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a b s t r a c t 

Background and objective: Univariate feature selection is one of the simplest and most commonly used 

techniques to develop a multigene predictor for survival. Presently, there is no software tailored to per- 

form univariate feature selection and predictor construction. 

Methods: We develop the compound.Cox R package that implements univariate significance tests (via the 

Wald tests or score tests) for feature selection. We provide a cross-validation algorithm to measure pre- 

dictive capability of selected genes and a permutation algorithm to assess the false discovery rate. We 

also provide three algorithms for constructing a multigene predictor (compound covariate, compound 

shrinkage, and copula-based methods), which are tailored to the subset of genes obtained from univari- 

ate feature selection. We demonstrate our package using survival data on the lung cancer patients. We 

examine the predictive capability of the developed algorithms by the lung cancer data and simulated 

data. 

Results: The developed R package, compound.Cox , is available on the CRAN repository. The statistical tools 

in compound.Cox allow researchers to determine an optimal significance level of the tests, thus providing 

researchers an optimal subset of genes for prediction. The package also allows researchers to compute 

the false discovery rate and various prediction algorithms. 

© 2018 Published by Elsevier B.V. 

1. Introduction 

Univariate feature selection is one of the simplest and most 

commonly used techniques to develop a multigene predictor for 

survival of cancer patients. It picks up genes having P-values lower 

than a cutoff in testing association between genes and survival 

under univariate Cox models [1] . A predictor constructed from the 

selected genes is useful for predicting survival in various cancers 

[2-11] . To construct a predictor, it is essential to determine the 

number of genes to be included in the predictor. Researchers 

often set a fixed threshold (e.g., P-value < 0.001), or a data-driven 

threshold that optimizes predictive capability. 

By adopting the univariate tests, one would select features indi- 

vidually associated with survival. More elaborate multivariate fea- 

ture selection methods accounting for correlations between fea- 

tures can also be considered, but their advantages over the sim- 

pler univariate methods have not convincingly been demonstrated 

through many survival prediction analyses of cancer datasets 
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[1,12,13,14] . Methods ignoring correlations between features, such 

as diagonal linear discriminant analysis [15] and compound covari- 

ate [11,16] , performs reasonably well in some simulation studies. In 

addition, the univariate tests adapt well to clinical trials involving 

the development of genomic signatures [10,17] . 

While univariate feature selection is a simple approach, a vari- 

ety of computing algorithms should be implemented: 

(i) Computation of Z-values and P-values (via the Wald tests 
or score tests), 

(ii) Choice of a P-value threshold, 
(iii) Assessment of predictive capability of selected genes, 
(iv) Assessment of false discoveries (falsely selected genes), 
(v) Construction of a multigene predictor after selection. 

As for choosing a P-value threshold, the simplest approach is 

to apply the traditional value of 0.05, 0.01, or 0.001 [3,4,7-10] . 

A more refined approach for choosing a threshold is to optimize 

a cross-validated predictive criterion [6,18,19] . The computational 

algorithms also vary in terms of predictor construction after se- 
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lection. These includes the predictor based on a multivariate Cox 

model [18] , the compound covariate predictor [6,10,16] , the ridge 

regression [9,18] , and the predictor fitted by a copula model under 

dependent censoring [20,21] . 

In this article, we introduce the compound.Cox R package 

[22] that implements univariate significance tests (via the Wald 

tests or score tests) for feature selection as well as a cross- 

validation analysis for measuring predictive capability of selected 

genes. These analytical tools allow users to determine an optimal 

significance level of the tests, thus providing users an optimal sub- 

set of genes for prediction. The tool for evaluating the false discov- 

ery rate (FDR) is also given in the package. The package provides 

three methods for constructing a multigene predictor (compound 

covariate, compound shrinkage, and copula-based methods), which 

are tailored to the subset of genes obtained from univariate feature 

selection. To provide a running example, we included survival data 

on lung cancer patients in the package. We demonstrate the pre- 

dictive capability of the developed algorithms by the lung cancer 

data and simulated data. 

2. Univariate feature selection 

This section reviews the basic background for univariate feature 

selection methods that have been studied for prognostic prediction 

of survival. 

Univariate feature selection is the traditional method for select- 

ing a subset of genes that are predictive of survival. In the initial 

step, one fits a univariate Cox model for each gene, one-by-one. 

Then, one selects a subset of genes that are univariately associated 

with survival. The subset typically consists of genes that have P- 

values lower than a threshold. The number of selected genes, de- 

noted by q , is typically q ≤ 100 and rarely q > 200. 

2.1. P-value threshold 

A P-value threshold can be chosen by a variety of rules. Many 

medical researchers tend to use the traditional P-value threshold 

of 0.05 [7] and 0.01 [3,8,9] . Simon [23] recommended the P-value 

threshold of 0.001 that is often useful in survival analysis [4,10,11] . 

While the fixed threshold approaches are easy to use, the threshold 

values are often arbitrary and sub-optimal. 

A threshold can be determined by optimizing predictive capa- 

bility of the selected genes. For the lung cancer data, Beer et al. 

[2] chose q = 50 genes that maximized the association between 

overall survival and the multigene predictor. To predict metasta- 

sis of breast cancer patients, Wang et al. [5] chose q = 76 genes 

that maximized the area under the ROC curve. These exploratory 

techniques typically need to examine different thresholds, different 

tests, and different predictors before reaching a final set of genes. 

Matsui [6] recommended a more automatic routine by optimiz- 

ing a cross-validated likelihood (CVL). This method was applied to 

construct a compound covariate (a multigene predictor) consisting 

of q = 75 or 85 genes. A different cross-validated likelihood with 

a multivariate Cox model was considered in Bøvelstad et al. [18] . 

However, their optimized set of genes contained only a few genes 

and the resultant multigene predictor had poor predictive capa- 

bility. This is because their predictive capability of the optimized 

set of genes was not properly measured under a multivariate Cox 

model. 

In summary, it is critical to develop a set of algorithms that 

are tailored for univariate feature selection. Researchers currently 

should perform a “for loop” algorithm to run the sequence of uni- 

variate Cox regressions across all genes. However, this algorithm 

is not convenient when researchers try many different tests (the 

Wald tests or score tests) and different P-value thresholds. The 

computation of the CVL [6] raises another challenge due to its 

complex algorithm. 

2.2. Cross-validation 

Simon [24] suggested using cross-validation to estimate a 

predictive capability of multigene predictors. In a K -fold cross- 

validation, samples of size n are randomly divided into K groups of 

approximately equal sizes, which can be indexed by k = 1, …, K . A 

feature selection algorithm is applied to the samples without the 

k -th group ( n − n / K training samples). Using the set of selected fea- 

tures, multigene predictors are constructed for the samples in the 

k -th group ( n / K test samples). Then, a measure of predictive accu- 

racy, denoted by CV k , is computed. Repeat this process for k = 1, 

…, K , and compute the overall measure of predictive capability ∑ K 
k =1 C V k . 

The choice K = n yields the leave-one-out cross-validation that 

gives the most unbiased estimate of predictive capability. In prac- 

tice, the number K = 5 (or K = 10) is often chosen to reduce compu- 

tation time. In this case, a predictive capability measure computed 

by cross-validation varies according to how to divide the samples. 

Hence, some quality control method is encouraged to assess the 

random variation. 

If the sample size n is small, a larger number for K (e.g., K = 20) 

is recommended to ensure that each group has sufficient numbers 

of samples. 

The interpretation of predictive capability with cross-validation 

remains a challenge when the samples involve high-dimensional 

features. For each fold of cross-validation, the process of feature 

selection is implemented from scratch. Consequently, each fold 

yields its own selected features that are often remarkably different 

from the selected features by the whole samples. This implies that 

cross-validation evaluates the “selection algorithm” rather than the 

“selected features”. 

2.3. Multigene predictors 

A multigene predictor is a weighted sum of gene expressions. A 

large (small) predictor value corresponds to poor (good) survival, 

which can be used to classify a patient into a good or poor prog- 

nosis group. 

To calculate the weights of a multigene predictor, one can use 

the regression coefficients or Z-values obtained from univariate 

tests. The resultant predictor is called the compound covariate (CC) 

as proposed by Tukey [25] . The CC predictor is an ensemble of uni- 

variate analyses, which does not employ a multivariate model. The 

CC predictor has been shown to be useful in predicting survival 

with gene expressions [2,5-7,10,11,13,16] . 

After feature selection, medical researchers tend to re-fit a mul- 

tivariate Cox regression model to develop a refined multigene pre- 

dictor. This is because some genes identified in univariate signif- 

icance analyses are no longer significant in multivariate analysis 

[8,26] due to their multicollinearity and high-dimensionality. How- 

ever, if non-significant features in a multivariate Cox model are 

simply removed, the resultant predictor has poor predictive capa- 

bility [18,19] . Ridge regression is an approach to combat both mul- 

ticollinearity and high-dimensionality [18] . For instance, to predict 

survival of ovarian cancer patients, Yoshihara et al. [9] developed 

a ridge-based predictor after selecting q = 88 genes by univariate 

feature selection. The compound shrinkage (CS) estimator [16] pro- 

vides another strategy to refine a multigene predictor, which ad- 

justs the CC predictor by incorporating multivariate likelihood in- 

formation. 
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2.4. Dependent censoring 

The standard univariate feature selection methods may produce 

biased results if censoring is due to informative dropout [21,27] . 

This is because Cox regression requires the independent censor- 

ing assumption. The issues of dependent censoring have been in- 

tensively discussed in the literature, and now several statistical 

methods can remedy the issues [20,21,27-32] . Nonetheless, these 

methods have not been widely used due to the requirement of 

mathematical skills and high computational time. Emura and Chen 

[20] proposed a copula-based method to perform univariate fea- 

ture selection, where a copula can adjust for the biased results due 

to dependent censoring. We shall introduce this method as a com- 

ponent of compound.Cox . 

3. The compound.Cox package 

The basis of compound.Cox is the sequence of univariate Cox 

models 

h j (t| x j ) = h 0 j (t) exp ( β j x j ) , j = 1 , ..., p, 

where x j is the j -th feature (gene), h 0 j ( ·) is the baseline hazard 

function, and p is the number of features. The compound.Cox pack- 

age performs feature selection through the multiple tests for H 0 j : 

β j = 0 vs. H 1 j : β j � = 0 for j = 1,..., p , where p can be large (e.g., 

p = 100 and p = 5000). Features are selected according to the sig- 

nificance level for the test results. 

We first introduce the lung cancer data made available in 

compound.Cox . 

3.1. The lung cancer data 

Chen et al. [7] analyzed the data from 125 lung cancer pa- 

tients whose gene expressions were coded as 1, 2, 3, or 4 ( ∼25th, 

25th ∼50th, 50th ∼75th, or 75th ∼ percentile). These values were 

treated as continuous covariates (not as factors). The primary end- 

point is overall survival (i.e., time-to-death). During the follow-up, 

38 patients died and the remaining 87 patients were censored. In 

Chen et al. [7] , the 125 patients were separated into 63 training 

and 62 testing samples. Univariate feature selection performed on 

the 63 training samples resulted in 16 genes that are predictive of 

survival (P-value < 0.05 in the Wald tests). 

We made the subset of the lung cancer data available in 

compound.Cox . The subset contains p = 97 gene expressions which 

are associated with overall survival (P-value < 0.20 in the Wald 

tests). The data are stored in the Lung object, a data-frame with 

125 samples (patients): 

In the outputs above, the variables are defied as 

• t.vec: survival time (time to either death or censoring) in 

months 
• d.vec: censoring indicator; 1 = death, or 0 = censoring 
• train: index for training sample; TRUE = training sample, or 

FALSE = testing sample 
• VHL: gene expression, coded as 1, 2, 3, or 4 
• IHPK1: gene expression, coded as 1, 2, 3, or 4 
• RPL5: gene expression, coded as 1, 2, 3, or 4 

Whilst p = 97 is not as high-dimensional as those commonly 

seen in microarray analyses, the data allow users to run our il- 

lustrative R codes in a reasonable amount of computing time. 

Note that gene expressions are usually continuously valued in con- 

trast to the ordinal coding values of 1, 2, 3, or 4 in the above 

example. 

Supplementary Material includes the R codes to analyze the 

lung cancer data using the compound.Cox package. 

3.2. Data input 

The form of survival data in compound.Cox is { ( t i , δi , x i ); i = 1, 

…, n }, where 

• t i : survival time or censoring time, 
• δi : censoring indicator ( δi = 1 if t i is survival time, or δi = 0 if t i 

is censoring time), 
• x i = ( x i 1 , ..., x ip ): p -dimensional features (genes), 

and n is the number of samples. This is the standard form of 

survival data except that p is allowed to be greater than n . In 

compound.Cox , we use the following styles for inputs: 

• t.vec: a vector ( t 1 , t 2 , …, t n ), 
• d.vec: a vector ( δ1 , δ2 , …, δn ), 
• X.mat: a matrix with the i -th row x i = ( x i 1 , ..., x ip ) for i = 1, …, 

n . 

One can create t.vec, d.vec, and X.mat for the 63 training sam- 

ples by using the R codes in Supplementary Material. 

3.3. Feature selection 

The function uni.selection(, P.value = , score = ) can perform 

univariate feature selection by setting a threshold “P.value = P ” for 

0 < P < 1. For instance, P = 0.05 is the traditional 5% significance 

level. It incorporates the Wald test ( score = FALSE ) and score test 

( score = TRUE ) into a single function. 
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• Wald tests 

Define a univariate estimator ˆ β j = arg max � j ( β j ) , where � j ( ·) is 
the log likelihood defined as 

� j ( β j ) = 

n ∑ 

i =1 

δi 

[ 

β j x i j − log 

( ∑ 

� ∈ R i 
exp ( β j x � j ) 

) ] 

, R i = { � ; t � ≥ t i } . 

The Wald tests are based on the Z-values z j = 

ˆ β j /SE( ̂  β j ) , j = 1, 

..., p , where SE( β j ) = [ −∂ 2 � j ( β j ) /∂β2 
j 
] −1 / 2 . Under the null hy- 

pothesis H 0 j : β j = 0, the distribution of z j is approximated by the 

standard normal distribution Z ∼ N(0 , 1) . The selected genes are 

represented as a set �= { j : P j < P }, where P j = Pr (| Z| > | z j | ) is 

the P-value for testing H 0 j : β j = 0 vs. H 1 j : β j � = 0. 

• Score tests 

The univariate score statistics and its variances are 

S j = 

n ∑ 

i =1 

δi 

(
x i j − S (1) 

i j 
/S (0) 

i j 

)
, V j = 

n ∑ 

i =1 

δi 

(
S (2) 

i j 
/S (0) 

i j 
− (S (1) 

i j 
/S (0) 

i j 
) 

2 
)
, 

where S (k ) 
i j 

= 

∑ 

� ∈ R i x 
k 
� j 

for k = 0, 1 or 2, and j = 1, ..., p . The Z-value 

is obtained by z j = S j /V 1 / 2 
j 

. Witten and Tibshirani [1] stabilized the 

Z-value by using a constant d 0 > 0 such that z 
d 0 
j 

= S j / (V 
1 / 2 
j 

+ d 0 ) . 

The value d 0 = 0 reduces to the score statistics. The selected genes 

are represented as a set �= { j : P j < P }, where P j is the P-value 

for testing H 0 j : β j = 0 vs. H 1 j : β j � = 0. The vector of univariate score 

statistics and the vector of their variances are: 

S = δ′ (X − S (1) / S (0) 
)
, V = δ′ 

(
S (2) / S (0) −

(
S (1) / S (0) 

)2 
)
, 

where δ= ( δ1 , …, δn ) 
′ is a vector of censoring indicators, X is 

a n × p matrix with elements x ij , and S ( k ) is a n × p matrix with ele- 

ments S (k ) 
i j 

. Thus, the vector of Z-statistics is S / V 

1/2 . Note that this 

vector-based computing scheme is efficiently programmed in R. 

The function uni.selection() performs feature selection for a 

given value of P . Below, one can see the results of feature se- 

lection using the Wald tests with P = 0.05. In the input below, 

“score = FALSE” means that the Wald tests are used instead of the 

score tests. 

The outputs show 

ˆ β j , z j , and P j for each of the selected features. 

The outputs also show the CVL value that is defined in 

Appendix A . A high CVL value corresponds to a better predictive 

capability for the selected features. The input “K = 20” means that 

20-fold cross-validation is applied to compute the CVL value. Since 

the data have small sample sizes ( n = 63), the usual choice of K = 5 

or K = 10 leads to unstable results. 

The outputs also show the FDR that is defined in Appendix B . A 

low FDR value corresponds to a lower proportion of falsely selected 

features. The input “permutation = TRUE” means that the permuta- 

tion method of Appendix B is used to compute the FDR. One could 

save computational time by setting “permutation = FALSE” . 

The Wald tests selected 16 genes (P-value < 0.05, CVL = −98.66, 

FDR = 0.30 or 0.31). The FDR of 0.31 implies that there are 16 × 0.31 

≈ 5 falsely selected genes out of the 16 selected genes. The score 

tests selected 18 genes (P-value < 0.05, CVL = −97.37, FDR = 0.27 or 

0.31); the outputs for the score tests are given in Appendix C . 

Hence, the score tests had slightly better CVL and FDR values than 

the Wald tests do. The selected genes are sorted according to their 

P-values. 
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In the outputs, “CVL = −98.66” is seen together with 

“RCVL1 = −86.88” and “RCVL2 = −87.75”. RCVL1 and RCVL2 are 

named “re-substitution CVL”, which provide upper control limits 

for the variation of the CVL value due to random cross-validation. 

If the CVL value is less than the RCVL1 and RCVL2 values, then 

the variation of the CVL value is in-control. In the outputs, we 

conclude that “CVL = −98.66” is in-control since CVL < RCVL1 and 

CVL < RCVL2. Appendix A defines RCVL1 and RCVL2 and explains 

how to interpret them. 

3.4. Prediction after selection 

Consider a test sample having the q selected features ( x 1 ,…, 

x q ). To predict survival of this sample, we construct a predictor 

w 1 x 1 + ��� + w q x q whose high (low) value is associated with poor 

(good) prognosis for survival. 

Using the outputs for the Wald tests, we set the weights w j = 

ˆ β j attached to the q = 16 selected genes. We then arrive at the 16- 

gene predictor of Chen et al. [7] : 

The 16 − genepredictor = (−1 . 09 × ANXA 5) + (1 . 32 × DLG 2) 

+(0 . 55 × ZNF 264) + (0 . 75 × DUSP 6) 

+(0 . 59 × CPEB 4) + (−0 . 84 × LCK ) + (−0 . 58 × STAT 1) 

+(0 . 65 × RNF 4) + (0 . 52 × IRF 4) 

+(0 . 58 × STAT 2) + (0 . 51 × HGF ) + (0 . 55 × ERBB 3) 

+(0 . 47 × NF 1) + (−0 . 77 × FRAP 1) 

+(0 . 92 × MMD ) + (0 . 52 × HMMR ) . 

The resultant predictor is a compound covariate (CC) since it 

is an ensemble of univariate analyses, which does not employ a 

multivariate analysis [6,16] . 

To construct a predictor based on the score tests, we use the 

Z-value of the univariate score tests w j = z j attached to the q = 18 

selected genes [6] . Usually, z j has the same sign as ˆ β j . 

3.5. Significance tests 

We have seen that uni.selection() performs multiple tasks – se- 

lection of features, sorting of selected features, and computation of 

the CVL and FDR values. However, some users simply wish to per- 

form significance tests for all features without selection or sorting. 

For this reason, we prepare more elementary functions, uni.Wald() 

and uni.score() . These functions also save computing time by avoid- 

ing the complex algorithms for the CVL and FDR. 

In the outputs below, we use “res” to store the values of ˆ β j , z j , 

and P j for all the features under the Wald tests. Then we extract 

ˆ β j for the selected features with P-value < 0.05. 

The computational speed of uni.score() is much faster than 

that of uni.Wald() since the score test does not estimate β j . In 

uni.score() , we provide the one-step estimator S j / V j that gives an 

approximate value of ˆ β j . Consequently, the outputs for the score 

tests are similar to those for the Wald tests. 

3.6. Optimizing a threshold by CVL 

The optimal P-value threshold can be determined by plotting 

of the CVL values against P-value thresholds. Since the large CVL 

value corresponds to better predictive capability, one can deter- 

mine the P-value threshold by searching the maxima of the CVL 

plot. 

Fig. 1 draws the CVL plot for the lung cancer data. It shows 

that the optimal threshold is “P-value < 0.0205” for the Wald tests 

and the optimal threshold is “P-value < 0.0275” for the score tests. 

The CVL plots are not very smooth due to the small sample size 

( n = 63). Fig. 1 also draws the plots for RCVL1 and RCVL2, which 

provide the upper control limits for the CVL plot. We observe that 

the CVL plot is in-control since it is under the RCVL1 and RCVL2 

plots. 

Supplementary Material provides the R codes for creating the 

CVL plot and its upper control limits (S1 for the lung cancer data; 

S2 for simulated data). 
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Fig. 1. The plot of the CVL values against P-value thresholds. Larger CVL values correspond to better predictive ability of selected features. RCVL1 and RCVL2 provide the 

upper control limits for the CVL values. 

Below, we show the outputs for feature selection under the op- 

timal threshold for the Wald tests. The results show that 7 genes 

(P-value < 0.0205) are selected. Among the 7 genes, two or three 

genes may be uninformative (FDR = 0.28 ∼0.32). 
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Table 1 

Six different predictors for overall survival based on the lung cancer data. 

Multigene predictor CVL Log-rank c -index 

Wald ( −1.09 × ANXA5) + (1.32 × DLG2) + (0.55 × ZNF264) + (0.75 × DUSP6) 

+ (0.59 × CPEB4) + ( −0.84 × LCK) + ( −0.58 × STAT1) 

−96.37 P = 0.452 c = 0.56 

Score ( −3.36 × ANXA5) + (3.11 × DLG2) + (2.81 × ZNF264) + (2.71 × DUSP6) 

+ (2.53 × CPEB4) + ( −2.51 × LCK) + ( −2.45 × STAT1) + (2.37 × STAT2) 

+ (2.35 × RNF4) + (2.23 × IRF4) 

−95.96 P = 0.664 c = 0.57 

Copula 

+ Wald 

(0.05 × ANXA5) + (0.96 × DLG2) + (0.53 × ZNF264) + (0.41 × DUSP6) 

+ (0.42 × CPEB4) + ( −0.34 × LCK) + (0.01 × STAT1) 

– P = 0.189 c = 0.58 

Copula 

+ score 

(0.05 × ANXA5) + (0.96 × DLG2) + (0.53 × ZNF264) + (0.41 × DUSP6) 

+ (0.42 × CPEB4) + ( −0.34 × LCK) + (0.01 × STAT1) + (0.43 × STAT2) 

+ (0.06 × RNF4) + (0.30 × IRF4) 

– P = 0.068 c = 0.58 

Shrinkage 

+ Wald 

( −0.58 × ANXA5) + (0.95 × DLG2) + (0.20 × ZNF264) + (0.55 × DUSP6) 

+ ( −0.25 × CPEB4) + ( −0.52 × LCK) + ( −0.23 × STAT1) 

– P = 0.452 c = 0.57 

Shrinkage 

+ Score 

( −0.61 × ANXA5) + (0.89 × DLG2) + (0.16 × ZNF264) + (0.58 × DUSP6) 

+ ( −0.36 × CPEB4) + ( −0.50 × LCK) + ( −0.13 × STAT1) + (0.47 × STAT2) 

+ (0.30 × RNF4) + ( −0.01 × IRF4) 

– P = 0.304 c = 0.60 

CVL , the cross-validated likelihood; Log-rank , the P-value of the log-rank test for the difference between good and poor groups in the test samples; c -index , the concor- 

dance measure between a predictor and survival outcome in the test samples. 

Below, we show the outputs for feature selection under the op- 

timal threshold for the score tests. The results show that 10 genes 

(P-value < 0.0275) are selected. Among the 10 genes, three or four 

genes may be uninformative (FDR = 0.27 ∼0.34). 

The regression coefficients ($beta) and Z-values ($Z) in the 

above outputs shall be used to construct a multigene predictor 

based on the selected genes. Table 1 summarizes the CC predictors 

constructed by the Wald tests and the score tests. 

3.7. Dependent censoring 

If censoring is due to informative dropout or any mechanism 

associated with survival, a predictor calculated from univariate 

Cox regressions may produce biased results. The method of Emura 

and Chen [20] aims to adjust the bias by applying a copula [33] . 

Appendix D provides a short review of copulas and dependent cen- 

soring. 

A weight in a multigene predictor is computed as w j = 

ˆ β j (α) , 

where α is a copula parameter. In practice, the Clayton copula is 

used where the parameter α is related to Kendall’s tau through 

τ ( α) = α/( α + 2). Hence, α = 0 corresponds to the independent cen- 

soring model. The resultant predictor is 
∑ 

j∈ � ˆ β j (α) x j , where α
is chosen to maximize the predictive capability of the predic- 

tor. The dependCox.reg.CV function can automatically choose α by 

maximizing the cross-validated c -index; the details are given in 

Appendix D . 
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The outputs below show the weights w j = 

ˆ β j ( ̂  α) and the es- 

timator ˆ α = 11 . 57 , where the subset � consists of the 10 gene 

as previously selected by the score tests. The input “K = 5” is the 

number of cross-validation folds for choosing α as recommended 

in Emura and Chen [21] . 

It is interesting to point out that the most significant gene in 

the univariate Cox model, ANXA5 , becomes barely significant in the 

copula-based method. The lack of significance occurs partly due to 

the concentration of the gene expression values on the category 4: 

In light of this, estimation of w j attached to ANXA5 is inher- 

ently difficult. Hence, the weak weight of ANXA5 derived from the 

copula-based method is reasonable. A similar phenomenon occurs 

in STAT1 . 

While the copula-based method has desirable performance, it is 

computationally very demanding. Therefore, we suggest reducing 

the number of features before applying the copula-based method 

as shown in the above example. 

3.8. Compound shrinkage predictor 

The CS predictor is a refinement of the CC predictor [16] . A 

weight in the CS predictor is computed as w j = 

ˆ β j (a ) , where 0 ≤ a 

≤ 1 is a shrinkage parameter. The value a = 0 yields the CC predic- 

tor 
∑ 

j∈ � ˆ β j x j , where ˆ β j = arg max � j ( β j ) is the estimator based on 

the univariate Cox model. The value 0 < a < 1 yields the predictor 

that is intermediate between the univariate ( a = 0) and multivari- 

ate ( a = 1) estimators through a mixture log-likelihood 

� a n (β) = a� n (β) + (1 − a ) 
∑ p 

j=1 
� j ( β j ) , 

where � n (β) is the log-partial likelihood under a multivariate Cox 

model. Given a , the maximizer of the mixture log-likelihood is 

denoted by ˆ β ′ (a ) = ( ̂  β1 (a ) , . . . , ˆ βp ( a )) . The resultant predictor is ∑ 

j∈ � ˆ β j ( ̂  a ) x j where ˆ a is chosen to optimize a cross-validated like- 

lihood [16] . The subset � may be pre-specified by univariate fea- 

ture selection. 

For instance, one can compute ˆ β j ( ̂  a ) ’s for the 10 genes se- 

lected by the score tests, where the estimator ˆ a = 0 . 55 is chosen 

by a cross-validation. The input “K = 5 ′′ is the number of cross- 

validation folds as recommended in [16] . 
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3.9. Comparison of multigene predictors 

We shall compare the performance of the multigene predictors 

that just have been introduced. Table 1 summarizes the expres- 

sions of the six different multigene predictors that were computed 

by the 63 training samples. 

To evaluate each predictor’s test set performance, we applied a 

multigene predictor to predict survival of the 62 testing samples. 

We separated the 62 testing samples into either a good prognosis 

group (low predictor value) or poor prognosis group (high predic- 

tor value). We used the median of the predictor values to achieve 

two equally sized groups [18] . We also computed the c -index to 

measure the concordance between survival and its predictor, which 

is equivalent to the area under the ROC curve. 

Fig. 2 depicts the Kaplan-Meier survival curves for the good 

(or poor) prognosis group separated by the six different multigene 

predictors. 

The upper parts of Fig. 2 show the results on the CC predictors 

computed from the optimal Wald tests (upper left) and score tests 

(upper right). A significant difference between the two groups was 

not found, but the c -index demonstrated a modest ability to pre- 

dict survival. In the subsequent analyses, we shall examine if the 

predictive ability is improved by more refined predictors. 

The middle parts of Fig. 2 show the results on the copula-based 

methods. The predictors derived from the copula-based methods 

improved the ability of discriminating between the good and poor 

groups over the CC predictors. The modest improvement was also 

seen in terms of the c -index. A clear separation between the good 

and poor groups was found for the copula-based method applied 

for the genes optimally selected by the score tests (middle right of 

Fig. 2 ), giving a significance level of 10% in the log-rank test. 

The bottom parts of Fig. 2 give the results on the CS predictors. 

The CS predictor improves upon the CC predictor for the genes op- 

timally selected by the score tests. This CS predictor also attains 

the best value of the c -index among the six predictors. However, 

the log-rank tests performed poorly in this case since it happened 

that four testing samples had exactly the same predictor values as 

the median predictor value (ties). Little improvement was seen for 

the gene optimally selected by the Wald tests. 

4. Simulations 

We performed two sets of simulations for two different objec- 

tives: 

Objective (i) : to examine the capability of identifying informa- 

tive genes by using compound.Cox . 

Objective (ii) : to examine the predictive capability of multigene 

predictors computed by using compound.Cox . 

Regarding Objective (i), we evaluated the capability of identi- 

fying informative genes at the optimal P-value threshold obtained 

from the CVL plot. This is because one can arbitrary increase the 

chance of identifying the informative genes by increasing a P-value 

threshold, which however increases the chance of selecting unin- 

formative genes. 

Regarding Objective (ii), we compared the predictive perfor- 

mance of the four predictors: the compound covariate (CC), the 

compound shrinkage (CS), ridge, and Lasso predictors. That is, we 

chose the ridge and Lasso predictors as the benchmarks since they 

are well-known and highly accurate multigene predictors [18,19] . 

The ridge and Lasso predictors are computed through the R pack- 

age penalized [34] . 

4.1. Simulation designs 

Data were simulated as follows. We generated p = 50 0 0 contin- 

uously valued gene expressions 

x 

′ 
i = ( x i 1 , ..., x i 25 ︸ ︷︷ ︸ 

×25 

, x i 26 , ... , x i 50 ︸ ︷︷ ︸ 
×25 

, x i 51 , ..., x i 50 0 0 ︸ ︷︷ ︸ 
×( 4950 ) 

) 

for n samples via X.pathway ( n,p = 50 0 0,q1 = 25,q2 = 25 ) in the com- 

pound.Cox package. This code generates three independent clusters 

of gene expressions. The intra-cluster correlation is 0.5 for the first 

two clusters, and 0 for the last cluster. More details are given in 

[16] . Let 

β = ( 	, ..., 	︸ ︷︷ ︸ 
×25 

, −	, ... , −	︸ ︷︷ ︸ 
×25 

, 0 , ..., 0 ︸ ︷︷ ︸ 
×( 4950 ) 

) , 

where 	= 0.1 for low signals and 	= 0.2 for high signals . The 

first 50 genes are called the true genes and the other 4950 genes 

are called the false genes. The goal of Objective (i) is to exam- 

ine how well compound.Cox can select the true genes without se- 

lecting the false genes. Given the gene expressions, survival times 

( T i ) were generated under a Cox model h ( t | x i ) = h 0 ( t )exp ( x ′ i β) with 

h 0 ( u ) = 1. Censoring times ( U i ) were generated from U (0, 1), and 

t i = min { T i , U i } and δi = I { T i ≤ U i } are computed. The proportion 

of censored samples is around 

∑ n 
i =1 (1 − δi ) /n ≈0.56. 

Based on the data { ( t i , δi , x i ); i = 1, …, n } generated, we se- 

lected genes by the score tests under various P-value thresholds 

(0.0 0 0 075 ∼0.075). We then plotted the CVL values against the P- 

value thresholds. The CVL values were computed by K = 5 fold 

cross-validation. We also calculated the four multigene predictors 

based on the selected genes at each threshold, and applied them to 

the independently simulated test samples. We compared the pre- 

dictors’ performance in terms of the Z-value of the log-rank test for 

equally sized groups (poor vs. good) and the c -index (equivalent to 

the area under the ROC curve). 

Our results are reported on the average of 50 replications. Sup- 

plementary Material provides the R codes for simulations. 

4.2. Simulation results 

Fig. 3 depicts the CVL plot against the P-value threshold for the 

score tests. Fig. 3 also shows the number of genes selected at the 

optimum of the CVL plot. Overall, the majority of the true genes 

were successfully selected while the majority of the false genes 

are not selected. For instance, 42 genes were selected out of the 

50 true genes while only 13 genes were selected out of 4950 false 

genes under 	= 0.1 and n = 100. Under the large sample size of 

n = 200, the number of successfully selected genes increased and 

the number of the falsely selected genes reduced. In addition, the 

accuracy of selected genes under 	= 0.2 was superior to that un- 

der 	= 0.1. This is because larger signals make it easier to select 

the true genes. In particular, all the 50 true genes were success- 

fully selected and only 1 false gene were selected under 	= 0.2 

and n = 200. 

Fig. 4 compares the predictive performance of the four multi- 

gene predictors. The four predictors show comparable perfor- 

mance, all exhibiting good ability to predict survival (|Z-value| > 6; 

c -index > 0.8 under 	= 0.1; |Z-value| > 8; c -index > 0.9 under 

	= 0.2). Under 	= 0.2, the CS predictor performs the best among 

the four predictors, but it takes the longest computing time. The 

ridge predictor and the CC predictor are competitive. However, the 

CC predictor takes the shortest computing time. The Lasso per- 

forms relatively poorly, which is expected results in the presence 

of a large number of informative genes [16] . 

In summary, our simulation results show that the feature selec- 

tion methods in compound.Cox have a desirable capability of iden- 
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Fig. 2. The Kaplan-Meier curves for the good and poor prognosis groups identified by the six different predictors. The two groups were determined by the low (or high) 

values of a predictor. The log-rank test was used to measure the difference between the two prognosis groups, where the median of the predictor creates two equally sized 

groups. The c -index was used to measure the concordance between survival and its predictor, which is equivalent to the area under the ROC curve. 
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Fig. 3. Simulation results for feature selection from 50 0 0 genes (50 true genes + 4950 false genes). The figures report the CVL plots and the number of selected genes at 

the optimal P-value threshold ( � ). 
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Fig. 4. Simulation results for comparing the four mutigene predictors under n = 100. High values in the y-axis correspond to better predictive performance. 
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tifying informative genes. Our simulation results also show that 

the multigene predictors in compound.Cox have competitive perfor- 

mance with the well-established predictors. 

5. Discussions 

This article demonstrates the ability of the compound.Cox pack- 

age to perform feature selection for predicting survival. We made 

the lung cancer data available in the package to provide quick and 

simple illustrations to demonstrate several functions in the pack- 

age. 

Beyond the illustrations for our package, we devised a 

vector-based computation scheme for the univariate score tests 

( Section 3.3 ). This scheme allows us to perform a large number of 

tests by simple algebras. While the score tests are already known 

to be computationally more efficient than the Wald tests [1] , re- 

searchers tend to run each test for each feature repeatedly. 

The compound.Cox package implements a cross-validation anal- 

ysis to measure the predictive capability of selected features in 

terms of the CVL value ( Appendix A ). The CVL value depends on 

how to divide the samples into K groups during cross-validation. 

One could encounter an unusually high CVL value by chance. An 

obvious strategy to avoid the random variation is to set K = n 

(leave-one-out cross-validation), or to take the average of CVL val- 

ues among different sample splits. However, these time-consuming 

techniques are not recommended. We have proposed a simple 

quality control method to check if the CVL value is properly com- 

puted (also see Fig. 1 ). This is a procedure newly devised in this 

article. 

We conducted our simulation studies to examine how the truly 

effective genes are selected by the compound.Cox package, where 

the true relationship between genes and survival is known. Our 

simulation results confirmed that the package has a high sensitiv- 

ity to pick up the truly effective genes in the presence of a large 

number of false genes ( Section 4 ). 

The developed algorithms in compound.Cox would be useful 

tools for incorporating high-dimensional features into bivariate 

survival models, though this topic needs more elaborate analyses. 

Many bivariate survival models involve frailty [35-37] for hetero- 

geneity or copulas [38,39] for dependence among endpoints. In ad- 

dition, the issue of dependent censoring arises when an interme- 

diate event (e.g., tumour progression) is observed together with a 

terminal event (e.g., death) [35,38,40,41] . One pragmatic approach 

in these complex survival data is to perform univariate feature se- 

lection by ignoring dependence between two event times. Our pre- 

vious work in Emura et al. [11] applied P-value < 0.001 threshold 

to select 128 genes associated with overall survival and 158 genes 

associated with time-to-tumour progression, yielding the two CC 

predictors. These CC predictors were then incorporated into a more 

elaborate bivariate survival model that accounts for heterogeneity 

and dependence. 

The compound.Cox package differs remarkably from the existing 

R packages for feature selection in multivariate Cox regression ( sur- 

vival [42] ) and penalized Cox regression ( Net-Cox [43] , SGL [44] , SIS 

[45] and penalized [34] ). The feature selection methods in the com- 

pound.Cox package adopt multiple tests with computation of the 

significance levels of features (in terms of P-value) and the num- 

ber of false discoveries (in terms of FDR). This is relevant to the 

objective of achieving biological insights, where screening of prog- 

nostic features exhaustively may be a relevant task, even if some 

selected features are highly correlated. On the other hand, mul- 

tivariate/penalized Cox regression methods adopt an optimization 

of a penalized likelihood in term of prediction capability. In some 

penalized regression, such as Lasso, a feature subset may be iden- 

tified, taking account of the correlations among features. One has 

to recognize that such a subset is one, haphazardly selected (due 

to random errors) from many “solutions” of predictor with compa- 

rable predictive capability in high-dimensional situations [46] . The 

objective of accurate prediction should not be confused with that 

of achieving biological insight [47,48,17] . It is noted that, compared 

with penalized regression methods, the compound.Cox package can 

perform well for prediction analysis, as shown in Section 4 (See 

also Section 1 ). 

Copula-based methods for dealing with dependent censoring 

also make the compound.Cox package different from the existing 

packages. As shown in the lung cancer data analysis, the copula- 

based method improves upon the CC predictor; the two Kaplan–

Meier survival curves for the good and poor prognosis groups 

were more clearly separated by the copula-based method ( Fig. 2 ). 

If dependent censoring exists in the test samples, these Kaplan- 

Meier estimators could be replaced by the copula-graphic estima- 

tors [20,21] . The compound.Cox package implements the calcula- 

tions of the copula-graphic estimator under the Clayton and Gum- 

bel copulas. The details are given in Appendix D . 
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Appendix A: Cross-validated likelihood (CVL) 

We introduce the CVL proposed by Matsui [6] because its def- 

inition is complex and not sufficiently detailed in his original ar- 

ticle. In addition, we propose a quality control method to check if 

the CVL value is properly calculated. 

Let { ( t i , δi , x i ); i = 1, …, n } be survival data. To perform a K - 

fold cross validation, we first divide the n samples into K groups 

of approximately equal sample sizes and label them as 
 k for 

k = 1, ..., K such that ∪ 

K 
k =1 


 k = { 1 , . . . , n } . Define 
 − k as a train- 

ing set for a test set 
 k such that 
 k ∪
 − k = { 1, …, n }, k = 1, ..., 

K . The CC predictor based on the training set 
 − k is denoted by 

C C i, −k = 

∑ 

j∈ �−k 
w j, −k x i j , where the set �− k and the weight w j , −k 

are determined by the training set 
 − k given a P-value threshold. 

Treating CC i , −k as a covariate for ( t i , δi ), we have a new set of 

survival data { ( t i , δi , CC i , −k ); i ∈ 
 − k }. We fit the data to a Cox 

model 

h ( t |CC � , −k ) = h 0 ( t )exp ( γ CC � , −k ), and obtain an estimator ˆ γ−k . 

The CVL is defined as 

CV L = 

K ∑ 

k =1 

{ � ( ̂  γ−k ) − � −k ( ̂  γ−k ) } , (1) 

where ˆ γ−k = arg max γ � −k (γ ) , 

� (γ ) = 

∑ 

i 

δi 

[ 

γ C C i, −k − log 

{ ∑ 

� ∈ R i 
exp 

(
γ C C �, −k 

)} ] 

, (2) 

� −k (γ ) = 

∑ 

i ∈ 
 −k 

δi 

[ 

γ C C i, −k − log 

{ ∑ 

� ∈ R i ∩ 
 −k 

exp 

(
γ C C �, −k 

)} ] 

, (3) 

http://dx.doi.org/10.13039/501100004663
https://doi.org/10.1016/j.cmpb.2018.10.020
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Fig. A1. The algorithm for calculating the cross-validated likelihood (CVL). 

where R i = { � : t � ≥ t i } is the risk set. The computation scheme of 

the CVL is given in Fig. A1 . 

We propose a quality control method to check if the CVL value 

is proper. This is because the CVL value is subject to some variation 

due to random allocation of the samples into K groups. For this 

purpose, we shall introduce the RCVL1 and the RCVL2 values that 

provide upper control limits for the CVL values. If the CVL value 

is less than the RCVL1 and RCVL2 values, the CVL value would be 

in-control. On the other hand, if the CVL value exceeds either the 

RCVL1 or RCVL2 value, then the CVL may be computed again after 

changing the sample allocation. 

RCVL1 (re-substitution CVL without cross-validation): 

We define the RCVL1 value by Eqs. (1) –(3) , where we replace 

C C i, −k = 

∑ 

j∈ �−k 
w j, −k x i j by C C i = 

∑ 

j∈ � w j x i j , where the set � and 

the weight w j are determined by the whole samples. Since the 

RCVL1 value is a re-substitution estimate, it gives an upward bias 

relative to the CVL value [24] . Specifically, the information of the 

i -th sample is incorporated into the weight w j and set �, violating 

the principle of cross-validation. Usually, the RCVL1 value increases 

as the number of features in � increases. Since the RCVL1 value is 

more robust against the sample allocation, it serves as an upper 

control limit for the CVL value. 

RCVL2 (re-substitution CVL with incomplete cross-validation) 

We define the RCVL2 value by Eqs. (1) - (3) , where we replace 

C C i, −k = 

∑ 

j∈ �−k 
w j, −k x i j by C C i, −k = 

∑ 

j∈ � w j, −k x i j , where the set �

is determined by the whole samples, but the weight w j , −k is deter- 

mined by the training data 
 − k . Since the RCVL2 value is a re- 

substitution estimate, it gives an upward bias relative to the CVL 

value [24] . Specifically, the information of the i -th sample is incor- 

porated into the set �, violating the principle of cross-validation. 

Since the RCVL2 value is more robust against the sample allocation, 

it serves as an upper control limit for the CVL value. 

Appendix B: False discovery rate (FDR) 

Performing a number of multiple tests often leads us to eval- 

uate the number of falsely rejected hypotheses. For instance, if P- 

value < 0.001 is a criterion for rejecting hypotheses, the tests for 

p = 5,0 0 0 features would identify 5 false features by chance. The 

false discovery rate (FDR) is the percentage of such false features. 

As in Witten and Tibshirani [1] , we suggested the following per- 

mutation method to compute the FDR. 

• Step 1: Randomly generate M permutations: { x 
1 
, x 

2 
, . . . , 

x n } → { x m 

1 
, x m 

2 
, . . . , x m 

n } for m = 1, …, M . Obtain permuted 

samples { ( t i , δi , x (m ) 
i 

) ; i = 1 , . . . , n } for m = 1, …, M . 
• Step 2: For each m , perform feature selection (via the Wald 

tests or score tests), and the selected features are represented 

as a set �(m ) = { j : P (m ) 
j 

< P } , where P (m ) 
j 

is the P-value for 

testing H 0 j : β j = 0 vs. H 1 j : β j � = 0 based on the permuted sam- 

ples { ( t i , δi , x (m ) 
i 

) ; i = 1 , . . . , n } . 
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• Step 3: Compute the ratio 

FDR = 

The expected number of false discoveries 

The number of rejections 

= 

1 
M 

∑ M 

m =1 

∑ p 
j=1 

I(P (m ) 
j 

< P ) ∑ p 
j=1 

I(P 
j 
< P ) 

. 

Alternatively, one may compute the FDR by the simple for- 

mula 

FDR = 

The expected number of false discoveries 

The number of rejections 
= 

P × p 

q 
, 

where P is the P-value threshold (e.g., P = 0.05), p is the total num- 

ber of features (tests), and q is the number of selected features. 

The latter formula relies on the assumption that each test statistic 

has the correct null distribution, namely Pr( P j < P ) = P under the 

null hypothesis. Under this assumption, it can be shown that 

1 
M 

∑ M 

m =1 

∑ p 
j=1 

I(P (m ) 
j 

< P ) ∑ p 
j=1 

I(P 
j 
< P ) 

≈
E 
[∑ p 

j=1 
I(P (m ) 

j 
< P ) 

]
q 

≈
p × E[ I(P (m ) 

j 
< P )] 

q 
= 

p × P 

q 
. 

Appendix C: Outputs for feature selection by score tests 

Appendix D: Copula-based methods for dependent censoring 

We describe the copula-based methods for dependent censor- 

ing. More details can be found in the book of Emura and Chen 

[21] . We also explain how the compound.Cox package implements 

the copula-based methods. 

Consider random variables , 

• T : survival time 
• U : censoring time 

Consider a copula model for dependent censoring 

Pr ( T > t , U > u ) = C α( S T (t) , S U (u ) ) , where C α is a cop- 

ula function; S T (t) = Pr ( T > t ) and S U (u ) = Pr ( U > u ) are the 

marginal survival functions. Some well-known copulas are 

The independence copula: 

C ( u , v ) = uv , 

The Clayton copula: 

C α( u, v ) = ( u −α + v −α − 1 ) −1 /α, α > 0 , 

The Gumbel copula: 

C α(u, v ) = exp [ −{ ( − log u ) α+1 + ( − log v ) α+1 } 
1 

α+1 ] , α ≥ 0 , 

The parameter α represents the measure of dependence, and 

can be transformed to Kendall’s tau ( τ ). For instance, it can 

be show that τ = α/( α + 2 ) under the Clayton copula and that 

τ = α/( α + 1 ) under the Gumbel copula. 
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Let ( t i , δi ), i = 1, ..., n , be survival data without covariates, 

where t i = min { T i , U i }, δi = I ( T i ≤ U i ), and I ( ·) is the indicator 

function. Assume that all the observed times are distinct ( t i � = t j 
whenever i � = j ). Let n i = 

∑ n 
� =1 I ( t � ≥ t i ) be the number at-risk at 

time t i . 

Under the Clayton copula, the copula-graphic estimator is com- 

puted as 

ˆ S T ( t ) = 

[ 

1 + 

∑ 

t i ≤t, δi =1 

{(
n i − 1 

n 

)−α

−
(

n i 

n 

)−α
}] −1 /α

Under the Gumbel copula, the copula-graphic estimator is com- 

puted as 

ˆ S T ( t ) = exp 

( 

−
[ ∑ 

t i ≤t, δi =1 

{ 

− log 

(
n i − 1 

n 

)} α+1 

−
{ 

− log 

(
n i 

n 

)} α+1 
] 1 

α+1 

) 

These two copula-graphic estimators can be computed by 

CG.Clayton() and CG.Gumbel() . Under the independence copula, the 

copula-graphic estimator is equal to the Kaplan-Meier estimator. 

Let { ( t i , δi , x ij ); i = 1, …, n } be survival data for the j -th feature 

( j = 1, ..., p ). The data are fitted to the copula model 

Pr ( T > t , U > u | x j ) = C α{ Pr ( T > t | x j ) , Pr ( U > u | x j ) } , 
where Pr ( T > t | x j ) = exp { −�0 j (t) exp ( β j x j ) } , Pr ( U > u | x j ) = 

exp { −�0 j (u ) exp ( γ j x j ) } , and the copula C α is the same for ev- 

ery j . For a given value of α, the semiparametric maximum likeli- 

hood estimator ( ̂  β j (α) , ˆ γ j (α) , ˆ �0 j (α) , ˆ �0 j (α)) can be calculated 

by using dependCox.reg() . Repeating this calculation for j = 1, ..., p , 

the vector ( ̂  β1 (α) , . . . , ˆ βp ( α)) is obtained. Here, the value of α
can be chosen by maximizing a cross-validated c -index, which is a 

concordance measure between the outcome ( t i , δi ) and its predic- 

tor 
∑ 

j∈ � ˆ β(−i ) 
j 

(α) x j [20,21] . One can simply use dependCox.reg.CV() 

to calculate ( ̂  β1 ( ̂  α) , . . . , ˆ βp ( ̂  α)) . 
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Supplementary Material 

compound.Cox: univariate feature selection and compound covariate for predicting survival, 

Computer Methods and Programs in Biomedicine 

 

Corresponding to Takeshi Emura (takeshiemura@gmail.com) 

 

S1. R codes for the analysis of the lung cancer data: 

The R codes perform the following tasks: 

 Display “Lung” containing 125 samples (63 training samples + 62 test samples). 

 Perform univariate feature selection using the 63 training samples. 

 Draw the CVL plot for identifying the optimal P-value threshold.  

 Compute six predictors and apply them to separate the test samples into a good or poor 

prognosis group.  

 Compare the two Kaplan-Meier survival curves in the test samples (good vs. poor).  

library(compound.Cox) 

data("Lung") 

Lung 

 

train=Lung$train ## index for training samples 

 

### 63 training samples ### 

t.vec=Lung$t.vec[train] 

d.vec=Lung$d.vec[train] 

X.mat=as.matrix(Lung[,-c(1,2,3)][train,]) 

 

### Feature selection (P-value < 0.05) ### 

uni.selection(t.vec,d.vec,X.mat,K=20,P.value=0.05,score=FALSE,permutation=TRUE) ## Wald test 

uni.selection(t.vec,d.vec,X.mat,K=20,P.value=0.05,score=TRUE,permutation=TRUE) ## Score test 

 

##################################################### 

#    Draw the CVL plot to find the optimal P-value threshold      # 

##################################################### 

P.grid=seq(0.01,0.08,length=21) ## 0.01<P-value<0.08 ## 

K=20 ## 20-fold cross-validation ## 

CVL.score=CVL.Wald=NULL 

RCVL1.score=RCVL1.Wald=NULL 

RCVL2.score=RCVL2.Wald=NULL 

 

for(P in P.grid){ 
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  res.score=uni.selection(t.vec,d.vec,X.mat,K=K,P.value=P,score=TRUE) 

  res.Wald=uni.selection(t.vec,d.vec,X.mat,K=K,P.value=P,score=FALSE) 

  CVL.score=c(CVL.score,res.score$CVL[1]) 

  CVL.Wald=c(CVL.Wald,res.Wald$CVL[1]) 

  RCVL1.score=c(RCVL1.score,res.score$CVL[2]) 

  RCVL1.Wald=c(RCVL1.Wald,res.Wald$CVL[2]) 

  RCVL2.score=c(RCVL2.score,res.score$CVL[3]) 

  RCVL2.Wald=c(RCVL2.Wald,res.Wald$CVL[3]) 

} 

P.Wald=P.grid[which.max(CVL.Wald)] 

P.score=P.grid[which.max(CVL.score)] 

 

######## The plot of CVL (Wald tests)  ######### 

Range.Wald= range(c(CVL.Wald,RCVL1.Wald,RCVL2.Wald),na.rm=TRUE) 

par(mfrow=c(1,2)) 

plot(P.grid,CVL.Wald,type="l",ylim=Range.Wald,xlab="P-value",ylab="CVL",main="Wald test") 

points(P.Wald,CVL.Wald[which.max(CVL.Wald)],col="red",pch=17,cex=1.5) 

points(P.grid,RCVL1.Wald,col="darkgreen",type="l",lty="dashed") 

text(mean(P.grid),mean(RCVL1.Wald),"RCVL1",col="darkgreen") 

points(P.grid,RCVL2.Wald,col="blue",type="l",lty="dotted") 

text(mean(P.grid),mean(RCVL2.Wald),"RCVL2",col="blue") 

AA=paste("Optimal P-value =",as.character(P.Wald)) 

legend("center",AA,pch=17,col="red",) 

 

######## The plot of CVL (score tests)  ######### 

Range.score= range(c(CVL.score,RCVL1.score,RCVL2.score),na.rm=TRUE) 

plot(P.grid,CVL.score,type="l",ylim=Range.score,xlab="P-value",ylab="CVL",main="Score test") 

points(P.score,CVL.score[which.max(CVL.score)],col="red",pch=17,cex=1.5) 

points(P.grid,RCVL1.score,col="darkgreen",type="l",lty="dashed") 

text(mean(P.grid),mean(RCVL1.score),"RCVL1",col="darkgreen") 

points(P.grid,RCVL2.score,col="blue",type="l",lty="dotted") 

text(mean(P.grid),mean(RCVL2.score),"RCVL2",col="blue") 

AA=paste("Optimal P-value =",as.character(P.grid[which.max(CVL.score)])) 

legend("center", AA,pch=17,col="red") 

 

######################################### 

#   Predictor construction after feature selection   # 

######################################### 

 

######## Feature selection ###### 

Wald=uni.selection(t.vec,d.vec,X.mat,K=K, P.value=P.Wald,score=FALSE,permutation=TRUE) 

score=uni.selection(t.vec,d.vec,X.mat,K=K, P.value=P.score,score=TRUE,permutation=TRUE) 

Wald 

score 
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######## Copula model ####### 

Wald.copula=dependCox.reg.CV(t.vec,d.vec,X.mat[,names(Wald$beta)],K=5) 

c.Wald=round(Wald.copula$c_index,2) 

AA=paste("c-index=",as.character(c.Wald)) 

legend("top",AA,pch=17,col="red") 

 

score.copula=dependCox.reg.CV(t.vec,d.vec,X.mat[,names(score$beta)],K=5) 

c.score=round(score.copula$c_index,2) 

AA=paste("c-index=",as.character(c.score)) 

legend("top",AA,pch=17,col="red") 

 

table(X.mat[,"ANXA5"])  ## frequency table for the 63 samples ## 

 

###### Shrinkage estimation ###### 

Wald.CS=compound.reg(t.vec,d.vec,X.mat[,names(Wald$beta)],K=5) 

score.CS=compound.reg(t.vec,d.vec,X.mat[,names(score$beta)],K=5) 

Wald.CS 

score.CS 

 

##################################################### 

##    Predicting Poor or Good Survival for 62 testing samples    ## 

##################################################### 

 

### 62 testing samples ### 

t.test=Lung$t.vec[!train] 

d.test=Lung$d.vec[!train] 

X.test=as.matrix(Lung[,-c(1,2,3)][!train,]) 

 

par(mfrow=c(3,2)) 

####### Prediction by Wald ####### 

X.Wald=X.test[,names(Wald$beta)] 

eta.Wald=as.vector(X.Wald%*%Wald$beta) 

class.Wald=eta.Wald>median(eta.Wald) 

LR.Wald=survdiff(Surv(t.test,d.test) ~ class.Wald) 

P.Wald=1-pchisq(LR.Wald$chisq,df=1) 

c.Wald=survConcordance(  Surv(t.test,d.test)~eta.Wald  )$concordance 

 

plot(  survfit(Surv(t.test[!class.Wald],d.test[!class.Wald])~1,conf.type="none"), 

       ylim=c(0.5,1),col="blue",lwd=2,main="Optimal Wald test",mark.time = TRUE, 

       xlab="Months",ylab="Survival probability") 

lines(  survfit(Surv(t.test[class.Wald],d.test[class.Wald])~1,conf.type="none"), 

        col="red",lwd=2,mark.time = TRUE ) 

text(35,0.95,paste("P-value =",as.character(round(P.Wald,3)))) 

text(35,0.88,paste("c-index =",as.character(round(c.Wald,3)))) 

text(40,0.55,"Poor prognosis",col="red") 
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text(40,0.75,"Good prognosis",col="blue") 

 

####### Prediction by score ####### 

X.score=X.test[,names(score$beta)] 

eta.score=as.vector(X.score%*%score$beta) 

class.score=eta.score>median(eta.score) 

LR.score=survdiff(Surv(t.test,d.test) ~ class.score) 

P.score=1-pchisq(LR.score$chisq,df=1) 

c.score=survConcordance(  Surv(t.test,d.test)~eta.score  )$concordance 

 

plot(  survfit(Surv(t.test[!class.score],d.test[!class.score])~1,conf.type="none"), 

       ylim=c(0.5,1),col="blue",lwd=2,main="Optimal score test",mark.time = TRUE, 

       xlab="Months",ylab="Survival probability") 

lines(  survfit(Surv(t.test[class.score],d.test[class.score])~1,conf.type="none"), 

        col="red",lwd=2,mark.time = TRUE ) 

text(35,0.95,paste("P-value =",as.character(round(P.score,3)))) 

text(35,0.88,paste("c-index =",as.character(round(c.score,3)))) 

text(40,0.55,"Poor prognosis",col="red") 

text(40,0.75,"Good prognosis",col="blue") 

 

####### Prediction by Copula + optimal Wald ####### 

eta.Wald.copula=as.vector(X.Wald%*%Wald.copula$beta) 

class.Wald.copula=eta.Wald.copula>median(eta.Wald.copula) 

LR.Wald.copula=survdiff(Surv(t.test,d.test) ~ class.Wald.copula) 

P.Wald.copula=1-pchisq(LR.Wald.copula$chisq,df=1) 

c.Wald.copula=survConcordance(  Surv(t.test,d.test)~eta.Wald.copula  )$concordance 

 

plot(survfit(Surv(t.test[!class.Wald.copula],d.test[!class.Wald.copula])~1,conf.type="none"), 

     ylim=c(0.5,1),col="blue",lwd=2,main="Copula + optimal Wald test",mark.time = TRUE, 

     xlab="Months",ylab="Survival probability") 

lines(survfit(Surv(t.test[class.Wald.copula],d.test[class.Wald.copula])~1,conf.type="none"), 

      col="red",lwd=2,mark.time = TRUE) 

text(35,0.95,paste("P-value =",as.character(round(P.Wald.copula,3)))) 

text(35,0.88,paste("c-index =",as.character(round(c.Wald.copula,3)))) 

text(40,0.52,"Poor prognosis",col="red") 

text(40,0.78,"Good prognosis",col="blue") 

 

####### Prediction by Copula + optimal score ####### 

eta.score.copula=as.vector(X.score%*%score.copula$beta) 

class.score.copula=eta.score.copula>median(eta.score.copula) 

LR.score.copula=survdiff(Surv(t.test,d.test) ~ class.score.copula) 

P.score.copula=1-pchisq(LR.score.copula$chisq,df=1) 

c.score.copula=survConcordance(  Surv(t.test,d.test)~eta.score.copula  )$concordance 

 

plot(survfit(Surv(t.test[!class.score.copula],d.test[!class.score.copula])~1,conf.type="none"), 
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     ylim=c(0.5,1),col="blue",lwd=2,main="Copula + optimal score test",mark.time = TRUE, 

     xlab="Months",ylab="Survival probability") 

lines(survfit(Surv(t.test[class.score.copula],d.test[class.score.copula])~1,conf.type="none"), 

      col="red",lwd=2,mark.time = TRUE) 

text(35,0.95,paste("P-value =",as.character(round(P.score.copula,3)))) 

text(35,0.88,paste("c-index =",as.character(round(c.score.copula,3)))) 

text(40,0.57,"Poor prognosis",col="red") 

text(40,0.80,"Good prognosis",col="blue") 

 

####### Prediction by CS + optimal Wald ####### 

eta.Wald.CS=as.vector(X.Wald%*%Wald.CS$beta) 

class.Wald.CS=eta.Wald.CS>median(eta.Wald.CS) 

LR.Wald.CS=survdiff(Surv(t.test,d.test) ~ class.Wald.CS) 

P.Wald.CS=1-pchisq(LR.Wald.CS$chisq,df=1) 

c.Wald.CS=survConcordance(  Surv(t.test,d.test)~eta.Wald.CS  )$concordance 

 

plot(survfit(Surv(t.test[!class.Wald.CS],d.test[!class.Wald.CS])~1,conf.type="none"), 

     ylim=c(0.5,1),col="blue",lwd=2,main="Shrinkage + optimal Wald test",mark.time = TRUE, 

     xlab="Months",ylab="Survival probability") 

lines(survfit(Surv(t.test[class.Wald.CS],d.test[class.Wald.CS])~1,conf.type="none"), 

      col="red",lwd=2,mark.time = TRUE) 

text(35,0.95,paste("P-value =",as.character(round(P.Wald.CS,3)))) 

text(35,0.88,paste("c-index =",as.character(round(c.Wald.CS,3)))) 

text(40,0.52,"Poor prognosis",col="red") 

text(40,0.75,"Good prognosis",col="blue") 

 

####### Prediction by CS + optimal score ####### 

eta.score.CS=as.vector(X.score%*%score.CS$beta) 

class.score.CS=eta.score.CS>median(eta.score.CS) 

LR.score.CS=survdiff(Surv(t.test,d.test) ~ class.score.CS) 

P.score.CS=1-pchisq(LR.score.CS$chisq,df=1) 

c.score.CS=survConcordance(  Surv(t.test,d.test)~eta.score.CS  )$concordance 

 

plot(survfit(Surv(t.test[!class.score.CS],d.test[!class.score.CS])~1,conf.type="none"), 

     ylim=c(0.5,1),col="blue",lwd=2,main="Shrinkage + optimal score test",mark.time = TRUE, 

     xlab="Months",ylab="Survival probability") 

lines(survfit(Surv(t.test[class.score.CS],d.test[class.score.CS])~1,conf.type="none"), 

      col="red",lwd=2,mark.time = TRUE) 

text(35,0.95,paste("P-value =",as.character(round(P.score.CS,3)))) 

text(35,0.88,paste("c-index =",as.character(round(c.score.CS,3)))) 

text(40,0.52,"Poor prognosis",col="red") 

text(40,0.75,"Good prognosis",col="blue") 
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S2. The CVL curve for simulated data (with the R codes): 

 

 

 

The codes use simulated data to demonstrate the CVL plot shown above. 

library(compound.Cox) 

 

n=100 

p=500  

beta_true=c(rep(0.1,25),rep(-0.1,25),rep(0,p-50)) 

q0=sum(beta_true==0) ### the number of zero coefficients ### 

q1=sum(beta_true>0) ###  the number of positive coefficients ### 

q2=sum(beta_true<0) ###  the number of negative coefficients ### 

 

CEN_Bound=1 #=cen~59%# 

t.vec=d.vec=numeric(n) 

X.mat=X.pathway(n,p,q1,q2) 

colnames(X.mat)=c(1:p) 

 

set.seed(10) 

for(i in 1:n){ 

  eta=X.mat[i,]%*%beta_true 

  T=rexp(1,rate=exp(eta)) 

  C=runif(1,min=0,max=CEN_Bound) 

  t.vec[i]=min(T,C) 

  d.vec[i]=(T<=C) 
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} 

 

##################################################### 

#    Draw the CVL plot to find the optimal P-value threshold      # 

##################################################### 

 

P.grid=seq(0.001,0.01,length=21) ## P-value threshold ## 

K=5 ## five-fold cross-validation ## 

 

CVL.score=CVL.Wald=NULL 

RCVL1.score=RCVL1.Wald=NULL 

RCVL2.score=RCVL2.Wald=NULL 

 

set.seed(10) 

for(P in P.grid){ 

  res.score=uni.selection(t.vec,d.vec,X.mat,K=K,P.value=P,score=TRUE) 

  res.Wald=uni.selection(t.vec,d.vec,X.mat,K=K,P.value=P,score=FALSE) 

  CVL.score=c(CVL.score,res.score$CVL[1]) 

  CVL.Wald=c(CVL.Wald,res.Wald$CVL[1]) 

  RCVL1.score=c(RCVL1.score,res.score$CVL[2]) 

  RCVL1.Wald=c(RCVL1.Wald,res.Wald$CVL[2]) 

  RCVL2.score=c(RCVL2.score,res.score$CVL[3]) 

  RCVL2.Wald=c(RCVL2.Wald,res.Wald$CVL[3]) 

} 

P.Wald=P.grid[which.max(CVL.Wald)] 

P.score=P.grid[which.max(CVL.score)] 

 

######## The plot of CVL (Wald tests)  ######### 

Range.Wald= range(c(CVL.Wald,RCVL1.Wald,RCVL2.Wald),na.rm=TRUE) 

par(mfrow=c(1,2)) 

plot(P.grid,CVL.Wald,type="l",ylim=Range.Wald,xlab="P-value",ylab="CVL",main="Wald test") 

points(P.Wald,CVL.Wald[which.max(CVL.Wald)],col="red",pch=17,cex=1.5) 

points(P.grid,RCVL1.Wald,col="darkgreen",type="l",lty="dashed") 

text(mean(P.grid),mean(RCVL1.Wald),"RCVL1",col="darkgreen") 

points(P.grid,RCVL2.Wald,col="blue",type="l",lty="dotted") 

text(mean(P.grid),mean(RCVL2.Wald),"RCVL2",col="blue") 

AA=paste("Optimal P-value =",as.character(P.Wald)) 

legend("center",AA,pch=17,col="red",) 

 

######## The plot of CVL (score tests)  ######### 

Range.score= range(c(CVL.score,RCVL1.score,RCVL2.score),na.rm=TRUE) 

plot(P.grid,CVL.score,type="l",ylim=Range.score,xlab="P-value",ylab="CVL",main="Score test") 

points(P.score,CVL.score[which.max(CVL.score)],col="red",pch=17,cex=1.5) 

points(P.grid,RCVL1.score,col="darkgreen",type="l",lty="dashed") 

text(mean(P.grid),mean(RCVL1.score),"RCVL1",col="darkgreen") 
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points(P.grid,RCVL2.score,col="blue",type="l",lty="dotted") 

text(mean(P.grid),mean(RCVL2.score),"RCVL2",col="blue") 

AA=paste("Optimal P-value =",as.character(P.grid[which.max(CVL.score)])) 

legend("center", AA,pch=17,col="red") 

 

######## Feature selection at optimal threshold ###### 

uni.selection(t.vec,d.vec,X.mat,K=K, P.value=P.Wald,score=FALSE,permutation = TRUE) 

uni.selection(t.vec,d.vec,X.mat,K=K, P.value=P.score,score=TRUE,permutation = TRUE) 

 

S3. R codes for simulation studies (for feature selection): 

library(compound.Cox) 
 
p=5000 ### the number of genes 
beta_true=c(rep(0.1,25),rep(-0.1,25),rep(0,p-50)) 
#beta_true=c(rep(0.2,25),rep(-0.2,25),rep(0,p-50)) 
q0=sum(beta_true==0) ### the number of zero coefficients ### 
q1=sum(beta_true>0) ###  the number of positive coefficients ### 
q2=sum(beta_true<0) ###  the number of negative coefficients ### 
 
simu=function(R,n,K,P.value){ 
   
  q_vec=True=False=CVL=CEN_per=numeric(R) 
  CEN_Bound=1 #=cen~59%# 
   
  for(r in 1:R){ 
    t.vec=d.vec=numeric(n) 
    set.seed(r) 
    X.mat=X.pathway(n,p,q1,q2) 
    colnames(X.mat)=c(1:p) 
    for(i in 1:n){ 
      eta=X.mat[i,]%*%beta_true 
      T=rexp(1,rate=exp(eta)) 
      C=runif(1,min=0,max=CEN_Bound) 
      t.vec[i]=min(T,C) 
      d.vec[i]=(T<=C) 
    } 
    CEN_per[r]=1-mean(d.vec) 
    res=uni.selection(t.vec, d.vec, X.mat, P.value=P.value,K=K,score=TRUE) 
    q_vec[r]=length(res$beta) 
    CVL[r]=res$CVL[1] 
    True[r]= sum( as.numeric(names(res$P))<=q1+q2 ) 
    False[r]= sum( as.numeric(names(res$P))>q1+q2 ) 
  } 
   
  c(P=P.value,CEN_Percent=round(mean(CEN_per),2),CVL=mean(CVL), 
    q=mean(q_vec),True=mean(True),False=mean(False)) 
   
} 
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R=50 ### the number of simulation runs 
K=5 ### the number of folds in cross-validation 
n=100 ### sample size 
 
res=rbind( 
  simu(R,n,K,P.value=0.000075), 
  simu(R,n,K,P.value=0.0001), 
  simu(R,n,K,P.value=0.00025), 
  simu(R,n,K,P.value=0.0005), 
  simu(R,n,K,P.value=0.00075), 
  simu(R,n,K,P.value=0.001), 
  simu(R,n,K,P.value=0.0025), 
  simu(R,n,K,P.value=0.005), 
  simu(R,n,K,P.value=0.0075), 
  simu(R,n,K,P.value=0.01), 
  simu(R,n,K,P.value=0.025), 
  simu(R,n,K,P.value=0.05), 
  simu(R,n,K,P.value=0.075) 
) 
 
P.grid=res[,"P"] 
CVL.grid=res[,"CVL"] 
true.grid=res[,"True"] 
false.grid=res[,"False"] 
res 
 
par(mfrow=c(1,2)) 
plot(log(P.grid),CVL.grid,type="b",xlab="log(P-value)",ylab="CVL",main="n=100") 
temp.CVL=which.max(CVL.grid) 
points(log(P.grid[temp.CVL]),CVL.grid[temp.CVL],col="red",pch=17,cex=1.5) 
true.CVL=as.character(round(true.grid[temp.CVL],0)) 
false.CVL=as.character(round(false.grid[temp.CVL],0)) 
legend("bottom",legend=paste("True genes =",true.CVL,";","False genes =",false.CVL),col="red") 
Sen=round(true.grid[temp.CVL]/50,2) 
AA=paste("Sensitivity=",true.CVL,"/",as.character(50),"=",as.character(Sen)) 
Spe=round(true.grid[temp.CVL]/(p-50),2) 
AA=paste("Sensitivity=",true.CVL,"/",as.character(50),"=",as.character(Sen)) 
legend(log(P.grid[temp.CVL])-2,CVL.grid[temp.CVL]-30,AA,pch=17,col="red") 
 
 
n=200 ### sample size 
res=rbind( 
  simu(R,n,K,P.value=0.000075), 
  simu(R,n,K,P.value=0.0001), 
  simu(R,n,K,P.value=0.00025), 
  simu(R,n,K,P.value=0.0005), 
  simu(R,n,K,P.value=0.00075), 
  simu(R,n,K,P.value=0.001), 
  simu(R,n,K,P.value=0.0025), 
  simu(R,n,K,P.value=0.005), 
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  simu(R,n,K,P.value=0.0075), 
  simu(R,n,K,P.value=0.01), 
  simu(R,n,K,P.value=0.025), 
  simu(R,n,K,P.value=0.05), 
  simu(R,n,K,P.value=0.075) 
) 
 
P.grid=res[,"P"] 
CVL.grid=res[,"CVL"] 
true.grid=res[,"True"] 
false.grid=res[,"False"] 
res 
 
plot(log(P.grid),CVL.grid,type="b",xlab="log(P-value)",ylab="CVL",main="n=200") 
temp.CVL=which.max(CVL.grid) 
points(log(P.grid[temp.CVL]),CVL.grid[temp.CVL],col="red",pch=17,cex=1.5) 
true.CVL=as.character(round(true.grid[temp.CVL],0)) 
false.CVL=as.character(round(false.grid[temp.CVL],0)) 
legend("bottom",legend=paste("True genes =",true.CVL,";","False genes =",false.CVL),col="red") 
Sen=round(true.grid[temp.CVL]/50,2) 
AA=paste("Sensitivity=",true.CVL,"/",as.character(50),"=",as.character(Sen)) 
legend(log(P.grid[temp.CVL]),CVL.grid[temp.CVL]-30,AA,pch=17,col="red") 
 

 

 

S4. R codes for simulation studies (for prediction): 

install.packages("compound.Cox") 
library(compound.Cox) 
library(penalized) 
 
simu=function(R,n,K,P.value){ 
   
  p=5000 ### the number of genes 
  # p=200 ## for quick test 
  beta_true=c(rep(0.1,25),rep(-0.1,25),rep(0,p-50)) 
  q0=sum(beta_true==0) ### the number of zero coefficients ### 
  q1=sum(beta_true>0) ###  the number of positive coefficients ### 
  q2=sum(beta_true<0) ###  the number of negative coefficients ### 
   
  q_vec=True=False=CVL=CEN_per=numeric(R) 
  CC.c=CS.c=R.c=L.c=numeric(R) 
  CC.LR=CS.LR=R.LR=L.LR=numeric(R) 
  CEN_Bound=1 #=cen~59%# 
   
  for(r in 1:R){ 
    t.vec=d.vec=numeric(n) 
    set.seed(r) 
    X.mat=X.pathway(n,p,q1,q2) 
    colnames(X.mat)=c(1:p) 
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    for(i in 1:n){ 
      eta=X.mat[i,]%*%beta_true 
      T=rexp(1,rate=exp(eta)) 
      C=runif(1,min=0,max=CEN_Bound) 
      t.vec[i]=min(T,C) 
      d.vec[i]=(T<=C) 
    } 
    CEN_per[r]=1-mean(d.vec) 
    res=uni.selection(t.vec, d.vec, X.mat, P.value=P.value,K=K,score=TRUE) 
    q_vec[r]=length(res$beta) 
    CVL[r]=res$CVL[1] 
    True[r]= sum( as.numeric(names(res$P))<=q1+q2 ) 
    False[r]= sum( as.numeric(names(res$P))>q1+q2 ) 
    temp=as.numeric(names(res$beta)) 
     
    ### Ridge ### 
    res_R=optL2(Surv(t.vec,d.vec),penalized=X.mat[,temp],fold=5,trace=FALSE) 
    beta_R=attributes(res_R$fullfit)$penalized 
     
    ### Lasso ### 
    res_L=optL1(Surv(t.vec,d.vec),penalized=X.mat[,temp],fold=5,trace=FALSE) 
    beta_L=attributes(res_L$fullfit)$penalized 
     
    ### Compound shrinkage ### 
    res_CS=compound.reg(t.vec,d.vec,X.mat[,temp],delta_a = 0.1,randomize=FALSE) 
    beta_CS=res_CS[[2]] 
     
    t.test=d.test=numeric(n) 
    set.seed(r+R) 
    X.test=X.pathway(n,p,q1,q2) 
    colnames(X.test)=c(1:p) 
    for(i in 1:n){ 
      eta=X.test[i,]%*%beta_true 
      T=rexp(1,rate=exp(eta)) 
      C=runif(1,min=0,max=CEN_Bound) 
      t.test[i]=min(T,C) 
      d.test[i]=(T<=C) 
    } 
     
    CC.test=X.test[,temp]%*%res$beta 
    CC.c[r]=survConcordance(  Surv(t.test,d.test)~CC.test  )$concordance 
    t.o=t.test[order(CC.test)] 
    d.o=d.test[order(CC.test)] 
    CC.LR[r]=sqrt( survdiff(Surv(t.o,d.o) ~ c(rep(1,n/2),rep(0,n/2)))$chisq ) 
     
    CS.test=X.test[,temp]%*%beta_CS 
    CS.c[r]=survConcordance(  Surv(t.test,d.test)~CS.test  )$concordance 
    t.o=t.test[order(CS.test)] 
    d.o=d.test[order(CS.test)] 
    CS.LR[r]=sqrt( survdiff(Surv(t.o,d.o) ~ c(rep(1,n/2),rep(0,n/2)))$chisq ) 
     



11 

 

    R.test=X.test[,temp]%*%beta_R 
    R.c[r]=survConcordance(  Surv(t.test,d.test)~R.test  )$concordance 
    t.o=t.test[order(R.test)] 
    d.o=d.test[order(R.test)] 
    R.LR[r]=sqrt( survdiff(Surv(t.o,d.o) ~ c(rep(1,n/2),rep(0,n/2)))$chisq ) 
     
    L.test=X.test[,temp]%*%beta_L 
    L.c[r]=survConcordance(  Surv(t.test,d.test)~L.test  )$concordance 
    t.o=t.test[order(L.test)] 
    d.o=d.test[order(L.test)] 
    L.LR[r]=sqrt( survdiff(Surv(t.o,d.o) ~ c(rep(1,n/2),rep(0,n/2)))$chisq ) 
  } 
   
  res.train=c(P=P.value,CEN_Percent=round(mean(CEN_per),2),CVL=mean(CVL), 
              q=mean(q_vec),True=mean(True),False=mean(False)) 
   
  c.index=c(CC=mean(CC.c),Ridge=mean(R.c),Lasso=mean(L.c),CS=mean(CS.c)) 
  LR.test=c(CC=mean(CC.LR),Ridge=mean(R.LR),Lasso=mean(L.LR),CS=mean(CS.LR)) 
  list(res.train=res.train,c.index=c.index,LR.test=LR.test) 
} 
 
n=100 ### sample size 
R=50 ### the number of simulation runs 
K=5 ### the number of folds in CV 
 
P.grid=c(0.000075,0.0001,0.00025,0.0005,0.00075, 
         0.001,0.0025,0.005,0.0075,0.01,0.025,0.05,0.075) 
 
S1=simu(R,n,K,P.value=0.000075) 
S2=simu(R,n,K,P.value=0.0001) 
S3=simu(R,n,K,P.value=0.00025) 
S4=simu(R,n,K,P.value=0.0005) 
S5=simu(R,n,K,P.value=0.00075) 
S6=simu(R,n,K,P.value=0.001) 
S7=simu(R,n,K,P.value=0.0025) 
S8=simu(R,n,K,P.value=0.005) 
S9=simu(R,n,K,P.value=0.0075) 
S10=simu(R,n,K,P.value=0.01) 
S11=simu(R,n,K,P.value=0.025) 
S12=simu(R,n,K,P.value=0.05) 
S13=simu(R,n,K,P.value=0.075) 
 
S.c=cbind(S1$c.index,S2$c.index,S3$c.index,S4$c.index,S5$c.index, 
          S6$c.index,S7$c.index,S8$c.index,S9$c.index,S10$c.index, 
          S11$c.index,S12$c.index,S13$c.index) 
S.LR=cbind(S1$LR.test,S2$LR.test,S3$LR.test,S4$LR.test,S5$LR.test, 
           S6$LR.test,S7$LR.test,S8$LR.test,S9$LR.test,S10$LR.test, 
           S11$LR.test,S12$LR.test,S13$LR.test) 
 
CC.c.grid=S.c["CC",] 
R.c.grid=S.c["Ridge",] 
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CS.c.grid=S.c["CS",] 
L.c.grid=S.c["Lasso",] 
 
CC.LR.grid=S.LR["CC",] 
R.LR.grid=S.LR["Ridge",] 
CS.LR.grid=S.LR["CS",] 
L.LR.grid=S.LR["Lasso",] 
 
c.max=max(c(CC.c.grid,R.c.grid,L.c.grid,CS.c.grid)) 
c.min=min(c(CC.c.grid,R.c.grid,L.c.grid,CS.c.grid)) 
LR.max=max(c(CC.LR.grid,R.LR.grid,L.LR.grid,CS.LR.grid)) 
LR.min=min(c(CC.LR.grid,R.LR.grid,L.LR.grid,CS.LR.grid)) 
 
par(mfrow=c(1,2)) 
plot(log(P.grid),CC.LR.grid,ylim=c(LR.min,LR.max),type="b",lty="solid", 
     xlab="log(P-value)",ylab="|Z| of the Log-rank test",pch=8,lwd=2) 
points(log(P.grid),R.LR.grid,type="b",col="red",pch=17,lwd=2) 
points(log(P.grid),CS.LR.grid,type="b",col="blue",pch=16,lwd=2) 
points(log(P.grid),L.LR.grid,type="b",col="orange",pch=15,lwd=2) 
 
AA=c("CS","Ridge","CC","Lasso") 
BB=c("dashed","dotted","solid","dotdash") 
CC=c("blue","red","black","orange") 
legend("bottom",AA,lwd=c(2,2),merge = TRUE,col=CC,pch=c(16,17,8,15)) 
 
plot(log(P.grid),CC.c.grid,ylim=c(c.min,c.max),type="b",lty="solid", 
     xlab="log(P-value)",ylab="c-index",pch=8,lwd=2) 
points(log(P.grid),R.c.grid,type="b",col="red",pch=17,lwd=2) 
points(log(P.grid),CS.c.grid,type="b",col="blue",pch=16,lwd=2) 
points(log(P.grid),L.c.grid,type="b",col="orange",pch=15,lwd=2) 
 
AA=c("CS","Ridge","CC","Lasso") 
BB=c("dashed","dotted","solid","dotdash") 
CC=c("blue","red","black","orange") 
legend("bottom",AA,lwd=c(2,2),merge = TRUE,col=CC,pch=c(16,17,8,15)) 
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