes are mutually exclusive in that each larva exhibits only one of the two causes at the time of failure. This type
of data is popular, especially in biomedical research involving human and animal subjects [2]. Competing risks models are
used to analyze such data. An overview of competing risks data analysis is referred to Crowder [8] and Bakoyannis and
Touloumi [5].

In competing risks data analysis, the sub-distribution function plays a fundamental role. Let T be a failure time and C ∈

{1, 2, . . . , γ } be the failure cause for γ distinct causes. The sub-distribution function (also known as cumulative incidence
function) is defined as

Fj(t) = Pr(T ≤ t, C = j), j = 1, 2, . . . , γ .

This is the proportion of failure events occurring due to cause j before time t . The sub-distribution function is easy to
interpret and is often the target for estimation [8,5,13].

In applications, bivariate competing risks arise naturally. For instance, a pair of larvae in an experimental cage shares
unobserved environmental or genetic factors [15]. In analysis of such data, the univariate competing risks models need to
be generalized to bivariate models.
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The bivariate competing risk models have been recently considered by many authors [4,19,17,18,20]. Under the bi-
variate competing risks models, the target of estimation is the bivariate sub-distribution function (formally defined in Sec-
tion 2). Several nonparametric estimators have been proposed under various censoring and truncation schemes. Antony and
Sankaran [4] and Sankaran et al. [19] developed nonparametric estimators under right-censoring. Sankaran and Antony [18]
considered a similar problem where the censoring times are missing. Sankaran and Antony [17] proposed a nonpara-
metric estimator under left-truncation and right-censoring. Shen [20] considered nonparametric estimation under double
censoring.

This paper considers nonparametric estimation of the bivariate sub-distribution functions under right censoring as in
[4,19]. Note that nonparametric estimation under bivariate competing risks is much more challenging than its univariate
counterpart. Especially in small sample sizes, the estimator of Sankaran et al. [19] will generally be a crude step function
and will have a large mean squared error (MSE). In light of this problem, the main objective of this paper is to propose a
new nonparametric estimator that aims to improve upon the existing estimator. The proposed estimator not only reduces
the MSE but also smoothes out the crude step function estimator in some degree.

The paper is organized as follow. Section 2 introduces basic notations and the estimator of Sankaran et al. [19]. Section 3
proposes a new estimator for the bivariate sub-distribution function. Section 4 verifies the consistency of the proposed
estimator. Section 5 presents simulations comparing the proposed method with the existing one. Section 6 analyzes the
mouse data and the salamander data. Section 7 concludes the paper.

2. Preliminary

This section defines basic notations for bivariate competing risks models and then introduces the nonparametric estima-
tor of Sankaran et al. [19] for estimating a bivariate sub-distribution function.

Let S(t1, t2) = Pr(T1 > t1, T2 > t2) be the survivor function of bivariate failure times (T1, T2). Also, let (C1, C2) ∈

{1, 2, . . . , γ1} × {1, 2, . . . , γ2} be the corresponding bivariate failure causes. For (i, j) ∈ {1, 2, . . . , γ1} × {1, 2, . . . , γ2}, the
cause-specific hazard is

Λij(dt1, dt2) =
Pr(T1 ∈ dt1, T2 ∈ dt2, C1 = i, C2 = j)

Pr(T1 ≥ t1, T2 ≥ t2)
.

Also, the sub-distribution function is
Fij(t1, t2) = Pr(T1 ≤ t1, T2 ≤ t2, C1 = i, C2 = j).

The cause-specific hazard and the sub-distribution functions are related through

Fij(t1, t2) =

 t1

0

 t2

0
S(u−, v−)Λij(du, dv). (1)

The above identity is useful for estimating the sub-distribution Fij under right-censoring. If (T1, T2) are censored by a pair
of independent censoring times (Z1, Z2), one observes (Y1, Y2) and (δ1, δ2), where Yk = min(Tk, Zk) and δk = I(Tk = Yk) for
k = 1, 2, where I(·) is the indicator function. If δk = 0, then we set Ck = 0 since the value of Ck is not available. If H(t1, t2) ≡

Pr(Y1 > t1, Y2 > t2) > 0, Eq. (1) becomes

Fij(t1, t2) =

 t1

0

 t2

0

S(u−, v−)F∗

ij (du, dv)

H(u−, v−)
, i = 1, 2, . . . , γ1, j = 1, 2, . . . , γ2, (2)

where
F∗

ij (t1, t2) = Pr(T1 ≤ t1, T2 ≤ t2, δ1 = 1, δ2 = 1, C1 = i, C2 = j).
Sankaran et al. [19] used Eq. (2) to estimate Fij based on observations (Y1u, Y2u), (C1u, C2u), and (δ1u, δ2u), u = 1, 2, . . . , n,
which are i.i.d. replications of (Y1, Y2), (C1, C2), and (δ1, δ2). They consider an estimator of H(t1, t2) as

Ĥ(t1, t2) =
1
n

n
u=1

I(Y1u > t1, Y2u > t2),

and an estimate of F∗

ij (t1, t2) as

F̂∗

ij (t1, t2) =
1
n

n
u=1

I(Y1u ≤ t1, Y2u ≤ t2, δ1u = 1, δ2u = 1, C1u = i, C2u = j).

Under Ĥ(t1, t2) > 0, they obtain the nonparametric estimator for Fij(t1, t2) as

F̂ij(t1, t2) =

 t1

0

 t2

0

Ŝ(u−, v−) F̂∗

ij (du, dv)

Ĥ(u−, v−)
, i = 1, 2, . . . , γ1, j = 1, 2, . . . , γ2. (3)

Sankaran et al. [19] proposed to apply the Dabrowska estimator [9] for Ŝ. Other estimators are also available, such as
the estimators of Prentice and Cai [16] and Wang and Wells [22]. The strong consistency and weak convergence for F̂ij are
studied by [19].
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3. Proposed estimator

3.1. The independence estimator

Before deriving the proposed estimator, we first consider a simplified estimator under the independence assumption.
The idea is motivated by Wang and Wells [22].

If (T1, C1, Z1) and (T2, C2, Z2) are independent, it is easy to show the identity

Fij(t1, t2) =

 t1

0
S1(u−)Λ1i(du)


×

 t2

0
S2(v−)Λ2j(dv)


, i = 1, 2, . . . , γ1, j = 1, 2, . . . , γ2

where Sk(u) = Pr(Tk > u) and Λki(du) = Pr(Tk ∈ du, Ck = i|Tk ≥ u) for k = 1, 2. We define the ‘‘independence estimator’’
of Fij(t1, t2) as

F̂ 0
ij (t1, t2) = F̂1i(t1)F̂2j(t2), (4)

where F̂1i(t1) and F̂2j(t2) are the two univariate estimators of the form

F̂ki(tk) =

 tk

0

Ŝk(u−)

Ĥk(u−)
F̂∗

ki(du), i = 1, 2, . . . , γk, k = 1, 2,

where F̂∗

ki(u) =
n

u=1 I(Yku ≤ u, δku = 1, Cku = i)/n, Ĥk(u−) =
n

u=1 I(Yku ≥ u)/n, and Ŝk(·) is the Kaplan–Meier (KM)
estimator of Tk.

Obviously, the estimator in Eq. (4) is inconsistent except for the independence case. However, estimation of two univari-
ate function in Eq. (4) is much easier than estimation of a bivariate function in the existing estimator of Sankaran et al. [19].
Also, due to the trade-off between bias and variance, the independence estimator often has smaller MSE than the existing
estimator. In the following, we take advantage of the independence estimator to refine the estimator of Sankaran et al. [19].

3.2. The proposed estimator

Wepropose anewnonparametric estimatorwhich refines the estimator of Sankaran et al. [19] for estimating the bivariate
sub-distribution function.

We define a class of estimators that combine the existing estimator and independence estimator as follow:

F̂ a
ij (t1, t2) = a F̂ij(t1, t2) + (1 − a)F̂1i(t1) F̂2j(t2), a ∈ [0, 1].

If a = 1, this is the estimator of Sankaran et al. [19] in Eq. (3); if a = 0 this is the independence estimator in Eq. (4). Hence,
the class of estimators includes the two estimators as special cases.

Nowwe consider how to choose the optimal value of a. In the statistical decision theory, one often searches the estimator
that minimizes theMSEwithin a class of shrinkage estimators (e.g., Khan [12];Wencheko andWijekoon [23]). In estimating
a bivariate survival function, this approach was taken by Akritas and Keilegom [1]. By adopting this approach, we find a that
archives the smallest MSE. The MSE is calculated as

MSE[F̂ a
ij (t1, t2)] = E[F̂ a

ij (t1, t2) − Fij(t1, t2)]2

= a2 E[F̂ij(t1, t2) − Fij(t1, t2)]2 + (1 − a)2E[F̂1i(t1) F̂2j(t2) − Fij(t1, t2)]2

+ 2a (1 − a)E{[F̂ij(t1, t2) − Fij(t1, t2)][F̂1i(t1) F̂2j(t2) − Fij(t1, t2)]}.
The minimizer is obtained by solving

0 =
d
da

MSE[F̂ a
ij (t1, t2)] = 2{a(x + y − 2z) + z − y}.

This results in

a∗ (t1, t2) = argmin
a

MSE[F̂ a
ij (t1, t2)] =

y (t1, t2) − z(t1, t2)
x(t1, t2) + y (t1, t2) − 2z(t1, t2)

(5)

where
x = x(t1, t2) ≡ E[F̂ij(t1, t2) − Fij(t1, t2)]2,

y = y(t1, t2) ≡ E[F̂1i(t1) F̂2j(t2) − Fij(t1, t2)]2,

z = z(t1, t2) ≡ E{ [ F̂ij(t1, t2) − Fij(t1, t2)][F̂1i(t1)F̂2j(t2) − Fij(t1, t2)]}.

The next theorem shows that, at the optimal value of a∗, MSE[F̂ a∗
ij (t1, t2)] is strictly smaller than both MSE[F̂ij(t1, t2)] and

MSE[F̂1i(t1) F̂2j(t2)].

Theorem 1. If x(t1, t2) ≠ z(t1, t2) and y(t1, t2) ≠ z(t1, t2) then 0 < a∗ (t1, t2) < 1 and

MSE[F̂ a∗
ij (t1, t2)] < min{MSE[F̂ij(t1, t2)],MSE[F̂1i(t1)F̂2j(t2)]}.
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Proof. Note that the denominator of a∗ (t1, t2) in Eq. (5) is well-defined since

x(t1, t2) + y(t1, t2) − 2z(t1, t2) = E[F̂ij(t1, t2) − F̂1i(t1)F̂2j(t2)]2 > 0.

Also, the MSE function is strictly convex since

d2

da2
MSE[F̂ a

ij (t1, t2)] = 2(x + y − 2z) > 0.

Hence, a∗ (t1, t2) is the unique minimizer. One can verify 0 < a∗ (t1, t2) < 1 under the assumptions x(t1, t2) ≠ z(t1, t2) and
y(t1, t2) ≠ z(t1, t2) since

0 ≠ a∗ (t1, t2) ⇔ 0 ≠
y (t1, t2) − z(t1, t2)

x(t1, t2) + y (t1, t2) − 2z(t1, t2)
⇔ 0 ≠ y (t1, t2) − z(t1, t2),

a∗ (t1, t2) ≠ 1 ⇔ 0 ≠
x (t1, t2) − z(t1, t2)

x(t1, t2) + y (t1, t2) − 2z(t1, t2)
⇔ 0 ≠ x (t1, t2) − z(t1, t2). �

The conditions of Theorem1 exclude some extreme cases.When (t1, t2) are very close to (0, 0), onemay have F̂ij(t1, t2) =

F̂1i(t1)F̂2j(t2) = 0 with probability one. In such cases, the conditions do not hold. The same is true if (t1, t2) are too large. In
usual cases, x(t1, t2), y(t1, t2) and z(t1, t2) cannot be equal since F̂ij and F̂1iF̂2j have different distributions.

When applying the proposed estimator to real data, one needs to estimate a∗ (t1, t2). We suggest nonparametric boot-
strap to estimate x(t1, t2), y(t1, t2) and z(t1, t2) as in the manner of Akritas and Keilegom [1], Sankaran and Antony [17] and
Shen [20].

The bootstrap method for estimating a∗(t1, t2):

Step 1. Calculate F̂ij(t1, t2) from observed data.

Step 2. Let {(Y ∗(b)
1u , Y ∗(b)

2u , δ
∗(b)
1u , δ

∗(b)
2u , C∗(b)

1u , C∗(b)
2u ) : u = 1, 2, . . . , n)} be a random sample with replacement from the ob-

served data {(Y1u, Y2u, δ1u, δ2u, C1u, C2u) : u = 1, 2, . . . , n} for b = 1, 2, . . . , B, where B is the bootstrap number.

Step 3. Calculate F̂∗(b)
ij (t1, t2) and F̂∗(b)

1i (t1)F̂
∗(b)
2j (t2) based on the resampled data {(Y ∗(b)

1,u , Y ∗(b)
2,u , δ

∗(b)
1,u , δ

∗(b)
2,u , C∗(b)

1,u , C∗(b)
2,u ) : u =

1, 2, . . . , n)}, b = 1, 2, . . . , B, and then compute the bootstrap approximations to x(t1, t2), y(t1, t2) and z(t1, t2), defined as

x̂(t1, t2) =
1
B

B
b=1

[F̂∗(b)
ij (t1, t2) − F̂ij(t1, t2)]2,

ŷ(t1, t2) =
1
B

B
b=1

[F̂∗(b)
1i (t1)F̂

∗(b)
2j (t2) − F̂ij(t1, t2)]2,

ẑ(t1, t2) =
1
B

B
b=1

[F̂∗(b)
1i (t1)F̂

∗(b)
2j (t2) − F̂ij(t1, t2)][F̂

∗(b)
ij (t1, t2) − F̂ij(t1, t2)].

Then, we obtain the estimator of a∗(t1, t2) as

â(t1, t2) =
ŷ (t1, t2) − ẑ(t1, t2)

x̂ (t1, t2) + ŷ(t1, t2) − 2 ẑ(t1, t2)
.

Remark 1. By simulations not shown here, we have checked that x̂(t1, t2), ŷ(t1, t2) and ẑ(t1, t2) are all good estimators of
x(t1, t2), y(t1, t2) and z(t1, t2), respectively.

Remark 2. The case of â(t1, t2) < 0 or â(t1, t2) > 1 could occur in small samples. In such a case, one can set â(t1, t2) = 0
or â(t1, t2) = 1, respectively.

4. Asymptotic theory

For fixed (t1, t2), we shall prove the consistency of the proposed estimator

F̂ â
ij (t1, t2) = â (t1, t2)F̂ij(t1, t2) + {1 − â(t1, t2)}F̂1i(t1) F̂2j(t2).

The proof differs between two cases:
(i) (T1, C1, Z1) and (T2, C2, Z2) are independent;
(ii) (T1, C1, Z1) and (T2, C2, Z2) are not independent.
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Under the case (i), both F̂ij and F̂1iF̂2j are consistent for Fij under the conditions of Theorem 2 below. Then, the consistency
of their middle point F̂ â

ij follows immediately. In this case, we even do not need to establish the consistency of the bootstrap
estimator â.

The case (ii) needs more careful study. As a special case of a more general theory of product-limit estimator (Theorem
IV.4.1, Andersen et al. [3]), we have

Lemma 1. For fixed tk with Gk(tk) > 0, where Gk(t) = Pr(Zk > t), as n → ∞,

F̂kj(tk)
P

−→ Fkj(tk) for k = 1, 2.

As a direct consequence from Lemma 1 and the fact

G(t1, t2) ≡ Pr(Z1 > t1, Z2 > t2) ≤ min{G1(t1),G2(t2)},

we also have the following Lemma:

Lemma 2. For fixed (t1, t2) with G(t1, t2) > 0, as n → ∞,

F̂1i(t1)F̂2i(t2)
P

−→ F1i(t1)F2i(t2).

The next theorem establishes the convergence of a∗ (t1, t2) defined in Eq. (5).

Theorem 2. Suppose that (t1, t2) satisfies G(t1, t2) > 0, and that (T1, C1, Z1) and (T2, C2, Z2) are not independent, Then, as
n → ∞,

a∗(t1, t2) → 1.

Proof. Sankaran et al. [19] gave the consistency F̂ij(t1, t2)
P

−→ Fij(t1, t2) under the condition of Theorem 2. One also verifies

F̂1i(t1)F̂2i(t2)
P

−→ F1i(t1)F2j(t2) in Lemma 2. Note that these two estimators are uniformly bounded sequences on [0, 1].
Hence, these two estimators converge in Lp for 0 < p < ∞ (p. 71 of Chung [6]). To complete the proof the theorem, we
need the following three claims:

Claim 1. limn→∞ E[F̂ij(t1, t2) − Fij(t1, t2)]2 = 0.
Proof. The proof follows by the definition of convergence in LP at p = 2. �

Claim 2. limn→∞ E[F̂1i(t1) F̂2j(t2) − Fij(t1, t2)]2 = [F1i(t1)F2j(t2) − Fij(t1, t2)]2.

Proof. Since F̂1i(t1) F̂2j(t2)
LP

−→ Fi(t1)Fj(t2), 0 < p < ∞, it follows that

lim
n→∞

E[F̂1i(t1) F̂2j(t2) − F1i(t1)F2j(t2)] = 0,

lim
n→∞

E[F̂1i(t1) F̂2j(t2) − F1i(t1)F2j(t2)]2 = 0.

Then we obtain

lim
n→∞

E[F̂1i(t1) F̂2j(t2) − Fij(t1, t2)]2 = lim
n→∞

E[F̂1i(t1) F̂2j(t2) − F1i(t1)F2j(t2)]2 + [F1i(t1) F2j(t2) − Fij(t1, t2)]2

+ 2[F1i(t1) F2j(t2) − Fij(t1, t2)] lim
n→∞

E[F̂1i(t1)F̂2j(t2) − Fi(t1)Fj(t2)]

= [F1i(t1)F2j(t2) − Fij(t1, t2)]2. �

Claim 3. limn→∞ E{[F̂ij(t1, t2) − Fij(t1, t2)] [F̂1i(t1) F̂2j(t2) − Fij(t1, t2)]} = 0.

Proof. Since F̂ij(t1, t2)
P

−→ Fij(t1, t2) and F̂1i(t1)F̂2j(t2)
P

−→ Fi(t1)Fj(t2) holds under the conditions of Theorem 2, Slutsky’s
theorem shows

F̂ij(t1, t2)F̂1i(t1) F̂2j(t2)
P

−→ Fij(t1, t2)F1i(t1)F2j(t2).

Note that the sequence {F̂ij(t1, t2)F̂1i(t1) F̂2j(t2)} is also uniformly bounded, the above convergence implies the convergence
in LP at p = 2. Then one can verify that

lim
n→∞

E{[F̂ij(t1, t2) − Fij(t1, t2)][ F̂1i(t1)F̂2j(t2) − Fij(t1, t2)]}

= lim
n→∞

E[F̂ij(t1, t2)F̂1i(t1) F̂2j(t2)] − Fij(t1, t2) lim
n→∞

E[F̂1i(t1) F̂2j(t2)] − Fij(t1, t2) lim
n→∞

E[F̂ij(t1, t2)] + Fij(t1, t2)2
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= lim
n→∞

E[F̂ij(t1, t2)F̂1i(t1) F̂2j(t2)] − Fij(t1, t2)2 − Fij(t1, t2)F1i(t1)F2j(t2) + Fij(t1, t2)2

= lim
n→∞

E[F̂ij(t1, t2)F̂1i(t1) F̂2j(t2) − Fij(t1, t2)F1i(t1)F2j(t2)]

= 0. �

We use Claims 1–3 to conclude

lim
n→∞

x(t1, t2) = lim
n→∞

E[F̂ij(t1, t2) − Fij(t1, t2)]2 = 0,

lim
n→∞

y(t1, t2) = lim
n→∞

E[F̂1i(t1) F̂2j(t2) − Fij(t1, t2)]2 = [F1i(t1)F2j(t2) − Fij(t1, t2)]2,

lim
n→∞

z(t1, t2) = lim
n→∞

E [F̂ij(t1, t2) − Fij(t1, t2)][F̂1i(t1) F̂2j(t2) − Fij(t1, t2)] = 0.

By the definition of a∗(t1, t2),

lim
n→∞

a∗ (t1, t2) = lim
n→∞

y (t1, t2) − z(t1, t2)
x(t1, t2) + y (t1, t2) − 2z(t1, t2)

=

lim
n→∞

y (t1, t2) − lim
n→∞

z(t1, t2)

lim
n→∞

x(t1, t2) + lim
n→∞

y (t1, t2) − lim
n→∞

2z(t1, t2)
= 1.

The proof of Theorem 2 is complete. �

Note that a∗(t1, t2) needs to be estimated by the bootstrap estimator â(t1, t2). The formal asymptotic results for the
bootstrap estimator â are fairly difficult to derive. In general, empirical process techniques are used to study the bootstrap
consistency [21]. Since our bootstrap uses the same algorithm as Dabrowska [10], the consistency may follow arguments
similar to pp. 313–314 of Dabrowska [10].

Conjecture 1. Suppose that (t1, t2) satisfies G(t1, t2) > 0. Then, as n → ∞,

â(t1, t2)
P

−→ a∗(t1, t2).

We do not have a proof. Instead, we use simulations to verify that E[â(t1, t2)] goes to a∗(t1, t2) and MSE[â(t1, t2)] goes
to zero as n → ∞ (see Section 5).

Theorem 3. Suppose that (t1, t2) satisfies G(t1, t2) > 0. Then, as n → ∞,

F̂ â
ij (t1, t2) = â (t1, t2)F̂ij(t1, t2) + {1 − â(t1, t2)}F̂1i(t1) F̂2j(t2)

P
−→ Fij(t1, t2).

Proof. We only need to consider the case (ii) (T1, C1, Z1) and (T2, C2, Z2) are not independent. With this case, by Theorem 2
and Conjecture 1, one has â(t1, t2)

P
−→ 1. The proof completes by Slutsky’s theorem with F̂ij(t1, t2)

P
−→ Fij(t1, t2). �

5. Simulations

Simulations are conducted to study the performance of the proposed estimator and to compare it with the estimator of
Sankaran et al. [19] and the independence estimator.

5.1. Simulation design

We carry out a series of 500 simulations with n = 100 based on data generated from the Clayton model [7]:

Pr(T1 ≤ t1, T2 ≤ t2) = max

{F1(t1)−(α−1)

+ F2(t2)−(α−1)
− 1}

−1
α−1 , 0


, α ∈ [0, ∞) \ {1}.

When α ∈ [0, 1), T1 and T2 have negative correlation; when α ∈ (1, ∞], T1 and T2 have positive correlation. The Kendall’s
tau between T1 and T2 is τ = (α−1)/(α+1). Themarginal distributions are the unit exponential distribution Fk(t) = 1−e−t

for k = 1, 2. The censoring times Z1 and Z2 independently follow the unit exponential distributions. In this way, censoring
percentages for T1 and T2 are both 50%. The causes C1 and C2 are independent and take values 1 or 2 with equal probability.
The number of bootstrap replicates to obtain the estimator â is taken to be B = 500.

We have done the same set of simulations for the lognormal distribution Fk(t) = Φ(ln t) for k = 1, 2 where Φ is
the distribution function of the standard normal distribution. The results parallel the case of exponential distributions and
therefore not shown.
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Table 1
Simulation results for estimating F11(t1, t2) based on four different estimators with n = 100.

(t1, t2) F11(t1, t2) Estimator E(F̂11) MSE(F̂11) a∗ E(â)

(i) Independent case (i.e., α = 1)
(1, 2) 0.1366 F̂11(t1, t2) 0.1290 0.00438

F̂1(t1) F̂1(t2) 0.1219 0.00113
F̂ a∗
11 (t1, t2) 0.1221 0.00113 0.023
F̂ â
11(t1, t2) 0.1213 0.00277 0.360

(0.5, 0.5) 0.0387 F̂11(t1, t2) 0.0386 0.00060
F̂1(t1) F̂1(t2) 0.0376 0.00016
F̂ a∗
11 (t1, t2) 0.0376 0.00016 0.000
F̂ â
11(t1, t2) 0.0360 0.00038 0.388

(ii) Dependent case with α = 5(τ = 0.667)
(1, 2) 0.1534 F̂11(t1, t2) 0.1514 0.00457

F̂1(t1) F̂1(t2) 0.1221 0.00200
F̂ a∗
11 (t1, t2) 0.1274 0.00184 0.181
F̂ â
11(t1, t2) 0.1348 0.00290 0.372

(0.5, 0.5) 0.0830 F̂11(t1, t2) 0.0816 0.00117
F̂1(t1) F̂1(t2) 0.0372 0.00228
F̂ a∗
11 (t1, t2) 0.0675 0.00093 0.683
F̂ â
11(t1, t2) 0.0688 0.00115 0.604

5.2. Simulation results

Table 1 summarizes the results. In all cases, the proposed estimator using the true a∗ shows the best performance in
terms of the MSE, as supported by Theorem 1. When T1 and T2 are independent (i.e., α = 1), the proposed estimator using
the true a∗ performs the best, but the performance is nearly identical to the independence estimator. When a∗ is estimated
by â, the performance is no longer the best, but still better than the existing estimator. When T1 and T2 are dependent with
α = 5 (Kendall’s tau= 0.667), the proposed estimator using the true a∗ and estimator â outperforms the existing estimator
in terms of the MSE. In spite of the superior performance in terms of the MSE, the proposed estimator is biased compared to
the existing estimator. This is a typical phenomenon of the trade-off between bias and variance, seen in shrinkage estimators.
The results for negative correlation with α = 1/2 (Kendall’s tau = −0.333) are similar and not shown here.

We examine the properties of the bootstrap estimator â of a∗. Table 2 shows the results when the association parameter
takesα = 5 (Kendall’s tau= 0.667).When n increase from100 to 300, E[â(t1, t2)] approaches to a∗(t1, t2) andMSE[â(t1, t2)]
approaches to zero. Hence, the estimator â appears to be consistent. Although there needmore extensive studies, the results
give some numerical support for Conjecture 1.

Fig. 1 compares the bias of the threemethods under α = 1.1 ∼ 7 (Kendall’s tau= 0.05 ∼ 0.75).We see that the existing
estimator of Sankaran et al. [19] has the smallest bias while the proposed estimator and the independence estimator have
downward bias.

Fig. 2 compares the MSE of the three methods when the association parameter takes α = 1.1 ∼ 7 (Kendall’s tau
= 0.05 ∼ 0.75). In spite of the downward bias, the proposed estimator with the true a = a∗ has the smallest MSE. This
is the consequence of the trade-off between bias and variance. Also, the proposed estimator with estimate â of a∗ does not
change the performancemuch, as the bootstrap estimator â is a good approximation to the true a∗. As a result, the proposed
estimator using â performs better than the existing estimator.

We examine how the MSE curve of F̂ a
ij (t1, t2) changes as the value of a varies from 0 to 1. Fig. 3 shows the results under

α = 5 (Kendall’s tau = 0.667). It is seen that the MSE curve attains the minimal value at a∗, at which it is strictly smaller
than those of theMSEs of the existing estimator and independence estimator. This observation provides a numerical support
for Theorem 1.

6. Data analysis

We illustrate our proposal using the mouse data and salamander data.

6.1. Mouse data analysis

We consider the mouse data concerning time to tumor appearance or death for 50 pairs of mice from the same litter in a
tumor genesis experiment [14,24]. In this data, T1 and T2 are failure times (in weeks) for a pair of mice from the same litter,
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Fig. 1. Simulation results for E[F̂11(t1, t2)] based on four different estimators under Clayton model with α = 1.1 ∼ 7(τ = 0.05 ∼ 0.75). Their values are
compared with the true F11(t1, t2).

Table 2
Simulation results for estimating the true a∗ using the bootstrap estimator â. The correspondingpair of causes
is (i, j) = (1, 1).

Dependent case with α = 5(τ = 0.667)
n (t1, t2) a∗(t1, t2) E[â(t1, t2)] MSE[â(t1, t2)]

100 (1, 2) 0.1853 0.3737 0.09094
200 0.2540 0.3812 0.07169
300 0.2832 0.3905 0.06837
100 (0.5, 0.5) 0.6754 0.5939 0.05670
200 0.8107 0.7670 0.02110
300 0.8833 0.8376 0.00975

and the corresponding causes C1 and C2 express the appearance of a tumor (Ck = 1), death happened before the tumor
appearance (Ck = 2), or censoring (Ck = 0). A common censoring (Type I censoring) occurs at 104 weeks for all subjects.

Figs. 4 and 5 compare estimates of sub-distributions calculated by the existing estimator F̂ij(t1, t2) and the proposed
estimator F̂ â

ij (t1, t2) for i, j = 1, 2. The surface of the existing estimator F̂ij(t1, t2) is a fairly crude step function (Fig. 4). This
is because the jumps of F̂ij(t1, t2) occur only when the joint failure events correspond to the pair (i, j) occurs. On the other
hand, the surface of F̂ â

ij (t1, t2) is smoother than the surface of F̂ij(t1, t2) (Fig. 5). This smoothness of F̂ â
ij (t1, t2) is achieved by

borrowing information from the independence estimator F̂1i(t1)F̂2j(t2), where the jumps occur when the marginal events
correspond to either cause i or j occur.
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Fig. 2. Simulation results for MSE[F̂11(t1, t2)] = E[F̂11(t1, t2) − F11(t1, t2)]2 based on four different estimators under Clayton model with α = 1.1 ∼ 7
(τ = 0.05 ∼ 0.75).

6.2. Salamander data analysis

We analyze time to completion of metamorphosis on the salamander larvae living in Hokkaido, Japan [15]. We consider
a subset of the larvae that are grown under the high-water level. The resultant data consists of n = 90 egg clutches, and
each clutch contains 2 larvae (Fig. 6). The times to events for a pair of larvae are denoted as T1 and T2. Since a pair of larvae
belongs to the same clutch (same parent), they share unobserved characteristics, which induces correlation. The real data
on the 90 pair of larvae is shown in Table 3. A pair of causes C1 and C2 indicates whether the failure event is metamorphosis
(Ck = 1), or the death prior to metamorphosis (Ck = 2). There is no censoring in this data. We focus on the estimation of
F11(t1, t2) since the major biological interest is on the time-to-metamorphosis.

Table 4 shows the estimates F̂11(t1, t2), F̂1(t1)F̂1(t2), â and F̂ â
11(t1, t2). Since T1 and T2 are from the same clutch, the corre-

lation between them is fairly strong. Due to this reason, the estimates â are close to 1 inmany cases. Therefore, the proposed
estimator F̂ â

ij (t1, t2) is very close to F̂ij(t1, t2). Fig. 7 draw the plot for F̂ â
11(t1, t2). Note that Michimae and Emura [15] treated

all larvae in the clutch as independent observations and plotted the univariate cause-specific distribution function. Although
such simplified analysis is useful for biological studies, we propose to redo their analysis taking into account the dependency
between T1 and T2.

7. Conclusion and discussion

In this paper, we have developed a new nonparametric estimator of sub-distribution function for bivariate competing
risks models. The new method with the optimal choice of the tuning parameter improves upon the existing estimator of
Sankaran et al. [19]. To be practical, we suggest the bootstrap to estimate the optimal tuning parameter. For large sample
analysis, we prove the pointwise consistency of the proposed estimator. Simulation results show that proposed estimator
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Fig. 3. Simulation results for MSE[F̂11(t1, t2)] = E[F̂11(t1, t2) − F11(t1, t2)]2 based on three different estimators. The mark ‘‘·’’ indicates the optimal value
a∗ (t1, t2) = argmin

a
MSE[F̂ a

11(t1, t2)] for the proposed estimator.

Table 3
The real data on 90 pairs of salamander larvae grown under the high-water level from Michimae and Emura (2012).

(T1, T2) (C1, C2) (T1, T2) (C1, C2) (T1, T2) (C1, C2) (T1, T2) (C1, C2) (T1, T2) (C1, C2)

(89, 80) (1, 1) (69, 40) (1, 2) (68, 81) (1, 1) (72, 79) (1, 1) (83, 85) (1, 1)
(79, 28) (1, 2) (75, 69) (1, 1) (72, 71) (1, 1) (76, 62) (1, 1) (84, 82) (1, 1)
(82, 80) (1, 1) (80, 89) (1, 1) (70, 71) (1, 1) (74, 79) (1, 1) (81, 80) (1, 1)
(78, 88) (1, 1) (78, 76) (1, 1) (75, 77) (1, 1) (65, 69) (1, 1) (77, 74) (1, 1)
(74, 78) (1, 1) (75, 79) (1, 1) (74, 81) (1, 1) (78, 35) (1,2) (73, 74) (1, 1)
(72, 80) (1, 1) (84, 81) (1, 1) (81, 74) (1, 1) (77, 70) (1, 1) (79, 77) (1, 1)
(71, 73) (1, 1) (80, 88) (1, 1) (80, 83) (1, 1) (86, 83) (1, 1) (74, 77) (1, 1)
(73, 71) (1, 1) (77, 64) (1, 1) (81, 85) (1, 1) (83, 87) (1, 1) (72, 73) (1, 1)
(71, 74) (1, 1) (81, 66) (1, 1) (83, 82) (1, 1) (83, 81) (1, 1) (82, 88) (1, 1)
(81, 69) (1, 1) (72, 70) (1, 1) (67, 65) (1, 1) (84, 82) (1, 1) (83, 86) (1, 1)
(85, 85) (1, 1) (74, 73) (1, 1) (71, 66) (1, 1) (80, 83) (1, 1) (85, 85) (1, 1)
(84, 80) (1, 1) (74, 69) (1, 1) (78, 74) (1, 1) (76, 79) (1, 1) (81, 74) (1, 1)
(80, 85) (1, 1) (74, 88) (1, 1) (76, 74) (1, 1) (77, 78) (1, 1) (75, 85) (1, 1)
(78, 79) (1, 1) (80, 83) (1, 1) (76, 74) (1, 1) (78, 75) (1, 1) (80, 73) (1, 1)
(72, 77) (1, 1) (77, 74) (1, 1) (87, 80) (1, 1) (73, 74) (1, 1) (71, 73) (1, 1)
(70, 62) (1, 1) (75, 76) (1, 1) (78, 86) (1, 1) (79, 73) (1, 1) (76, 74) (1, 1)
(75, 74) (1, 1) (83, 89) (1, 1) (72, 48) (1, 2) (79, 81) (1, 1) (65, 44) (1,2)
(73, 71) (1, 1) (66, 72) (1, 1) (78, 84) (1, 1) (82, 79) (1, 1) (79, 79) (1, 1)

Note: The failure times of the pair of larvae are denoted as T1 and T2; Causes C1 and C2 indicate whether the failure event is metamorphosis (Ck = 1), or
the death prior to metamorphosis (Ck = 2). The data do not have censored observations.

has smaller MSE than the existing estimator in finite sample. Real data analyses demonstrate that the proposed estima-
tor of the cause-specific distribution is smoother than the existing estimator, where the tuning parameter is regarded as
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Fig. 4. The existing estimator F̂ij(t1, t2) for a bivariate cause-specific distribution functionwith themouse data. Four plots correspond to pairs of 4 different
causes.

Table 4
Estimates of the cause-specific distribution function F11(t1, t2) using the salamander data.

(t1, t2) F̂11(t1, t2) F̂1(t1)F̂1(t2) â F̂ â
11(t1, t2)

(73.25, 73.00) 0.144 0.065 1.000 0.144
(73.25, 77.00) 0.189 0.119 0.922 0.183
(73.25, 81.75) 0.222 0.176 0.818 0.214
(77.00, 73.00) 0.211 0.131 1.000 0.211
(77.00, 77.00) 0.356 0.239 1.000 0.356
(77.00, 81.75) 0.456 0.352 1.000 0.456
(81.00, 73.00) 0.256 0.204 1.000 0.256
(81.00, 77.00) 0.467 0.373 1.000 0.467
(81.00, 81.75) 0.611 0.551 1.000 0.611

Note: The selected values for (t1, t2) are the 25% point, median, and 75% point of the observed values of T1
and T2 , respectively.

a smoothing parameter. Therefore, our proposed estimator achieves two goals in a single framework: the improvement in
the MSE and the smoothing of the estimator. These advantages are important, especially in the present bivariate function
estimations, where traditional nonparametric estimator can be a crude step function.

Although the idea of combining two estimators of bivariate survival functions to improve the MSE has been considered
by Akritas and Keilegom [1], our proposal has the fundamental difference from their approach. Their method combines
two consistent estimators that have similar performance. However, our proposal combines a consistent estimator with an
inconsistent estimator which has smaller variance. The small variance exploits the reduction of a bivariate functional esti-
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Fig. 5. The proposed estimator F̂ â
ij (t1, t2) for a bivariate cause-specific distribution function with the mouse data. Four plots correspond to pairs of 4

different causes.

Fig. 6. Bivariate competing risks data from the salamander data of Michimae and Emura (2012). To adapt to the bivariate setting, we chose the first two
larvae from the 5 larvae in egg clutches.

mator to a pair of two univariate function estimators under the independence. This trade-off between bias and variance is
the key in our approach, which makes it different from the existing approach. In the dimension reduction point of view, our
construction of the improved estimator is similar to Emura et al. [11] who propose to reduce the large variability of themul-
tivariate Cox’s partial likelihood estimators under high-dimensional covariates. They utilize the univariate partial likelihood
estimator which is the biased (inconsistent) estimator but substantially reduces the variance. Combining the multivariate
likelihood with the univariate likelihood, the resultant estimators acquire both consistency and reduced variability due to
the high-dimensionality. In light of this result, our proposal for the bivariate competing risks data can be extended to higher
dimensional competing risks data.
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Fig. 7. The plot for the proposed estimator F̂ â
11(t1, t2) for a bivariate cause-specific distribution function with the salamander data of Michimae and

Emura [15].
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