
Computer Methods and Programs in Biomedicine 168 (2019) 21–37

Contents lists available at ScienceDirect

Computer Methods and Programs in Biomedicine

journal homepage: www.elsevier.com/locate/cmpb

compound.Cox: Univariate feature selection and compound covariate

for predicting survival

Takeshi Emura

a , ∗, Shigeyuki Matsui b , Hsuan-Yu Chen

c

a Graduate Institute of Statistics, National Central University, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
b Department of Biostatistics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
c Institute of Statistical Science, Academia Sinica, 128 Academia Road Sec.2, Nankang Taipei 115, Taiwan

a r t i c l e i n f o

Article history:

Received 28 March 2018

Revised 26 September 2018

Accepted 26 October 2018

Keywords:

Cancer prognosis

Copula

Cox regression

Cross-validation

Dependent censoring

False discovery rate

Gene expression

High-dimensional data

Multiple testing

a b s t r a c t

Background and objective: Univariate feature selection is one of the simplest and most commonly used

techniques to develop a multigene predictor for survival. Presently, there is no software tailored to per-

form univariate feature selection and predictor construction.

Methods: We develop the compound.Cox R package that implements univariate significance tests (via the

Wald tests or score tests) for feature selection. We provide a cross-validation algorithm to measure pre-

dictive capability of selected genes and a permutation algorithm to assess the false discovery rate. We

also provide three algorithms for constructing a multigene predictor (compound covariate, compound

shrinkage, and copula-based methods), which are tailored to the subset of genes obtained from univari-

ate feature selection. We demonstrate our package using survival data on the lung cancer patients. We

examine the predictive capability of the developed algorithms by the lung cancer data and simulated

data.

Results: The developed R package, compound.Cox , is available on the CRAN repository. The statistical tools

in compound.Cox allow researchers to determine an optimal significance level of the tests, thus providing

researchers an optimal subset of genes for prediction. The package also allows researchers to compute

the false discovery rate and various prediction algorithms.

© 2018 Published by Elsevier B.V.

1. Introduction

Univariate feature selection is one of the simplest and most

commonly used techniques to develop a multigene predictor for

survival of cancer patients. It picks up genes having P-values lower

than a cutoff in testing association between genes and survival

under univariate Cox models [1] . A predictor constructed from the

selected genes is useful for predicting survival in various cancers

[2-11] . To construct a predictor, it is essential to determine the

number of genes to be included in the predictor. Researchers

often set a fixed threshold (e.g., P-value < 0.001), or a data-driven

threshold that optimizes predictive capability.

By adopting the univariate tests, one would select features indi-

vidually associated with survival. More elaborate multivariate fea-

ture selection methods accounting for correlations between fea-

tures can also be considered, but their advantages over the sim-

pler univariate methods have not convincingly been demonstrated

through many survival prediction analyses of cancer datasets

∗ Corresponding author.

E-mail address: takeshiemura@gmail.com (T. Emura).

[1,12,13,14] . Methods ignoring correlations between features, such

as diagonal linear discriminant analysis [15] and compound covari-

ate [11,16] , performs reasonably well in some simulation studies. In

addition, the univariate tests adapt well to clinical trials involving

the development of genomic signatures [10,17] .

While univariate feature selection is a simple approach, a vari-

ety of computing algorithms should be implemented:

(i) Computation of Z-values and P-values (via the Wald tests
or score tests),

(ii) Choice of a P-value threshold,
(iii) Assessment of predictive capability of selected genes,
(iv) Assessment of false discoveries (falsely selected genes),
(v) Construction of a multigene predictor after selection.

As for choosing a P-value threshold, the simplest approach is

to apply the traditional value of 0.05, 0.01, or 0.001 [3,4,7-10] .

A more refined approach for choosing a threshold is to optimize

a cross-validated predictive criterion [6,18,19] . The computational

algorithms also vary in terms of predictor construction after se-

https://doi.org/10.1016/j.cmpb.2018.10.020

0169-2607/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.cmpb.2018.10.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2018.10.020&domain=pdf
mailto:takeshiemura@gmail.com
https://doi.org/10.1016/j.cmpb.2018.10.020

22 T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37

lection. These includes the predictor based on a multivariate Cox

model [18] , the compound covariate predictor [6,10,16] , the ridge

regression [9,18] , and the predictor fitted by a copula model under

dependent censoring [20,21] .

In this article, we introduce the compound.Cox R package

[22] that implements univariate significance tests (via the Wald

tests or score tests) for feature selection as well as a cross-

validation analysis for measuring predictive capability of selected

genes. These analytical tools allow users to determine an optimal

significance level of the tests, thus providing users an optimal sub-

set of genes for prediction. The tool for evaluating the false discov-

ery rate (FDR) is also given in the package. The package provides

three methods for constructing a multigene predictor (compound

covariate, compound shrinkage, and copula-based methods), which

are tailored to the subset of genes obtained from univariate feature

selection. To provide a running example, we included survival data

on lung cancer patients in the package. We demonstrate the pre-

dictive capability of the developed algorithms by the lung cancer

data and simulated data.

2. Univariate feature selection

This section reviews the basic background for univariate feature

selection methods that have been studied for prognostic prediction

of survival.

Univariate feature selection is the traditional method for select-

ing a subset of genes that are predictive of survival. In the initial

step, one fits a univariate Cox model for each gene, one-by-one.

Then, one selects a subset of genes that are univariately associated

with survival. The subset typically consists of genes that have P-

values lower than a threshold. The number of selected genes, de-

noted by q , is typically q ≤ 100 and rarely q > 200.

2.1. P-value threshold

A P-value threshold can be chosen by a variety of rules. Many

medical researchers tend to use the traditional P-value threshold

of 0.05 [7] and 0.01 [3,8,9] . Simon [23] recommended the P-value

threshold of 0.001 that is often useful in survival analysis [4,10,11] .

While the fixed threshold approaches are easy to use, the threshold

values are often arbitrary and sub-optimal.

A threshold can be determined by optimizing predictive capa-

bility of the selected genes. For the lung cancer data, Beer et al.

[2] chose q = 50 genes that maximized the association between

overall survival and the multigene predictor. To predict metasta-

sis of breast cancer patients, Wang et al. [5] chose q = 76 genes

that maximized the area under the ROC curve. These exploratory

techniques typically need to examine different thresholds, different

tests, and different predictors before reaching a final set of genes.

Matsui [6] recommended a more automatic routine by optimiz-

ing a cross-validated likelihood (CVL). This method was applied to

construct a compound covariate (a multigene predictor) consisting

of q = 75 or 85 genes. A different cross-validated likelihood with

a multivariate Cox model was considered in Bøvelstad et al. [18] .

However, their optimized set of genes contained only a few genes

and the resultant multigene predictor had poor predictive capa-

bility. This is because their predictive capability of the optimized

set of genes was not properly measured under a multivariate Cox

model.

In summary, it is critical to develop a set of algorithms that

are tailored for univariate feature selection. Researchers currently

should perform a “for loop” algorithm to run the sequence of uni-

variate Cox regressions across all genes. However, this algorithm

is not convenient when researchers try many different tests (the

Wald tests or score tests) and different P-value thresholds. The

computation of the CVL [6] raises another challenge due to its

complex algorithm.

2.2. Cross-validation

Simon [24] suggested using cross-validation to estimate a

predictive capability of multigene predictors. In a K -fold cross-

validation, samples of size n are randomly divided into K groups of

approximately equal sizes, which can be indexed by k = 1, …, K . A

feature selection algorithm is applied to the samples without the

k -th group (n − n / K training samples). Using the set of selected fea-

tures, multigene predictors are constructed for the samples in the

k -th group (n / K test samples). Then, a measure of predictive accu-

racy, denoted by CV k , is computed. Repeat this process for k = 1,

…, K , and compute the overall measure of predictive capability ∑ K
k =1 C V k .

The choice K = n yields the leave-one-out cross-validation that

gives the most unbiased estimate of predictive capability. In prac-

tice, the number K = 5 (or K = 10) is often chosen to reduce compu-

tation time. In this case, a predictive capability measure computed

by cross-validation varies according to how to divide the samples.

Hence, some quality control method is encouraged to assess the

random variation.

If the sample size n is small, a larger number for K (e.g., K = 20)

is recommended to ensure that each group has sufficient numbers

of samples.

The interpretation of predictive capability with cross-validation

remains a challenge when the samples involve high-dimensional

features. For each fold of cross-validation, the process of feature

selection is implemented from scratch. Consequently, each fold

yields its own selected features that are often remarkably different

from the selected features by the whole samples. This implies that

cross-validation evaluates the “selection algorithm” rather than the

“selected features”.

2.3. Multigene predictors

A multigene predictor is a weighted sum of gene expressions. A

large (small) predictor value corresponds to poor (good) survival,

which can be used to classify a patient into a good or poor prog-

nosis group.

To calculate the weights of a multigene predictor, one can use

the regression coefficients or Z-values obtained from univariate

tests. The resultant predictor is called the compound covariate (CC)

as proposed by Tukey [25] . The CC predictor is an ensemble of uni-

variate analyses, which does not employ a multivariate model. The

CC predictor has been shown to be useful in predicting survival

with gene expressions [2,5-7,10,11,13,16] .

After feature selection, medical researchers tend to re-fit a mul-

tivariate Cox regression model to develop a refined multigene pre-

dictor. This is because some genes identified in univariate signif-

icance analyses are no longer significant in multivariate analysis

[8,26] due to their multicollinearity and high-dimensionality. How-

ever, if non-significant features in a multivariate Cox model are

simply removed, the resultant predictor has poor predictive capa-

bility [18,19] . Ridge regression is an approach to combat both mul-

ticollinearity and high-dimensionality [18] . For instance, to predict

survival of ovarian cancer patients, Yoshihara et al. [9] developed

a ridge-based predictor after selecting q = 88 genes by univariate

feature selection. The compound shrinkage (CS) estimator [16] pro-

vides another strategy to refine a multigene predictor, which ad-

justs the CC predictor by incorporating multivariate likelihood in-

formation.

T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37 23

2.4. Dependent censoring

The standard univariate feature selection methods may produce

biased results if censoring is due to informative dropout [21,27] .

This is because Cox regression requires the independent censor-

ing assumption. The issues of dependent censoring have been in-

tensively discussed in the literature, and now several statistical

methods can remedy the issues [20,21,27-32] . Nonetheless, these

methods have not been widely used due to the requirement of

mathematical skills and high computational time. Emura and Chen

[20] proposed a copula-based method to perform univariate fea-

ture selection, where a copula can adjust for the biased results due

to dependent censoring. We shall introduce this method as a com-

ponent of compound.Cox .

3. The compound.Cox package

The basis of compound.Cox is the sequence of univariate Cox

models

h j (t| x j) = h 0 j (t) exp (β j x j) , j = 1 , ..., p,

where x j is the j -th feature (gene), h 0 j (·) is the baseline hazard

function, and p is the number of features. The compound.Cox pack-

age performs feature selection through the multiple tests for H 0 j :

β j = 0 vs. H 1 j : β j � = 0 for j = 1,..., p , where p can be large (e.g.,

p = 100 and p = 5000). Features are selected according to the sig-

nificance level for the test results.

We first introduce the lung cancer data made available in

compound.Cox .

3.1. The lung cancer data

Chen et al. [7] analyzed the data from 125 lung cancer pa-

tients whose gene expressions were coded as 1, 2, 3, or 4 (∼25th,

25th ∼50th, 50th ∼75th, or 75th ∼ percentile). These values were

treated as continuous covariates (not as factors). The primary end-

point is overall survival (i.e., time-to-death). During the follow-up,

38 patients died and the remaining 87 patients were censored. In

Chen et al. [7] , the 125 patients were separated into 63 training

and 62 testing samples. Univariate feature selection performed on

the 63 training samples resulted in 16 genes that are predictive of

survival (P-value < 0.05 in the Wald tests).

We made the subset of the lung cancer data available in

compound.Cox . The subset contains p = 97 gene expressions which

are associated with overall survival (P-value < 0.20 in the Wald

tests). The data are stored in the Lung object, a data-frame with

125 samples (patients):

In the outputs above, the variables are defied as

• t.vec: survival time (time to either death or censoring) in

months
• d.vec: censoring indicator; 1 = death, or 0 = censoring
• train: index for training sample; TRUE = training sample, or

FALSE = testing sample
• VHL: gene expression, coded as 1, 2, 3, or 4
• IHPK1: gene expression, coded as 1, 2, 3, or 4
• RPL5: gene expression, coded as 1, 2, 3, or 4

Whilst p = 97 is not as high-dimensional as those commonly

seen in microarray analyses, the data allow users to run our il-

lustrative R codes in a reasonable amount of computing time.

Note that gene expressions are usually continuously valued in con-

trast to the ordinal coding values of 1, 2, 3, or 4 in the above

example.

Supplementary Material includes the R codes to analyze the

lung cancer data using the compound.Cox package.

3.2. Data input

The form of survival data in compound.Cox is { (t i , δi , x i); i = 1,

…, n }, where

• t i : survival time or censoring time,
• δi : censoring indicator (δi = 1 if t i is survival time, or δi = 0 if t i

is censoring time),
• x i = (x i 1 , ..., x ip): p -dimensional features (genes),

and n is the number of samples. This is the standard form of

survival data except that p is allowed to be greater than n . In

compound.Cox , we use the following styles for inputs:

• t.vec: a vector (t 1 , t 2 , …, t n),
• d.vec: a vector (δ1 , δ2 , …, δn),
• X.mat: a matrix with the i -th row x i = (x i 1 , ..., x ip) for i = 1, …,

n .

One can create t.vec, d.vec, and X.mat for the 63 training sam-

ples by using the R codes in Supplementary Material.

3.3. Feature selection

The function uni.selection(, P.value = , score =) can perform

univariate feature selection by setting a threshold “P.value = P ” for

0 < P < 1. For instance, P = 0.05 is the traditional 5% significance

level. It incorporates the Wald test (score = FALSE) and score test

(score = TRUE) into a single function.

24 T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37

• Wald tests

Define a univariate estimator ˆ β j = arg max � j (β j) , where � j (·) is
the log likelihood defined as

� j (β j) =

n ∑

i =1

δi

[

β j x i j − log

(∑

� ∈ R i
exp (β j x � j)

)]

, R i = { � ; t � ≥ t i } .

The Wald tests are based on the Z-values z j =

ˆ β j /SE(̂ β j) , j = 1,

..., p , where SE(β j) = [−∂ 2 � j (β j) /∂β2
j
] −1 / 2 . Under the null hy-

pothesis H 0 j : β j = 0, the distribution of z j is approximated by the

standard normal distribution Z ∼ N(0 , 1) . The selected genes are

represented as a set �= { j : P j < P }, where P j = Pr (| Z| > | z j |) is

the P-value for testing H 0 j : β j = 0 vs. H 1 j : β j � = 0.

• Score tests

The univariate score statistics and its variances are

S j =

n ∑

i =1

δi

(
x i j − S (1)

i j
/S (0)

i j

)
, V j =

n ∑

i =1

δi

(
S (2)

i j
/S (0)

i j
− (S (1)

i j
/S (0)

i j
)

2
)
,

where S (k)
i j

=

∑

� ∈ R i x
k
� j

for k = 0, 1 or 2, and j = 1, ..., p . The Z-value

is obtained by z j = S j /V 1 / 2
j

. Witten and Tibshirani [1] stabilized the

Z-value by using a constant d 0 > 0 such that z
d 0
j

= S j / (V
1 / 2
j

+ d 0) .

The value d 0 = 0 reduces to the score statistics. The selected genes

are represented as a set �= { j : P j < P }, where P j is the P-value

for testing H 0 j : β j = 0 vs. H 1 j : β j � = 0. The vector of univariate score

statistics and the vector of their variances are:

S = δ′ (X − S (1) / S (0)
)
, V = δ′

(
S (2) / S (0) −

(
S (1) / S (0)

)2
)
,

where δ= (δ1 , …, δn)
′ is a vector of censoring indicators, X is

a n × p matrix with elements x ij , and S (k) is a n × p matrix with ele-

ments S (k)
i j

. Thus, the vector of Z-statistics is S / V

1/2 . Note that this

vector-based computing scheme is efficiently programmed in R.

The function uni.selection() performs feature selection for a

given value of P . Below, one can see the results of feature se-

lection using the Wald tests with P = 0.05. In the input below,

“score = FALSE” means that the Wald tests are used instead of the

score tests.

The outputs show

ˆ β j , z j , and P j for each of the selected features.

The outputs also show the CVL value that is defined in

Appendix A . A high CVL value corresponds to a better predictive

capability for the selected features. The input “K = 20” means that

20-fold cross-validation is applied to compute the CVL value. Since

the data have small sample sizes (n = 63), the usual choice of K = 5

or K = 10 leads to unstable results.

The outputs also show the FDR that is defined in Appendix B . A

low FDR value corresponds to a lower proportion of falsely selected

features. The input “permutation = TRUE” means that the permuta-

tion method of Appendix B is used to compute the FDR. One could

save computational time by setting “permutation = FALSE” .

The Wald tests selected 16 genes (P-value < 0.05, CVL = −98.66,

FDR = 0.30 or 0.31). The FDR of 0.31 implies that there are 16 × 0.31

≈ 5 falsely selected genes out of the 16 selected genes. The score

tests selected 18 genes (P-value < 0.05, CVL = −97.37, FDR = 0.27 or

0.31); the outputs for the score tests are given in Appendix C .

Hence, the score tests had slightly better CVL and FDR values than

the Wald tests do. The selected genes are sorted according to their

P-values.

T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37 25

In the outputs, “CVL = −98.66” is seen together with

“RCVL1 = −86.88” and “RCVL2 = −87.75”. RCVL1 and RCVL2 are

named “re-substitution CVL”, which provide upper control limits

for the variation of the CVL value due to random cross-validation.

If the CVL value is less than the RCVL1 and RCVL2 values, then

the variation of the CVL value is in-control. In the outputs, we

conclude that “CVL = −98.66” is in-control since CVL < RCVL1 and

CVL < RCVL2. Appendix A defines RCVL1 and RCVL2 and explains

how to interpret them.

3.4. Prediction after selection

Consider a test sample having the q selected features (x 1 ,…,

x q). To predict survival of this sample, we construct a predictor

w 1 x 1 + ��� + w q x q whose high (low) value is associated with poor

(good) prognosis for survival.

Using the outputs for the Wald tests, we set the weights w j =

ˆ β j attached to the q = 16 selected genes. We then arrive at the 16-

gene predictor of Chen et al. [7] :

The 16 − genepredictor = (−1 . 09 × ANXA 5) + (1 . 32 × DLG 2)

+(0 . 55 × ZNF 264) + (0 . 75 × DUSP 6)

+(0 . 59 × CPEB 4) + (−0 . 84 × LCK) + (−0 . 58 × STAT 1)

+(0 . 65 × RNF 4) + (0 . 52 × IRF 4)

+(0 . 58 × STAT 2) + (0 . 51 × HGF) + (0 . 55 × ERBB 3)

+(0 . 47 × NF 1) + (−0 . 77 × FRAP 1)

+(0 . 92 × MMD) + (0 . 52 × HMMR) .

The resultant predictor is a compound covariate (CC) since it

is an ensemble of univariate analyses, which does not employ a

multivariate analysis [6,16] .

To construct a predictor based on the score tests, we use the

Z-value of the univariate score tests w j = z j attached to the q = 18

selected genes [6] . Usually, z j has the same sign as ˆ β j .

3.5. Significance tests

We have seen that uni.selection() performs multiple tasks – se-

lection of features, sorting of selected features, and computation of

the CVL and FDR values. However, some users simply wish to per-

form significance tests for all features without selection or sorting.

For this reason, we prepare more elementary functions, uni.Wald()

and uni.score() . These functions also save computing time by avoid-

ing the complex algorithms for the CVL and FDR.

In the outputs below, we use “res” to store the values of ˆ β j , z j ,

and P j for all the features under the Wald tests. Then we extract

ˆ β j for the selected features with P-value < 0.05.

The computational speed of uni.score() is much faster than

that of uni.Wald() since the score test does not estimate β j . In

uni.score() , we provide the one-step estimator S j / V j that gives an

approximate value of ˆ β j . Consequently, the outputs for the score

tests are similar to those for the Wald tests.

3.6. Optimizing a threshold by CVL

The optimal P-value threshold can be determined by plotting

of the CVL values against P-value thresholds. Since the large CVL

value corresponds to better predictive capability, one can deter-

mine the P-value threshold by searching the maxima of the CVL

plot.

Fig. 1 draws the CVL plot for the lung cancer data. It shows

that the optimal threshold is “P-value < 0.0205” for the Wald tests

and the optimal threshold is “P-value < 0.0275” for the score tests.

The CVL plots are not very smooth due to the small sample size

(n = 63). Fig. 1 also draws the plots for RCVL1 and RCVL2, which

provide the upper control limits for the CVL plot. We observe that

the CVL plot is in-control since it is under the RCVL1 and RCVL2

plots.

Supplementary Material provides the R codes for creating the

CVL plot and its upper control limits (S1 for the lung cancer data;

S2 for simulated data).

26 T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37

Fig. 1. The plot of the CVL values against P-value thresholds. Larger CVL values correspond to better predictive ability of selected features. RCVL1 and RCVL2 provide the

upper control limits for the CVL values.

Below, we show the outputs for feature selection under the op-

timal threshold for the Wald tests. The results show that 7 genes

(P-value < 0.0205) are selected. Among the 7 genes, two or three

genes may be uninformative (FDR = 0.28 ∼0.32).

T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37 27

Table 1

Six different predictors for overall survival based on the lung cancer data.

Multigene predictor CVL Log-rank c -index

Wald (−1.09 × ANXA5) + (1.32 × DLG2) + (0.55 × ZNF264) + (0.75 × DUSP6)

+ (0.59 × CPEB4) + (−0.84 × LCK) + (−0.58 × STAT1)

−96.37 P = 0.452 c = 0.56

Score (−3.36 × ANXA5) + (3.11 × DLG2) + (2.81 × ZNF264) + (2.71 × DUSP6)

+ (2.53 × CPEB4) + (−2.51 × LCK) + (−2.45 × STAT1) + (2.37 × STAT2)

+ (2.35 × RNF4) + (2.23 × IRF4)

−95.96 P = 0.664 c = 0.57

Copula

+ Wald

(0.05 × ANXA5) + (0.96 × DLG2) + (0.53 × ZNF264) + (0.41 × DUSP6)

+ (0.42 × CPEB4) + (−0.34 × LCK) + (0.01 × STAT1)

– P = 0.189 c = 0.58

Copula

+ score

(0.05 × ANXA5) + (0.96 × DLG2) + (0.53 × ZNF264) + (0.41 × DUSP6)

+ (0.42 × CPEB4) + (−0.34 × LCK) + (0.01 × STAT1) + (0.43 × STAT2)

+ (0.06 × RNF4) + (0.30 × IRF4)

– P = 0.068 c = 0.58

Shrinkage

+ Wald

(−0.58 × ANXA5) + (0.95 × DLG2) + (0.20 × ZNF264) + (0.55 × DUSP6)

+ (−0.25 × CPEB4) + (−0.52 × LCK) + (−0.23 × STAT1)

– P = 0.452 c = 0.57

Shrinkage

+ Score

(−0.61 × ANXA5) + (0.89 × DLG2) + (0.16 × ZNF264) + (0.58 × DUSP6)

+ (−0.36 × CPEB4) + (−0.50 × LCK) + (−0.13 × STAT1) + (0.47 × STAT2)

+ (0.30 × RNF4) + (−0.01 × IRF4)

– P = 0.304 c = 0.60

CVL , the cross-validated likelihood; Log-rank , the P-value of the log-rank test for the difference between good and poor groups in the test samples; c -index , the concor-

dance measure between a predictor and survival outcome in the test samples.

Below, we show the outputs for feature selection under the op-

timal threshold for the score tests. The results show that 10 genes

(P-value < 0.0275) are selected. Among the 10 genes, three or four

genes may be uninformative (FDR = 0.27 ∼0.34).

The regression coefficients ($beta) and Z-values ($Z) in the

above outputs shall be used to construct a multigene predictor

based on the selected genes. Table 1 summarizes the CC predictors

constructed by the Wald tests and the score tests.

3.7. Dependent censoring

If censoring is due to informative dropout or any mechanism

associated with survival, a predictor calculated from univariate

Cox regressions may produce biased results. The method of Emura

and Chen [20] aims to adjust the bias by applying a copula [33] .

Appendix D provides a short review of copulas and dependent cen-

soring.

A weight in a multigene predictor is computed as w j =

ˆ β j (α) ,

where α is a copula parameter. In practice, the Clayton copula is

used where the parameter α is related to Kendall’s tau through

τ (α) = α/(α + 2). Hence, α = 0 corresponds to the independent cen-

soring model. The resultant predictor is
∑

j∈ � ˆ β j (α) x j , where α
is chosen to maximize the predictive capability of the predic-

tor. The dependCox.reg.CV function can automatically choose α by

maximizing the cross-validated c -index; the details are given in

Appendix D .

28 T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37

The outputs below show the weights w j =

ˆ β j (̂ α) and the es-

timator ˆ α = 11 . 57 , where the subset � consists of the 10 gene

as previously selected by the score tests. The input “K = 5” is the

number of cross-validation folds for choosing α as recommended

in Emura and Chen [21] .

It is interesting to point out that the most significant gene in

the univariate Cox model, ANXA5 , becomes barely significant in the

copula-based method. The lack of significance occurs partly due to

the concentration of the gene expression values on the category 4:

In light of this, estimation of w j attached to ANXA5 is inher-

ently difficult. Hence, the weak weight of ANXA5 derived from the

copula-based method is reasonable. A similar phenomenon occurs

in STAT1 .

While the copula-based method has desirable performance, it is

computationally very demanding. Therefore, we suggest reducing

the number of features before applying the copula-based method

as shown in the above example.

3.8. Compound shrinkage predictor

The CS predictor is a refinement of the CC predictor [16] . A

weight in the CS predictor is computed as w j =

ˆ β j (a) , where 0 ≤ a

≤ 1 is a shrinkage parameter. The value a = 0 yields the CC predic-

tor
∑

j∈ � ˆ β j x j , where ˆ β j = arg max � j (β j) is the estimator based on

the univariate Cox model. The value 0 < a < 1 yields the predictor

that is intermediate between the univariate (a = 0) and multivari-

ate (a = 1) estimators through a mixture log-likelihood

� a n (β) = a� n (β) + (1 − a)
∑ p

j=1
� j (β j) ,

where � n (β) is the log-partial likelihood under a multivariate Cox

model. Given a , the maximizer of the mixture log-likelihood is

denoted by ˆ β ′ (a) = (̂ β1 (a) , . . . , ˆ βp (a)) . The resultant predictor is ∑

j∈ � ˆ β j (̂ a) x j where ˆ a is chosen to optimize a cross-validated like-

lihood [16] . The subset � may be pre-specified by univariate fea-

ture selection.

For instance, one can compute ˆ β j (̂ a) ’s for the 10 genes se-

lected by the score tests, where the estimator ˆ a = 0 . 55 is chosen

by a cross-validation. The input “K = 5 ′′ is the number of cross-

validation folds as recommended in [16] .

T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37 29

3.9. Comparison of multigene predictors

We shall compare the performance of the multigene predictors

that just have been introduced. Table 1 summarizes the expres-

sions of the six different multigene predictors that were computed

by the 63 training samples.

To evaluate each predictor’s test set performance, we applied a

multigene predictor to predict survival of the 62 testing samples.

We separated the 62 testing samples into either a good prognosis

group (low predictor value) or poor prognosis group (high predic-

tor value). We used the median of the predictor values to achieve

two equally sized groups [18] . We also computed the c -index to

measure the concordance between survival and its predictor, which

is equivalent to the area under the ROC curve.

Fig. 2 depicts the Kaplan-Meier survival curves for the good

(or poor) prognosis group separated by the six different multigene

predictors.

The upper parts of Fig. 2 show the results on the CC predictors

computed from the optimal Wald tests (upper left) and score tests

(upper right). A significant difference between the two groups was

not found, but the c -index demonstrated a modest ability to pre-

dict survival. In the subsequent analyses, we shall examine if the

predictive ability is improved by more refined predictors.

The middle parts of Fig. 2 show the results on the copula-based

methods. The predictors derived from the copula-based methods

improved the ability of discriminating between the good and poor

groups over the CC predictors. The modest improvement was also

seen in terms of the c -index. A clear separation between the good

and poor groups was found for the copula-based method applied

for the genes optimally selected by the score tests (middle right of

Fig. 2), giving a significance level of 10% in the log-rank test.

The bottom parts of Fig. 2 give the results on the CS predictors.

The CS predictor improves upon the CC predictor for the genes op-

timally selected by the score tests. This CS predictor also attains

the best value of the c -index among the six predictors. However,

the log-rank tests performed poorly in this case since it happened

that four testing samples had exactly the same predictor values as

the median predictor value (ties). Little improvement was seen for

the gene optimally selected by the Wald tests.

4. Simulations

We performed two sets of simulations for two different objec-

tives:

Objective (i) : to examine the capability of identifying informa-

tive genes by using compound.Cox .

Objective (ii) : to examine the predictive capability of multigene

predictors computed by using compound.Cox .

Regarding Objective (i), we evaluated the capability of identi-

fying informative genes at the optimal P-value threshold obtained

from the CVL plot. This is because one can arbitrary increase the

chance of identifying the informative genes by increasing a P-value

threshold, which however increases the chance of selecting unin-

formative genes.

Regarding Objective (ii), we compared the predictive perfor-

mance of the four predictors: the compound covariate (CC), the

compound shrinkage (CS), ridge, and Lasso predictors. That is, we

chose the ridge and Lasso predictors as the benchmarks since they

are well-known and highly accurate multigene predictors [18,19] .

The ridge and Lasso predictors are computed through the R pack-

age penalized [34] .

4.1. Simulation designs

Data were simulated as follows. We generated p = 50 0 0 contin-

uously valued gene expressions

x

′
i = (x i 1 , ..., x i 25 ︸ ︷︷ ︸

×25

, x i 26 , ... , x i 50 ︸ ︷︷ ︸
×25

, x i 51 , ..., x i 50 0 0 ︸ ︷︷ ︸
×(4950)

)

for n samples via X.pathway (n,p = 50 0 0,q1 = 25,q2 = 25) in the com-

pound.Cox package. This code generates three independent clusters

of gene expressions. The intra-cluster correlation is 0.5 for the first

two clusters, and 0 for the last cluster. More details are given in

[16] . Let

β = (, ..., 	︸ ︷︷ ︸
×25

, −	, ... , −	︸ ︷︷ ︸
×25

, 0 , ..., 0 ︸ ︷︷ ︸
×(4950)

) ,

where 	= 0.1 for low signals and 	= 0.2 for high signals . The

first 50 genes are called the true genes and the other 4950 genes

are called the false genes. The goal of Objective (i) is to exam-

ine how well compound.Cox can select the true genes without se-

lecting the false genes. Given the gene expressions, survival times

(T i) were generated under a Cox model h (t | x i) = h 0 (t)exp (x ′ i β) with

h 0 (u) = 1. Censoring times (U i) were generated from U (0, 1), and

t i = min { T i , U i } and δi = I { T i ≤ U i } are computed. The proportion

of censored samples is around

∑ n
i =1 (1 − δi) /n ≈0.56.

Based on the data { (t i , δi , x i); i = 1, …, n } generated, we se-

lected genes by the score tests under various P-value thresholds

(0.0 0 0 075 ∼0.075). We then plotted the CVL values against the P-

value thresholds. The CVL values were computed by K = 5 fold

cross-validation. We also calculated the four multigene predictors

based on the selected genes at each threshold, and applied them to

the independently simulated test samples. We compared the pre-

dictors’ performance in terms of the Z-value of the log-rank test for

equally sized groups (poor vs. good) and the c -index (equivalent to

the area under the ROC curve).

Our results are reported on the average of 50 replications. Sup-

plementary Material provides the R codes for simulations.

4.2. Simulation results

Fig. 3 depicts the CVL plot against the P-value threshold for the

score tests. Fig. 3 also shows the number of genes selected at the

optimum of the CVL plot. Overall, the majority of the true genes

were successfully selected while the majority of the false genes

are not selected. For instance, 42 genes were selected out of the

50 true genes while only 13 genes were selected out of 4950 false

genes under 	= 0.1 and n = 100. Under the large sample size of

n = 200, the number of successfully selected genes increased and

the number of the falsely selected genes reduced. In addition, the

accuracy of selected genes under 	= 0.2 was superior to that un-

der 	= 0.1. This is because larger signals make it easier to select

the true genes. In particular, all the 50 true genes were success-

fully selected and only 1 false gene were selected under 	= 0.2

and n = 200.

Fig. 4 compares the predictive performance of the four multi-

gene predictors. The four predictors show comparable perfor-

mance, all exhibiting good ability to predict survival (|Z-value| > 6;

c -index > 0.8 under 	= 0.1; |Z-value| > 8; c -index > 0.9 under

	= 0.2). Under 	= 0.2, the CS predictor performs the best among

the four predictors, but it takes the longest computing time. The

ridge predictor and the CC predictor are competitive. However, the

CC predictor takes the shortest computing time. The Lasso per-

forms relatively poorly, which is expected results in the presence

of a large number of informative genes [16] .

In summary, our simulation results show that the feature selec-

tion methods in compound.Cox have a desirable capability of iden-

30 T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37

Fig. 2. The Kaplan-Meier curves for the good and poor prognosis groups identified by the six different predictors. The two groups were determined by the low (or high)

values of a predictor. The log-rank test was used to measure the difference between the two prognosis groups, where the median of the predictor creates two equally sized

groups. The c -index was used to measure the concordance between survival and its predictor, which is equivalent to the area under the ROC curve.

T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37 31

Fig. 3. Simulation results for feature selection from 50 0 0 genes (50 true genes + 4950 false genes). The figures report the CVL plots and the number of selected genes at

the optimal P-value threshold (�).

32 T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37

Fig. 4. Simulation results for comparing the four mutigene predictors under n = 100. High values in the y-axis correspond to better predictive performance.

T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37 33

tifying informative genes. Our simulation results also show that

the multigene predictors in compound.Cox have competitive perfor-

mance with the well-established predictors.

5. Discussions

This article demonstrates the ability of the compound.Cox pack-

age to perform feature selection for predicting survival. We made

the lung cancer data available in the package to provide quick and

simple illustrations to demonstrate several functions in the pack-

age.

Beyond the illustrations for our package, we devised a

vector-based computation scheme for the univariate score tests

(Section 3.3). This scheme allows us to perform a large number of

tests by simple algebras. While the score tests are already known

to be computationally more efficient than the Wald tests [1] , re-

searchers tend to run each test for each feature repeatedly.

The compound.Cox package implements a cross-validation anal-

ysis to measure the predictive capability of selected features in

terms of the CVL value (Appendix A). The CVL value depends on

how to divide the samples into K groups during cross-validation.

One could encounter an unusually high CVL value by chance. An

obvious strategy to avoid the random variation is to set K = n

(leave-one-out cross-validation), or to take the average of CVL val-

ues among different sample splits. However, these time-consuming

techniques are not recommended. We have proposed a simple

quality control method to check if the CVL value is properly com-

puted (also see Fig. 1). This is a procedure newly devised in this

article.

We conducted our simulation studies to examine how the truly

effective genes are selected by the compound.Cox package, where

the true relationship between genes and survival is known. Our

simulation results confirmed that the package has a high sensitiv-

ity to pick up the truly effective genes in the presence of a large

number of false genes (Section 4).

The developed algorithms in compound.Cox would be useful

tools for incorporating high-dimensional features into bivariate

survival models, though this topic needs more elaborate analyses.

Many bivariate survival models involve frailty [35-37] for hetero-

geneity or copulas [38,39] for dependence among endpoints. In ad-

dition, the issue of dependent censoring arises when an interme-

diate event (e.g., tumour progression) is observed together with a

terminal event (e.g., death) [35,38,40,41] . One pragmatic approach

in these complex survival data is to perform univariate feature se-

lection by ignoring dependence between two event times. Our pre-

vious work in Emura et al. [11] applied P-value < 0.001 threshold

to select 128 genes associated with overall survival and 158 genes

associated with time-to-tumour progression, yielding the two CC

predictors. These CC predictors were then incorporated into a more

elaborate bivariate survival model that accounts for heterogeneity

and dependence.

The compound.Cox package differs remarkably from the existing

R packages for feature selection in multivariate Cox regression (sur-

vival [42]) and penalized Cox regression (Net-Cox [43] , SGL [44] , SIS

[45] and penalized [34]). The feature selection methods in the com-

pound.Cox package adopt multiple tests with computation of the

significance levels of features (in terms of P-value) and the num-

ber of false discoveries (in terms of FDR). This is relevant to the

objective of achieving biological insights, where screening of prog-

nostic features exhaustively may be a relevant task, even if some

selected features are highly correlated. On the other hand, mul-

tivariate/penalized Cox regression methods adopt an optimization

of a penalized likelihood in term of prediction capability. In some

penalized regression, such as Lasso, a feature subset may be iden-

tified, taking account of the correlations among features. One has

to recognize that such a subset is one, haphazardly selected (due

to random errors) from many “solutions” of predictor with compa-

rable predictive capability in high-dimensional situations [46] . The

objective of accurate prediction should not be confused with that

of achieving biological insight [47,48,17] . It is noted that, compared

with penalized regression methods, the compound.Cox package can

perform well for prediction analysis, as shown in Section 4 (See

also Section 1).

Copula-based methods for dealing with dependent censoring

also make the compound.Cox package different from the existing

packages. As shown in the lung cancer data analysis, the copula-

based method improves upon the CC predictor; the two Kaplan–

Meier survival curves for the good and poor prognosis groups

were more clearly separated by the copula-based method (Fig. 2).

If dependent censoring exists in the test samples, these Kaplan-

Meier estimators could be replaced by the copula-graphic estima-

tors [20,21] . The compound.Cox package implements the calcula-

tions of the copula-graphic estimator under the Clayton and Gum-

bel copulas. The details are given in Appendix D .

Acknowledgements

We thank four anonymous reviewers for their helpful com-

ments that greatly improved the manuscript. Emura T is fi-

nancially supported by Ministry of Science and Technology, Tai-

wan (103-2118-M-008-MY2 ; 107-2118-M-0 08-0 03-MY3). Matsui S

is financially supported by a Grant-in-Aid for Scientific Research

(16H06299) and JST-CREST (JPMJCR1412) from the Ministry of Ed-

ucation, Culture, Sports, Science and Technology of Japan. Mathe-

matics in Biology Group of Institute of Statistical Science, Academia

Sinica, supported data collection.

Supplementary materials

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.cmpb.2018.10.020 .

Appendix A: Cross-validated likelihood (CVL)

We introduce the CVL proposed by Matsui [6] because its def-

inition is complex and not sufficiently detailed in his original ar-

ticle. In addition, we propose a quality control method to check if

the CVL value is properly calculated.

Let { (t i , δi , x i); i = 1, …, n } be survival data. To perform a K -

fold cross validation, we first divide the n samples into K groups

of approximately equal sample sizes and label them as
 k for

k = 1, ..., K such that ∪

K
k =1

 k = { 1 , . . . , n } . Define
 − k as a train-

ing set for a test set
 k such that
 k ∪
 − k = { 1, …, n }, k = 1, ...,

K . The CC predictor based on the training set
 − k is denoted by

C C i, −k =

∑

j∈ �−k
w j, −k x i j , where the set �− k and the weight w j , −k

are determined by the training set
 − k given a P-value threshold.

Treating CC i , −k as a covariate for (t i , δi), we have a new set of

survival data { (t i , δi , CC i , −k); i ∈
 − k }. We fit the data to a Cox

model

h (t |CC � , −k) = h 0 (t)exp (γ CC � , −k), and obtain an estimator ˆ γ−k .

The CVL is defined as

CV L =

K ∑

k =1

{ � (̂ γ−k) − � −k (̂ γ−k) } , (1)

where ˆ γ−k = arg max γ � −k (γ) ,

� (γ) =

∑

i

δi

[

γ C C i, −k − log

{ ∑

� ∈ R i
exp

(
γ C C �, −k

)}]

, (2)

� −k (γ) =

∑

i ∈
 −k

δi

[

γ C C i, −k − log

{ ∑

� ∈ R i ∩
 −k

exp

(
γ C C �, −k

)}]

, (3)

http://dx.doi.org/10.13039/501100004663
https://doi.org/10.1016/j.cmpb.2018.10.020

34 T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37

Fig. A1. The algorithm for calculating the cross-validated likelihood (CVL).

where R i = { � : t � ≥ t i } is the risk set. The computation scheme of

the CVL is given in Fig. A1 .

We propose a quality control method to check if the CVL value

is proper. This is because the CVL value is subject to some variation

due to random allocation of the samples into K groups. For this

purpose, we shall introduce the RCVL1 and the RCVL2 values that

provide upper control limits for the CVL values. If the CVL value

is less than the RCVL1 and RCVL2 values, the CVL value would be

in-control. On the other hand, if the CVL value exceeds either the

RCVL1 or RCVL2 value, then the CVL may be computed again after

changing the sample allocation.

RCVL1 (re-substitution CVL without cross-validation):

We define the RCVL1 value by Eqs. (1) –(3) , where we replace

C C i, −k =

∑

j∈ �−k
w j, −k x i j by C C i =

∑

j∈ � w j x i j , where the set � and

the weight w j are determined by the whole samples. Since the

RCVL1 value is a re-substitution estimate, it gives an upward bias

relative to the CVL value [24] . Specifically, the information of the

i -th sample is incorporated into the weight w j and set �, violating

the principle of cross-validation. Usually, the RCVL1 value increases

as the number of features in � increases. Since the RCVL1 value is

more robust against the sample allocation, it serves as an upper

control limit for the CVL value.

RCVL2 (re-substitution CVL with incomplete cross-validation)

We define the RCVL2 value by Eqs. (1) - (3) , where we replace

C C i, −k =

∑

j∈ �−k
w j, −k x i j by C C i, −k =

∑

j∈ � w j, −k x i j , where the set �

is determined by the whole samples, but the weight w j , −k is deter-

mined by the training data
 − k . Since the RCVL2 value is a re-

substitution estimate, it gives an upward bias relative to the CVL

value [24] . Specifically, the information of the i -th sample is incor-

porated into the set �, violating the principle of cross-validation.

Since the RCVL2 value is more robust against the sample allocation,

it serves as an upper control limit for the CVL value.

Appendix B: False discovery rate (FDR)

Performing a number of multiple tests often leads us to eval-

uate the number of falsely rejected hypotheses. For instance, if P-

value < 0.001 is a criterion for rejecting hypotheses, the tests for

p = 5,0 0 0 features would identify 5 false features by chance. The

false discovery rate (FDR) is the percentage of such false features.

As in Witten and Tibshirani [1] , we suggested the following per-

mutation method to compute the FDR.

• Step 1: Randomly generate M permutations: { x
1
, x

2
, . . . ,

x n } → { x m

1
, x m

2
, . . . , x m

n } for m = 1, …, M . Obtain permuted

samples { (t i , δi , x (m)
i

) ; i = 1 , . . . , n } for m = 1, …, M .
• Step 2: For each m , perform feature selection (via the Wald

tests or score tests), and the selected features are represented

as a set �(m) = { j : P (m)
j

< P } , where P (m)
j

is the P-value for

testing H 0 j : β j = 0 vs. H 1 j : β j � = 0 based on the permuted sam-

ples { (t i , δi , x (m)
i

) ; i = 1 , . . . , n } .

T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37 35

• Step 3: Compute the ratio

FDR =

The expected number of false discoveries

The number of rejections

=

1
M

∑ M

m =1

∑ p
j=1

I(P (m)
j

< P) ∑ p
j=1

I(P
j
< P)

.

Alternatively, one may compute the FDR by the simple for-

mula

FDR =

The expected number of false discoveries

The number of rejections
=

P × p

q
,

where P is the P-value threshold (e.g., P = 0.05), p is the total num-

ber of features (tests), and q is the number of selected features.

The latter formula relies on the assumption that each test statistic

has the correct null distribution, namely Pr(P j < P) = P under the

null hypothesis. Under this assumption, it can be shown that

1
M

∑ M

m =1

∑ p
j=1

I(P (m)
j

< P) ∑ p
j=1

I(P
j
< P)

≈
E
[∑ p

j=1
I(P (m)

j
< P)

]
q

≈
p × E[I(P (m)

j
< P)]

q
=

p × P

q
.

Appendix C: Outputs for feature selection by score tests

Appendix D: Copula-based methods for dependent censoring

We describe the copula-based methods for dependent censor-

ing. More details can be found in the book of Emura and Chen

[21] . We also explain how the compound.Cox package implements

the copula-based methods.

Consider random variables ,

• T : survival time
• U : censoring time

Consider a copula model for dependent censoring

Pr (T > t , U > u) = C α(S T (t) , S U (u)) , where C α is a cop-

ula function; S T (t) = Pr (T > t) and S U (u) = Pr (U > u) are the

marginal survival functions. Some well-known copulas are

The independence copula:

C (u , v) = uv ,

The Clayton copula:

C α(u, v) = (u −α + v −α − 1) −1 /α, α > 0 ,

The Gumbel copula:

C α(u, v) = exp [−{ (− log u) α+1 + (− log v) α+1 }
1

α+1] , α ≥ 0 ,

The parameter α represents the measure of dependence, and

can be transformed to Kendall’s tau (τ). For instance, it can

be show that τ = α/(α + 2) under the Clayton copula and that

τ = α/(α + 1) under the Gumbel copula.

36 T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37

Let (t i , δi), i = 1, ..., n , be survival data without covariates,

where t i = min { T i , U i }, δi = I (T i ≤ U i), and I (·) is the indicator

function. Assume that all the observed times are distinct (t i � = t j
whenever i � = j). Let n i =

∑ n
� =1 I (t � ≥ t i) be the number at-risk at

time t i .

Under the Clayton copula, the copula-graphic estimator is com-

puted as

ˆ S T (t) =

[

1 +

∑

t i ≤t, δi =1

{(
n i − 1

n

)−α

−
(

n i

n

)−α
}] −1 /α

Under the Gumbel copula, the copula-graphic estimator is com-

puted as

ˆ S T (t) = exp

(

−
[∑

t i ≤t, δi =1

{

− log

(
n i − 1

n

)} α+1

−
{

− log

(
n i

n

)} α+1
] 1

α+1

)

These two copula-graphic estimators can be computed by

CG.Clayton() and CG.Gumbel() . Under the independence copula, the

copula-graphic estimator is equal to the Kaplan-Meier estimator.

Let { (t i , δi , x ij); i = 1, …, n } be survival data for the j -th feature

(j = 1, ..., p). The data are fitted to the copula model

Pr (T > t , U > u | x j) = C α{ Pr (T > t | x j) , Pr (U > u | x j) } ,
where Pr (T > t | x j) = exp { −�0 j (t) exp (β j x j) } , Pr (U > u | x j) =

exp { −�0 j (u) exp (γ j x j) } , and the copula C α is the same for ev-

ery j . For a given value of α, the semiparametric maximum likeli-

hood estimator (̂ β j (α) , ˆ γ j (α) , ˆ �0 j (α) , ˆ �0 j (α)) can be calculated

by using dependCox.reg() . Repeating this calculation for j = 1, ..., p ,

the vector (̂ β1 (α) , . . . , ˆ βp (α)) is obtained. Here, the value of α
can be chosen by maximizing a cross-validated c -index, which is a

concordance measure between the outcome (t i , δi) and its predic-

tor
∑

j∈ � ˆ β(−i)
j

(α) x j [20,21] . One can simply use dependCox.reg.CV()

to calculate (̂ β1 (̂ α) , . . . , ˆ βp (̂ α)) .

References

[1] D.M. Witten , R. Tibshirani , Survival analysis with high-dimensional covariates,

Stat. Methods Med. Res. 19 (2010) 29–51 .
[2] D.G. Beer , S.L.R. Kardia , Huang CC., Giordano TJ, Levin AM, et al. Gene-expres-

sion profiles predict survival of patients with lung adenocarcinoma, Nature

Medicine 8 (2002) 816–824 .
[3] A. Rosenwald , G. Wright , W.C. Chan , J.M. Connors , E. Campo , et al. , The use of

molecular profiling to predict survival after chemotherapy for diffuse large-B–
cell lymphoma, N. Engl. J. Med. 346 (25) (2002) 1937–1947 .

[4] J.R. Vasselli , J.H. Shih , S.R. Iyengar , J. Maranchie , J. Riss , et al. , Predicting sur-
vival in patients with metastatic kidney cancer by gene-expression profiling in

the primary tumor, Proc. Natl. Acad. Sci. 100 (12) (2003) 6958–6963 .

[5] Y. Wang , J.G. Klijn , Y. Zhang , A.M. Sieuwerts , et al. , Gene-expression profiles
to predict distant metastasis of lymph-node-negative primary breast cancer,

Lancet 365 (9460) (2005) 671–679 .
[6] S. Matsui , Predicting survival outcomes using subsets of significant genes in

prognostic marker studies with microarrays, BMC Bioinformatics 7 (2006) 156 .
[7] H.Y. Chen , S.L. Yu , C.H. Chen , G.C. Chang , C.Y. Chen , et al. , A five-gene signature

and clinical outcome in non-small-cell lung cancer, N. Engl. J. Med. 356 (2007)

11–20 .
[8] C. Yau , L. Esserman , D.H. Moore , Sninsky F.J. Waldman , C.C. BenzE , A multigene

predictor of metastatic outcome in early stage hormone receptor-negative and
triple-negative breast cancer, BMC Breast Cancer Res. 12 (2010) R85 .

[9] K. Yoshihara , A. Tajima , T. Yahata , S. Kodama , H. Fujiwara , et al. , Gene expres-
sion profile for predicting survival in advanced-stage serous ovarian cancer

across two independent datasets, PloS One 5 (3) (2010) e9615 .
[10] S. Matsui , R.M. Simon , P. Qu , J.D. Shaughnessy , B. Barlogie , J. Crowley , Develop-

ing and validating continuous genomic signatures in randomized clinical trials

for predictive medicine, Clinical Cancer Res. 18 (21) (2012) 6065–6073 .
[11] T. Emura , M. Nakatochi , S. Matsui , H. Michimae , V. Rondeau , Personalized dy-

namic prediction of death according to tumour progression and high-dimen-
sional genetic factors: meta-analysis with a joint model, Stat. Method Med.

Res. 27 (9) (2018) 2842–2858 .

[12] C. Lai , M.J. Reinders , L.J. van’t Veer , L.F. Wessels , A comparison of univariate
and multivariate gene selection techniques for classification of cancer datasets,

BMC Bioinform. 7 (2006) 235 .
[13] S.D. Zhao , G. Parmigiani , C. Huttenhower , L. Waldron , Más-o-menos: a simple

sign averaging method for discrimination in genomic data analysis, Bioinfor-
matics 30 (21) (2014) 3062–3069 .

[14] L. Waldron , B. Haibe-Kains , A.C. Culhane , M. Riester , J. Ding , et al. , Compara-
tive meta-analysis of prognostic gene signatures for late-stage ovarian cancer,

J. Natl. Cancer Inst. 106 (5) (2014) dju049 .

[15] S. Dudoit , J. Fridlyand , T.P. Speed , Comparison of discrimination methods for
the classification of tumors using gene expression data, J Am. Stat. Assoc. 97

(2002) 77–87 .
[16] T. Emura, Y.H. Chen, H.Y. Chen, Survival prediction based on compound co-

variate under Cox proportional hazard models, PLoS One 7 (10) (2012) e47627,
doi: 10.1371/journal.pone.0047627 .

[17] S. Matsui , Statistical issues in clinical development and validation of genomic

signatures, in: S Matsui, M Buyse, R. Simon (Eds.), Design and Analysis of Clin-
ical Trials For Predictive Medicine, CRC Press, Boca Raton, 2015, pp. 207–226 .

[18] H.M. Bøvelstad , S. Nygård , H.L. Storvold , M. Aldrin , Borgan Ø, et al. Predicting
survival from microarray data – a comparative study, Bioinformatics 23 (2007)

2080–2087 .
[19] W.N. van Wieringen , D. Kun , R. Hampel , A.L. Boulesteix , Survival prediction

using gene expression data: A review and comparison, Comp. Stat. Data Anal.

53: (2009) 1590–1603 .
[20] T. Emura , Y.H. Chen , Gene selection for survival data under dependent cen-

soring, a copula-based approach, Statist. Method Med. Res. 25 (6) (2016)
2840–2857 .

[21] T. Emura , Y.H. Chen , Analysis of Survival Data with Dependent Censoring, Cop-
ula-Based Approaches, JSS Research Series in Statistics, Springer, Singapore,

2018 .

[22] T. Emura , H.Y. Chen , S. Matsui , Y.H. Chen , compound.Cox: univariate feature
selection and compound covariate for predicting survival, CRAN (2018) Version

3.14 .
[23] R. Simon , Design and Analysis of DNA Microarray Investigations, Springer, New

York, 2003 .
[24] R. Simon , Roadmap for developing and validating therapeutically relevant ge-

nomic classifiers, J. Clin. Oncol. 23 (29) (2005) 7332–7341 .

[25] J.W. Tukey , Tightening the clinical trial, Controlled Clinical Trials 14 (1993)
266–285 .

[26] I.S. Lossos , D.K. Czerwinski , A .A . Alizadeh , M.A . Wechser , R. Tibshirani , D. Bot-
stein , R. Levy , Prediction of survival in diffuse large-B-cell lymphoma based on

the expression of six genes, N. Engl. J. Med. 350 (18) (2004) 1828–1837 .
[27] D. Collett , 3rd edition, Modelling Survival Data in Medical Research, CRC press,

London, 2015 .

[28] L.P. Rivest , M.T. Wells , A martingale approach to the copula-graphic estima-
tor for the survival function under dependent censoring, J. Multivar. Anal. 79

(2001) 138–155 .
[29] T. Emura , H. Michimae , A copula-based inference to piecewise exponential

models under dependent censoring, with application to time to metamorpho-
sis of salamander larvae, Environ. Ecol. Stat. 24 (1) (2017) 151–173 .

[30] Y.H. Chen , Semiparametric marginal regression analysis for dependent compet-
ing risks under an assumed copula, J. R. Stat. Soc., Ser. B 72 (2010) 235–251 .

[31] N.D. Staplin , A.C. Kimber , D. Collett , P.J. Roderick , Dependent censoring in

piecewise exponential survival models, Stat. Methods Med. Res. 24 (3) (2015)
325–341 .

[32] H. Moradian, D. Denis Larocque, F. Bellavance, Survival forests for data
with dependent censoring, Stat. Method Med. Res. (2017), doi: 10.1177/

0962280217727314 .
[33] R.B. Nelsen , An Introduction to Copulas, 2nd Edition, Springer, New York, 2006 .

[34] J. Goeman , R. Meijer , N. Chaturvedi , M. Lueder , penalized: L1 (Lasso and Fused

Lasso) and L2 (ridge) penalized estimation in GLMs and in the Cox model,
CRAN (2017) Version 0.9-50 .

[35] V. Rondeau , J.P. Pignon , S. Michiels , A joint model for dependence be-
tween clustered times to tumour progression and deaths: A meta-analysis

of chemotherapy in head and neck cancer, Statist. Methods Med. Res. 24 (6)
(2015) 711–729 .

[36] V. Rondeau , J.R. Gonzalez , frailtypack: A computer program for the analysis

of correlated failure time data using penalized likelihood estimation, Comput.
Methods Prog. Biomed. 80 (2) (2005) 154–164 .

[37] I.D. Ha , N.J. Christian , J.H. Jeong , J. Park , Y. Lee , Analysis of clustered competing
risks data using subdistribution hazard models with multivariate frailties, Stat.

Methods Med. Res. 25 (6) (2016) 2488–2505 .
[38] T. Emura , M. Nakatochi , K. Murotani , V. Rondeau , A joint frailty-copula model

between tumour progression and death for meta-analysis, Stat. Methods Med.

Res. 26 (6) (2017) 2649–2666 .
[39] M. Peng , L. Xiang , S. Wang , Semiparametric regression analysis of clustered

survival data with semi-competing risks, Comp. Stat. Data Anal. 124 (2018)
53–70 .

[40] J.P. Fine , H. Jiang , R. Chappell , On semi-competing risks data, Biometrika 88
(2001) 907–920 .

[41] S. Haneuse , K.H. Lee , Semi-competing risks data analysis, accounting for death

as a competing risk when the outcome of interest is nonterminal, Circ. Cardio-
vasc. Qual. Outcomes 9 (2016) 322–331 .

[42] T.M. Therneau , T. Lumley , survival: survival analysis, CRAN (2017) Version
2.41-3 .

http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0001
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0001
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0001
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0002
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0002
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0002
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0003
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0003
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0003
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0003
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0003
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0003
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0003
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0004
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0004
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0004
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0004
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0004
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0004
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0004
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0005
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0005
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0005
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0005
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0005
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0005
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0006
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0006
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0007
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0007
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0007
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0007
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0007
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0007
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0007
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0008
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0008
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0008
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0008
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0008
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0008
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0009
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0009
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0009
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0009
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0009
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0009
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0009
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0010
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0010
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0010
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0010
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0010
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0010
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0010
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0011
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0011
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0011
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0011
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0011
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0011
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0012
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0012
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0012
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0012
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0012
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0013
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0013
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0013
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0013
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0013
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0014
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0014
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0014
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0014
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0014
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0014
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0014
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0015
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0015
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0015
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0015
https://doi.org/10.1371/journal.pone.0047627
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0017
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0017
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0018
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0018
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0018
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0018
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0018
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0019
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0019
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0019
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0019
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0019
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0020
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0020
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0020
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0021
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0021
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0021
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0022
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0022
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0022
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0022
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0022
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0023
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0023
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0024
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0024
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0025
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0025
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0026
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0026
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0026
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0026
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0026
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0026
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0026
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0026
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0027
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0027
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0028
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0028
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0028
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0029
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0029
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0029
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0030
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0030
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0031
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0031
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0031
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0031
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0031
https://doi.org/10.1177/0962280217727314
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0033
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0033
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0034
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0034
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0034
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0034
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0034
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0035
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0035
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0035
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0035
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0036
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0036
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0036
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0037
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0037
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0037
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0037
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0037
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0037
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0038
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0038
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0038
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0038
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0038
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0039
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0039
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0039
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0039
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0040
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0040
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0040
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0040
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0041
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0041
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0041
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0042
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0042
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0042

T. Emura, S. Matsui and H.-Y. Chen / Computer Methods and Programs in Biomedicine 168 (2019) 21–37 37

[43] W. Zhang , T. Ota , V. Shridhar , J. Chien , B. Wu , R. Kuang , Network-based survival
analysis reveals subnetwork signatures for predicting outcomes of ovarian can-

cer treatment, PLoS Comput. Biol. 9 (3) (2013) e1002975 .
[44] N. Simon , J. Friedman , T. Hastie , R. Tibshirani , SGL: Fit a GLM (or cox model)

with a combination of lasso and group lasso regularization, CRAN (2013) Ver-
sion 1.1 .

[45] D.F. Saldana , Y. Feng , SIS: An R package for sure independence screening in
ultrahigh dimensional statistical models, J. Stat. Softw. 83 (2) (2018) 1–25 .

[46] M. Schumacher , N. Hollander , G. Schwarzer , H. Binder , W. Sauerbrei , Prognos-
tic factor studies., in: J.J. Crowley, A. Hoering (Eds.), Handbook of Statistics in

Clinical Oncology, 3rd edition, CRC Press, Boca Raton, 2012, pp. 415–469 .
[47] S.L. George , Statistical issues in translational cancer research, Clin. Cancer Res.

14 (2008) 5954–5958 .
[48] R. Simon , The use of genomics in clinical trial design, Clin. Cancer Res. 14

(2008) 5984–5993 .

http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0043
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0043
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0043
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0043
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0043
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0043
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0043
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0044
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0044
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0044
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0044
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0044
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0045
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0045
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0045
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0046
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0046
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0046
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0046
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0046
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0046
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0047
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0047
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0048
http://refhub.elsevier.com/S0169-2607(18)30422-X/sbref0048

0

Supplementary Material

compound.Cox: univariate feature selection and compound covariate for predicting survival,

Computer Methods and Programs in Biomedicine

Corresponding to Takeshi Emura (takeshiemura@gmail.com)

S1. R codes for the analysis of the lung cancer data:

The R codes perform the following tasks:

 Display “Lung” containing 125 samples (63 training samples + 62 test samples).

 Perform univariate feature selection using the 63 training samples.

 Draw the CVL plot for identifying the optimal P-value threshold.

 Compute six predictors and apply them to separate the test samples into a good or poor

prognosis group.

 Compare the two Kaplan-Meier survival curves in the test samples (good vs. poor).

library(compound.Cox)

data("Lung")

Lung

train=Lung$train ## index for training samples

63 training samples ###

t.vec=Lung$t.vec[train]

d.vec=Lung$d.vec[train]

X.mat=as.matrix(Lung[,-c(1,2,3)][train,])

Feature selection (P-value < 0.05) ###

uni.selection(t.vec,d.vec,X.mat,K=20,P.value=0.05,score=FALSE,permutation=TRUE) ## Wald test

uni.selection(t.vec,d.vec,X.mat,K=20,P.value=0.05,score=TRUE,permutation=TRUE) ## Score test

Draw the CVL plot to find the optimal P-value threshold #

P.grid=seq(0.01,0.08,length=21) ## 0.01<P-value<0.08 ##

K=20 ## 20-fold cross-validation ##

CVL.score=CVL.Wald=NULL

RCVL1.score=RCVL1.Wald=NULL

RCVL2.score=RCVL2.Wald=NULL

for(P in P.grid){

mailto:takeshiemura@gmail.com

1

 res.score=uni.selection(t.vec,d.vec,X.mat,K=K,P.value=P,score=TRUE)

 res.Wald=uni.selection(t.vec,d.vec,X.mat,K=K,P.value=P,score=FALSE)

 CVL.score=c(CVL.score,res.score$CVL[1])

 CVL.Wald=c(CVL.Wald,res.Wald$CVL[1])

 RCVL1.score=c(RCVL1.score,res.score$CVL[2])

 RCVL1.Wald=c(RCVL1.Wald,res.Wald$CVL[2])

 RCVL2.score=c(RCVL2.score,res.score$CVL[3])

 RCVL2.Wald=c(RCVL2.Wald,res.Wald$CVL[3])

}

P.Wald=P.grid[which.max(CVL.Wald)]

P.score=P.grid[which.max(CVL.score)]

######## The plot of CVL (Wald tests) #########

Range.Wald= range(c(CVL.Wald,RCVL1.Wald,RCVL2.Wald),na.rm=TRUE)

par(mfrow=c(1,2))

plot(P.grid,CVL.Wald,type="l",ylim=Range.Wald,xlab="P-value",ylab="CVL",main="Wald test")

points(P.Wald,CVL.Wald[which.max(CVL.Wald)],col="red",pch=17,cex=1.5)

points(P.grid,RCVL1.Wald,col="darkgreen",type="l",lty="dashed")

text(mean(P.grid),mean(RCVL1.Wald),"RCVL1",col="darkgreen")

points(P.grid,RCVL2.Wald,col="blue",type="l",lty="dotted")

text(mean(P.grid),mean(RCVL2.Wald),"RCVL2",col="blue")

AA=paste("Optimal P-value =",as.character(P.Wald))

legend("center",AA,pch=17,col="red",)

######## The plot of CVL (score tests) #########

Range.score= range(c(CVL.score,RCVL1.score,RCVL2.score),na.rm=TRUE)

plot(P.grid,CVL.score,type="l",ylim=Range.score,xlab="P-value",ylab="CVL",main="Score test")

points(P.score,CVL.score[which.max(CVL.score)],col="red",pch=17,cex=1.5)

points(P.grid,RCVL1.score,col="darkgreen",type="l",lty="dashed")

text(mean(P.grid),mean(RCVL1.score),"RCVL1",col="darkgreen")

points(P.grid,RCVL2.score,col="blue",type="l",lty="dotted")

text(mean(P.grid),mean(RCVL2.score),"RCVL2",col="blue")

AA=paste("Optimal P-value =",as.character(P.grid[which.max(CVL.score)]))

legend("center", AA,pch=17,col="red")

Predictor construction after feature selection #

######## Feature selection ######

Wald=uni.selection(t.vec,d.vec,X.mat,K=K, P.value=P.Wald,score=FALSE,permutation=TRUE)

score=uni.selection(t.vec,d.vec,X.mat,K=K, P.value=P.score,score=TRUE,permutation=TRUE)

Wald

score

2

######## Copula model #######

Wald.copula=dependCox.reg.CV(t.vec,d.vec,X.mat[,names(Wald$beta)],K=5)

c.Wald=round(Wald.copula$c_index,2)

AA=paste("c-index=",as.character(c.Wald))

legend("top",AA,pch=17,col="red")

score.copula=dependCox.reg.CV(t.vec,d.vec,X.mat[,names(score$beta)],K=5)

c.score=round(score.copula$c_index,2)

AA=paste("c-index=",as.character(c.score))

legend("top",AA,pch=17,col="red")

table(X.mat[,"ANXA5"]) ## frequency table for the 63 samples ##

Shrinkage estimation ######

Wald.CS=compound.reg(t.vec,d.vec,X.mat[,names(Wald$beta)],K=5)

score.CS=compound.reg(t.vec,d.vec,X.mat[,names(score$beta)],K=5)

Wald.CS

score.CS

Predicting Poor or Good Survival for 62 testing samples ##

62 testing samples ###

t.test=Lung$t.vec[!train]

d.test=Lung$d.vec[!train]

X.test=as.matrix(Lung[,-c(1,2,3)][!train,])

par(mfrow=c(3,2))

####### Prediction by Wald #######

X.Wald=X.test[,names(Wald$beta)]

eta.Wald=as.vector(X.Wald%*%Wald$beta)

class.Wald=eta.Wald>median(eta.Wald)

LR.Wald=survdiff(Surv(t.test,d.test) ~ class.Wald)

P.Wald=1-pchisq(LR.Wald$chisq,df=1)

c.Wald=survConcordance(Surv(t.test,d.test)~eta.Wald)$concordance

plot(survfit(Surv(t.test[!class.Wald],d.test[!class.Wald])~1,conf.type="none"),

 ylim=c(0.5,1),col="blue",lwd=2,main="Optimal Wald test",mark.time = TRUE,

 xlab="Months",ylab="Survival probability")

lines(survfit(Surv(t.test[class.Wald],d.test[class.Wald])~1,conf.type="none"),

 col="red",lwd=2,mark.time = TRUE)

text(35,0.95,paste("P-value =",as.character(round(P.Wald,3))))

text(35,0.88,paste("c-index =",as.character(round(c.Wald,3))))

text(40,0.55,"Poor prognosis",col="red")

3

text(40,0.75,"Good prognosis",col="blue")

####### Prediction by score #######

X.score=X.test[,names(score$beta)]

eta.score=as.vector(X.score%*%score$beta)

class.score=eta.score>median(eta.score)

LR.score=survdiff(Surv(t.test,d.test) ~ class.score)

P.score=1-pchisq(LR.score$chisq,df=1)

c.score=survConcordance(Surv(t.test,d.test)~eta.score)$concordance

plot(survfit(Surv(t.test[!class.score],d.test[!class.score])~1,conf.type="none"),

 ylim=c(0.5,1),col="blue",lwd=2,main="Optimal score test",mark.time = TRUE,

 xlab="Months",ylab="Survival probability")

lines(survfit(Surv(t.test[class.score],d.test[class.score])~1,conf.type="none"),

 col="red",lwd=2,mark.time = TRUE)

text(35,0.95,paste("P-value =",as.character(round(P.score,3))))

text(35,0.88,paste("c-index =",as.character(round(c.score,3))))

text(40,0.55,"Poor prognosis",col="red")

text(40,0.75,"Good prognosis",col="blue")

####### Prediction by Copula + optimal Wald #######

eta.Wald.copula=as.vector(X.Wald%*%Wald.copula$beta)

class.Wald.copula=eta.Wald.copula>median(eta.Wald.copula)

LR.Wald.copula=survdiff(Surv(t.test,d.test) ~ class.Wald.copula)

P.Wald.copula=1-pchisq(LR.Wald.copula$chisq,df=1)

c.Wald.copula=survConcordance(Surv(t.test,d.test)~eta.Wald.copula)$concordance

plot(survfit(Surv(t.test[!class.Wald.copula],d.test[!class.Wald.copula])~1,conf.type="none"),

 ylim=c(0.5,1),col="blue",lwd=2,main="Copula + optimal Wald test",mark.time = TRUE,

 xlab="Months",ylab="Survival probability")

lines(survfit(Surv(t.test[class.Wald.copula],d.test[class.Wald.copula])~1,conf.type="none"),

 col="red",lwd=2,mark.time = TRUE)

text(35,0.95,paste("P-value =",as.character(round(P.Wald.copula,3))))

text(35,0.88,paste("c-index =",as.character(round(c.Wald.copula,3))))

text(40,0.52,"Poor prognosis",col="red")

text(40,0.78,"Good prognosis",col="blue")

####### Prediction by Copula + optimal score #######

eta.score.copula=as.vector(X.score%*%score.copula$beta)

class.score.copula=eta.score.copula>median(eta.score.copula)

LR.score.copula=survdiff(Surv(t.test,d.test) ~ class.score.copula)

P.score.copula=1-pchisq(LR.score.copula$chisq,df=1)

c.score.copula=survConcordance(Surv(t.test,d.test)~eta.score.copula)$concordance

plot(survfit(Surv(t.test[!class.score.copula],d.test[!class.score.copula])~1,conf.type="none"),

4

 ylim=c(0.5,1),col="blue",lwd=2,main="Copula + optimal score test",mark.time = TRUE,

 xlab="Months",ylab="Survival probability")

lines(survfit(Surv(t.test[class.score.copula],d.test[class.score.copula])~1,conf.type="none"),

 col="red",lwd=2,mark.time = TRUE)

text(35,0.95,paste("P-value =",as.character(round(P.score.copula,3))))

text(35,0.88,paste("c-index =",as.character(round(c.score.copula,3))))

text(40,0.57,"Poor prognosis",col="red")

text(40,0.80,"Good prognosis",col="blue")

####### Prediction by CS + optimal Wald #######

eta.Wald.CS=as.vector(X.Wald%*%Wald.CS$beta)

class.Wald.CS=eta.Wald.CS>median(eta.Wald.CS)

LR.Wald.CS=survdiff(Surv(t.test,d.test) ~ class.Wald.CS)

P.Wald.CS=1-pchisq(LR.Wald.CS$chisq,df=1)

c.Wald.CS=survConcordance(Surv(t.test,d.test)~eta.Wald.CS)$concordance

plot(survfit(Surv(t.test[!class.Wald.CS],d.test[!class.Wald.CS])~1,conf.type="none"),

 ylim=c(0.5,1),col="blue",lwd=2,main="Shrinkage + optimal Wald test",mark.time = TRUE,

 xlab="Months",ylab="Survival probability")

lines(survfit(Surv(t.test[class.Wald.CS],d.test[class.Wald.CS])~1,conf.type="none"),

 col="red",lwd=2,mark.time = TRUE)

text(35,0.95,paste("P-value =",as.character(round(P.Wald.CS,3))))

text(35,0.88,paste("c-index =",as.character(round(c.Wald.CS,3))))

text(40,0.52,"Poor prognosis",col="red")

text(40,0.75,"Good prognosis",col="blue")

####### Prediction by CS + optimal score #######

eta.score.CS=as.vector(X.score%*%score.CS$beta)

class.score.CS=eta.score.CS>median(eta.score.CS)

LR.score.CS=survdiff(Surv(t.test,d.test) ~ class.score.CS)

P.score.CS=1-pchisq(LR.score.CS$chisq,df=1)

c.score.CS=survConcordance(Surv(t.test,d.test)~eta.score.CS)$concordance

plot(survfit(Surv(t.test[!class.score.CS],d.test[!class.score.CS])~1,conf.type="none"),

 ylim=c(0.5,1),col="blue",lwd=2,main="Shrinkage + optimal score test",mark.time = TRUE,

 xlab="Months",ylab="Survival probability")

lines(survfit(Surv(t.test[class.score.CS],d.test[class.score.CS])~1,conf.type="none"),

 col="red",lwd=2,mark.time = TRUE)

text(35,0.95,paste("P-value =",as.character(round(P.score.CS,3))))

text(35,0.88,paste("c-index =",as.character(round(c.score.CS,3))))

text(40,0.52,"Poor prognosis",col="red")

text(40,0.75,"Good prognosis",col="blue")

5

S2. The CVL curve for simulated data (with the R codes):

The codes use simulated data to demonstrate the CVL plot shown above.

library(compound.Cox)

n=100

p=500

beta_true=c(rep(0.1,25),rep(-0.1,25),rep(0,p-50))

q0=sum(beta_true==0) ### the number of zero coefficients ###

q1=sum(beta_true>0) ### the number of positive coefficients ###

q2=sum(beta_true<0) ### the number of negative coefficients ###

CEN_Bound=1 #=cen~59%#

t.vec=d.vec=numeric(n)

X.mat=X.pathway(n,p,q1,q2)

colnames(X.mat)=c(1:p)

set.seed(10)

for(i in 1:n){

 eta=X.mat[i,]%*%beta_true

 T=rexp(1,rate=exp(eta))

 C=runif(1,min=0,max=CEN_Bound)

 t.vec[i]=min(T,C)

 d.vec[i]=(T<=C)

6

}

Draw the CVL plot to find the optimal P-value threshold #

P.grid=seq(0.001,0.01,length=21) ## P-value threshold ##

K=5 ## five-fold cross-validation ##

CVL.score=CVL.Wald=NULL

RCVL1.score=RCVL1.Wald=NULL

RCVL2.score=RCVL2.Wald=NULL

set.seed(10)

for(P in P.grid){

 res.score=uni.selection(t.vec,d.vec,X.mat,K=K,P.value=P,score=TRUE)

 res.Wald=uni.selection(t.vec,d.vec,X.mat,K=K,P.value=P,score=FALSE)

 CVL.score=c(CVL.score,res.score$CVL[1])

 CVL.Wald=c(CVL.Wald,res.Wald$CVL[1])

 RCVL1.score=c(RCVL1.score,res.score$CVL[2])

 RCVL1.Wald=c(RCVL1.Wald,res.Wald$CVL[2])

 RCVL2.score=c(RCVL2.score,res.score$CVL[3])

 RCVL2.Wald=c(RCVL2.Wald,res.Wald$CVL[3])

}

P.Wald=P.grid[which.max(CVL.Wald)]

P.score=P.grid[which.max(CVL.score)]

######## The plot of CVL (Wald tests) #########

Range.Wald= range(c(CVL.Wald,RCVL1.Wald,RCVL2.Wald),na.rm=TRUE)

par(mfrow=c(1,2))

plot(P.grid,CVL.Wald,type="l",ylim=Range.Wald,xlab="P-value",ylab="CVL",main="Wald test")

points(P.Wald,CVL.Wald[which.max(CVL.Wald)],col="red",pch=17,cex=1.5)

points(P.grid,RCVL1.Wald,col="darkgreen",type="l",lty="dashed")

text(mean(P.grid),mean(RCVL1.Wald),"RCVL1",col="darkgreen")

points(P.grid,RCVL2.Wald,col="blue",type="l",lty="dotted")

text(mean(P.grid),mean(RCVL2.Wald),"RCVL2",col="blue")

AA=paste("Optimal P-value =",as.character(P.Wald))

legend("center",AA,pch=17,col="red",)

######## The plot of CVL (score tests) #########

Range.score= range(c(CVL.score,RCVL1.score,RCVL2.score),na.rm=TRUE)

plot(P.grid,CVL.score,type="l",ylim=Range.score,xlab="P-value",ylab="CVL",main="Score test")

points(P.score,CVL.score[which.max(CVL.score)],col="red",pch=17,cex=1.5)

points(P.grid,RCVL1.score,col="darkgreen",type="l",lty="dashed")

text(mean(P.grid),mean(RCVL1.score),"RCVL1",col="darkgreen")

7

points(P.grid,RCVL2.score,col="blue",type="l",lty="dotted")

text(mean(P.grid),mean(RCVL2.score),"RCVL2",col="blue")

AA=paste("Optimal P-value =",as.character(P.grid[which.max(CVL.score)]))

legend("center", AA,pch=17,col="red")

######## Feature selection at optimal threshold ######

uni.selection(t.vec,d.vec,X.mat,K=K, P.value=P.Wald,score=FALSE,permutation = TRUE)

uni.selection(t.vec,d.vec,X.mat,K=K, P.value=P.score,score=TRUE,permutation = TRUE)

S3. R codes for simulation studies (for feature selection):

library(compound.Cox)

p=5000 ### the number of genes
beta_true=c(rep(0.1,25),rep(-0.1,25),rep(0,p-50))
#beta_true=c(rep(0.2,25),rep(-0.2,25),rep(0,p-50))
q0=sum(beta_true==0) ### the number of zero coefficients ###
q1=sum(beta_true>0) ### the number of positive coefficients ###
q2=sum(beta_true<0) ### the number of negative coefficients ###

simu=function(R,n,K,P.value){

 q_vec=True=False=CVL=CEN_per=numeric(R)
 CEN_Bound=1 #=cen~59%#

 for(r in 1:R){
 t.vec=d.vec=numeric(n)
 set.seed(r)
 X.mat=X.pathway(n,p,q1,q2)
 colnames(X.mat)=c(1:p)
 for(i in 1:n){
 eta=X.mat[i,]%*%beta_true
 T=rexp(1,rate=exp(eta))
 C=runif(1,min=0,max=CEN_Bound)
 t.vec[i]=min(T,C)
 d.vec[i]=(T<=C)
 }
 CEN_per[r]=1-mean(d.vec)
 res=uni.selection(t.vec, d.vec, X.mat, P.value=P.value,K=K,score=TRUE)
 q_vec[r]=length(res$beta)
 CVL[r]=res$CVL[1]
 True[r]= sum(as.numeric(names(res$P))<=q1+q2)
 False[r]= sum(as.numeric(names(res$P))>q1+q2)
 }

 c(P=P.value,CEN_Percent=round(mean(CEN_per),2),CVL=mean(CVL),
 q=mean(q_vec),True=mean(True),False=mean(False))

}

8

R=50 ### the number of simulation runs
K=5 ### the number of folds in cross-validation
n=100 ### sample size

res=rbind(
 simu(R,n,K,P.value=0.000075),
 simu(R,n,K,P.value=0.0001),
 simu(R,n,K,P.value=0.00025),
 simu(R,n,K,P.value=0.0005),
 simu(R,n,K,P.value=0.00075),
 simu(R,n,K,P.value=0.001),
 simu(R,n,K,P.value=0.0025),
 simu(R,n,K,P.value=0.005),
 simu(R,n,K,P.value=0.0075),
 simu(R,n,K,P.value=0.01),
 simu(R,n,K,P.value=0.025),
 simu(R,n,K,P.value=0.05),
 simu(R,n,K,P.value=0.075)
)

P.grid=res[,"P"]
CVL.grid=res[,"CVL"]
true.grid=res[,"True"]
false.grid=res[,"False"]
res

par(mfrow=c(1,2))
plot(log(P.grid),CVL.grid,type="b",xlab="log(P-value)",ylab="CVL",main="n=100")
temp.CVL=which.max(CVL.grid)
points(log(P.grid[temp.CVL]),CVL.grid[temp.CVL],col="red",pch=17,cex=1.5)
true.CVL=as.character(round(true.grid[temp.CVL],0))
false.CVL=as.character(round(false.grid[temp.CVL],0))
legend("bottom",legend=paste("True genes =",true.CVL,";","False genes =",false.CVL),col="red")
Sen=round(true.grid[temp.CVL]/50,2)
AA=paste("Sensitivity=",true.CVL,"/",as.character(50),"=",as.character(Sen))
Spe=round(true.grid[temp.CVL]/(p-50),2)
AA=paste("Sensitivity=",true.CVL,"/",as.character(50),"=",as.character(Sen))
legend(log(P.grid[temp.CVL])-2,CVL.grid[temp.CVL]-30,AA,pch=17,col="red")

n=200 ### sample size
res=rbind(
 simu(R,n,K,P.value=0.000075),
 simu(R,n,K,P.value=0.0001),
 simu(R,n,K,P.value=0.00025),
 simu(R,n,K,P.value=0.0005),
 simu(R,n,K,P.value=0.00075),
 simu(R,n,K,P.value=0.001),
 simu(R,n,K,P.value=0.0025),
 simu(R,n,K,P.value=0.005),

9

 simu(R,n,K,P.value=0.0075),
 simu(R,n,K,P.value=0.01),
 simu(R,n,K,P.value=0.025),
 simu(R,n,K,P.value=0.05),
 simu(R,n,K,P.value=0.075)
)

P.grid=res[,"P"]
CVL.grid=res[,"CVL"]
true.grid=res[,"True"]
false.grid=res[,"False"]
res

plot(log(P.grid),CVL.grid,type="b",xlab="log(P-value)",ylab="CVL",main="n=200")
temp.CVL=which.max(CVL.grid)
points(log(P.grid[temp.CVL]),CVL.grid[temp.CVL],col="red",pch=17,cex=1.5)
true.CVL=as.character(round(true.grid[temp.CVL],0))
false.CVL=as.character(round(false.grid[temp.CVL],0))
legend("bottom",legend=paste("True genes =",true.CVL,";","False genes =",false.CVL),col="red")
Sen=round(true.grid[temp.CVL]/50,2)
AA=paste("Sensitivity=",true.CVL,"/",as.character(50),"=",as.character(Sen))
legend(log(P.grid[temp.CVL]),CVL.grid[temp.CVL]-30,AA,pch=17,col="red")

S4. R codes for simulation studies (for prediction):

install.packages("compound.Cox")
library(compound.Cox)
library(penalized)

simu=function(R,n,K,P.value){

 p=5000 ### the number of genes
 # p=200 ## for quick test
 beta_true=c(rep(0.1,25),rep(-0.1,25),rep(0,p-50))
 q0=sum(beta_true==0) ### the number of zero coefficients ###
 q1=sum(beta_true>0) ### the number of positive coefficients ###
 q2=sum(beta_true<0) ### the number of negative coefficients ###

 q_vec=True=False=CVL=CEN_per=numeric(R)
 CC.c=CS.c=R.c=L.c=numeric(R)
 CC.LR=CS.LR=R.LR=L.LR=numeric(R)
 CEN_Bound=1 #=cen~59%#

 for(r in 1:R){
 t.vec=d.vec=numeric(n)
 set.seed(r)
 X.mat=X.pathway(n,p,q1,q2)
 colnames(X.mat)=c(1:p)

10

 for(i in 1:n){
 eta=X.mat[i,]%*%beta_true
 T=rexp(1,rate=exp(eta))
 C=runif(1,min=0,max=CEN_Bound)
 t.vec[i]=min(T,C)
 d.vec[i]=(T<=C)
 }
 CEN_per[r]=1-mean(d.vec)
 res=uni.selection(t.vec, d.vec, X.mat, P.value=P.value,K=K,score=TRUE)
 q_vec[r]=length(res$beta)
 CVL[r]=res$CVL[1]
 True[r]= sum(as.numeric(names(res$P))<=q1+q2)
 False[r]= sum(as.numeric(names(res$P))>q1+q2)
 temp=as.numeric(names(res$beta))

 ### Ridge ###
 res_R=optL2(Surv(t.vec,d.vec),penalized=X.mat[,temp],fold=5,trace=FALSE)
 beta_R=attributes(res_R$fullfit)$penalized

 ### Lasso ###
 res_L=optL1(Surv(t.vec,d.vec),penalized=X.mat[,temp],fold=5,trace=FALSE)
 beta_L=attributes(res_L$fullfit)$penalized

 ### Compound shrinkage ###
 res_CS=compound.reg(t.vec,d.vec,X.mat[,temp],delta_a = 0.1,randomize=FALSE)
 beta_CS=res_CS[[2]]

 t.test=d.test=numeric(n)
 set.seed(r+R)
 X.test=X.pathway(n,p,q1,q2)
 colnames(X.test)=c(1:p)
 for(i in 1:n){
 eta=X.test[i,]%*%beta_true
 T=rexp(1,rate=exp(eta))
 C=runif(1,min=0,max=CEN_Bound)
 t.test[i]=min(T,C)
 d.test[i]=(T<=C)
 }

 CC.test=X.test[,temp]%*%res$beta
 CC.c[r]=survConcordance(Surv(t.test,d.test)~CC.test)$concordance
 t.o=t.test[order(CC.test)]
 d.o=d.test[order(CC.test)]
 CC.LR[r]=sqrt(survdiff(Surv(t.o,d.o) ~ c(rep(1,n/2),rep(0,n/2)))$chisq)

 CS.test=X.test[,temp]%*%beta_CS
 CS.c[r]=survConcordance(Surv(t.test,d.test)~CS.test)$concordance
 t.o=t.test[order(CS.test)]
 d.o=d.test[order(CS.test)]
 CS.LR[r]=sqrt(survdiff(Surv(t.o,d.o) ~ c(rep(1,n/2),rep(0,n/2)))$chisq)

11

 R.test=X.test[,temp]%*%beta_R
 R.c[r]=survConcordance(Surv(t.test,d.test)~R.test)$concordance
 t.o=t.test[order(R.test)]
 d.o=d.test[order(R.test)]
 R.LR[r]=sqrt(survdiff(Surv(t.o,d.o) ~ c(rep(1,n/2),rep(0,n/2)))$chisq)

 L.test=X.test[,temp]%*%beta_L
 L.c[r]=survConcordance(Surv(t.test,d.test)~L.test)$concordance
 t.o=t.test[order(L.test)]
 d.o=d.test[order(L.test)]
 L.LR[r]=sqrt(survdiff(Surv(t.o,d.o) ~ c(rep(1,n/2),rep(0,n/2)))$chisq)
 }

 res.train=c(P=P.value,CEN_Percent=round(mean(CEN_per),2),CVL=mean(CVL),
 q=mean(q_vec),True=mean(True),False=mean(False))

 c.index=c(CC=mean(CC.c),Ridge=mean(R.c),Lasso=mean(L.c),CS=mean(CS.c))
 LR.test=c(CC=mean(CC.LR),Ridge=mean(R.LR),Lasso=mean(L.LR),CS=mean(CS.LR))
 list(res.train=res.train,c.index=c.index,LR.test=LR.test)
}

n=100 ### sample size
R=50 ### the number of simulation runs
K=5 ### the number of folds in CV

P.grid=c(0.000075,0.0001,0.00025,0.0005,0.00075,
 0.001,0.0025,0.005,0.0075,0.01,0.025,0.05,0.075)

S1=simu(R,n,K,P.value=0.000075)
S2=simu(R,n,K,P.value=0.0001)
S3=simu(R,n,K,P.value=0.00025)
S4=simu(R,n,K,P.value=0.0005)
S5=simu(R,n,K,P.value=0.00075)
S6=simu(R,n,K,P.value=0.001)
S7=simu(R,n,K,P.value=0.0025)
S8=simu(R,n,K,P.value=0.005)
S9=simu(R,n,K,P.value=0.0075)
S10=simu(R,n,K,P.value=0.01)
S11=simu(R,n,K,P.value=0.025)
S12=simu(R,n,K,P.value=0.05)
S13=simu(R,n,K,P.value=0.075)

S.c=cbind(S1$c.index,S2$c.index,S3$c.index,S4$c.index,S5$c.index,
 S6$c.index,S7$c.index,S8$c.index,S9$c.index,S10$c.index,
 S11$c.index,S12$c.index,S13$c.index)
S.LR=cbind(S1$LR.test,S2$LR.test,S3$LR.test,S4$LR.test,S5$LR.test,
 S6$LR.test,S7$LR.test,S8$LR.test,S9$LR.test,S10$LR.test,
 S11$LR.test,S12$LR.test,S13$LR.test)

CC.c.grid=S.c["CC",]
R.c.grid=S.c["Ridge",]

12

CS.c.grid=S.c["CS",]
L.c.grid=S.c["Lasso",]

CC.LR.grid=S.LR["CC",]
R.LR.grid=S.LR["Ridge",]
CS.LR.grid=S.LR["CS",]
L.LR.grid=S.LR["Lasso",]

c.max=max(c(CC.c.grid,R.c.grid,L.c.grid,CS.c.grid))
c.min=min(c(CC.c.grid,R.c.grid,L.c.grid,CS.c.grid))
LR.max=max(c(CC.LR.grid,R.LR.grid,L.LR.grid,CS.LR.grid))
LR.min=min(c(CC.LR.grid,R.LR.grid,L.LR.grid,CS.LR.grid))

par(mfrow=c(1,2))
plot(log(P.grid),CC.LR.grid,ylim=c(LR.min,LR.max),type="b",lty="solid",
 xlab="log(P-value)",ylab="|Z| of the Log-rank test",pch=8,lwd=2)
points(log(P.grid),R.LR.grid,type="b",col="red",pch=17,lwd=2)
points(log(P.grid),CS.LR.grid,type="b",col="blue",pch=16,lwd=2)
points(log(P.grid),L.LR.grid,type="b",col="orange",pch=15,lwd=2)

AA=c("CS","Ridge","CC","Lasso")
BB=c("dashed","dotted","solid","dotdash")
CC=c("blue","red","black","orange")
legend("bottom",AA,lwd=c(2,2),merge = TRUE,col=CC,pch=c(16,17,8,15))

plot(log(P.grid),CC.c.grid,ylim=c(c.min,c.max),type="b",lty="solid",
 xlab="log(P-value)",ylab="c-index",pch=8,lwd=2)
points(log(P.grid),R.c.grid,type="b",col="red",pch=17,lwd=2)
points(log(P.grid),CS.c.grid,type="b",col="blue",pch=16,lwd=2)
points(log(P.grid),L.c.grid,type="b",col="orange",pch=15,lwd=2)

AA=c("CS","Ridge","CC","Lasso")
BB=c("dashed","dotted","solid","dotdash")
CC=c("blue","red","black","orange")
legend("bottom",AA,lwd=c(2,2),merge = TRUE,col=CC,pch=c(16,17,8,15))

	compound.Cox: Univariate feature selection and compound covariate for predicting survival
	1 Introduction
	2 Univariate feature selection
	2.1 P-value threshold
	2.2 Cross-validation
	2.3 Multigene predictors
	2.4 Dependent censoring

	3 The compound.Cox package
	3.1 The lung cancer data
	3.2 Data input
	3.3 Feature selection
	3.4 Prediction after selection
	3.5 Significance tests
	3.6 Optimizing a threshold by CVL
	3.7 Dependent censoring
	3.8 Compound shrinkage predictor
	3.9 Comparison of multigene predictors

	4 Simulations
	4.1 Simulation designs
	4.2 Simulation results

	5 Discussions
	Acknowledgements
	Supplementary materials
	Appendix A: Cross-validated likelihood (CVL)
	Appendix B: False discovery rate (FDR)
	Appendix C: Outputs for feature selection by score tests
	Appendix D: Copula-based methods for dependent censoring
	References

