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and truncated distribution functions are expressed as univariate integrals of some func-
tions.With aid of these expressions,we propose computational algorithms tomaximize
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1 Introduction

This paper considers the situation that a pair of lifetime variables (L , X) can be
available in the samples only if L ≤ X holds. Nothing is available if L > X. The
variable X is said to be left-truncated by L . Owing to this sampling scheme, the
available samples tend to exhibit larger values of X than the completely random sam-
ples (i.e., length-biased sampling). Such left-truncation phenomena occur in studies
of education, economics, engineering, and epidemiology. Statistical methods for left-
truncated data are typically found in textbooks of survival analysis, such as Klein and
Moeschberger (2003) and Lawless (2003).

Traditionally, the literature on the truncated data analysis considers statistical infer-
ence by assuming that L and X are independent. For instance, the Lynden-Bell
nonparametric estimator for SX (x) = Pr(X > x) is derived under the independence
(Lynden-Bell 1971). Kalbfleisch and Lawless (1992) assumed the independence in
analysis of their brake pads data, and then developed parametric likelihood infer-
ence. Using the same data, Gardes and Stupfler (2014) derived their quantile estimator
under the independence. Standard textbooks of survival analysis, such as Klein and
Moeschberger (2003) and Lawless (2003), introduce methods for analyzing left-
truncated lifetime data under the independence.

The independence assumption may often be questionable and can be tested by sev-
eral different nonparametric tests (Tsai 1990; Uña-Álvarez 2012;Martin and Betensky
2005; Emura and Wang 2010; Strzalkowska-Kominiak and Stute 2013). Bakoyannis
and Touloumi (2012, 2017) raised concerns about the effect posed by dependent trun-
cation under the competing risks setting. Recently, Emura and Wang (2016) reported
the bias of the traditional regression analysis caused by ignoring the effect of depen-
dent truncation. These previous works underscore the need to appropriately handle
the dependence if it exists.

Statistical inference for dependently truncated data was initiated by Chaieb et al.
(2006) in which they suggested a copula model between L and X. A parametric
inference for dependently truncated data under the bivariate normal distribution was
subsequently considered by Emura and Konno (2012a). Similarly, Emura and Konno
(2012b) considered parametric inference under the bivariate Poisson model, along
with the goodness-of-fit tests. Chaieb et al. (2006) proposed a semi-parametric estima-
tion procedure for their copula model in which the marginal models are unspecified.
Under the same copula model, Emura and Wang (2012) and Emura and Murotani
(2015) proposed different semiparametric estimation schemes. Ding (2012) verified
the identifiability of the model used in Chaieb et al. (2006). Another proposal is a
copula-based nonparametric association study of Strzalkowska-Kominiak and Stute
(2013).

We follow the aforementioned approaches to model the dependence between the
truncation time L and lifetime X via copulas. In particular, we develop the maxi-
mum likelihood estimator (MLE) under a copula model between L and X, where the
marginal distributions of L and X are parametrically specified. Our work is regarded
as a more flexible version of the results of Emura and Konno (2012a, b) who consid-
ered specific cases: bivariate normal and bivariate Poisson models. From a different
view, our work is similar to the copula-based parametric inference of Escarela and
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Carriere (2003) that was developed for dependent censoring (not for dependent trun-
cation). However, the problem is more challenging in dependent truncation, where the
inference involves the complicated inclusion probability c(θ) = Pr(L ≤ X).

In stress-strengthmodels, for any bivariate randomvariables (X, Y ), the probability
R = Pr(Y < X) is called “reliability”. In the assessment of R,most existing literature
imposes the independence assumption between X and Y (Greco and Ventura 2011;
Cortese andVentura 2013, and references therein). The calculation of R under a copula
model is only recently considered by Domma and Giordano (2013). They focused on
the Farlie–Gumbel–Morgenstern copula and Frank copula, but did not discuss about
statistical inference. Here our paper works on general copulas, and also discusses
likelihood inference under dependent truncation.

The paper is organized as follows. Section 2 describes the motivating example.
Section 3 proposes a copula-based likelihood inference method and goodness-of-fit
procedure under dependent truncation. Section 4 presents an example under the Clay-
ton copula. Section 5 presents simulation studies. Section 6 considers a real data
application. Section 7 discuss the issue of double-truncation. Section 8 concludes the
paper and mentions future work. Supplementary Material includes detailed mathe-
matical formulas and additional numerical results.

2 Motivating example

Figure 1 displays an example of left-truncated data that appear in afield reliability study
on the lifetimes of brake pads of automobiles (Kalbfleisch and Lawless 1992; Lawless
2003). The lifetime of the brake pads was defined as the number of kilometers driven
before the pads fail (wear that requires replacement of the pads). The manufacturer
selected random samples of cars which were sold over the preceding 12 months. The
samples become available when cars have the brake pads still working at the time
of sampling. Thus, the sample inclusion criterion is L ≤ X, where L is the number

New: The car had been sold at the time. 

Failure: The time when the brake pad of the car fails.

Not available

Car 0                            ( 0001 mk nevird )×X

( 0001 mk nevird )×L Car 1                                                                                   

12 months

Fig. 1 Left-truncated lifetimes on the brake pads of automobiles (Kalbfleisch and Lawless 1992; Lawless
2003), where X is the number of kilometers of the car driven at failure, and L is the number of kilometers of
the car driven at the sampling point. Car 1 is sold before the sampling starts, and it fails after the sampling
time. Hence, Car 1 is available in the samples. Car 0 is not available in the samples as the brake pad is
broken too early (before the sampling time)
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of kilometers driven for brake pads at the time of sampling, and X is the number of
kilometers driven for brake pads at the time of failure.

The aforementioned brake pads data are written as (L j , X j ), L j ≤ X j , j =
1, 2, . . . , n with n = 98. Let fL ,X (l, x) = fL(l) fX (x) be the joint density of (L , X)

under the independence assumption. Following Wang (1991), the full likelihood is
expressed as

Ln =
n∏

j=1

fL ,X (L j , X j )∫∫

l≤x
fL ,X (l, x)dxdl

=
n∏

j=1

fL ,X (L j , X j )∫
L j≤x fL ,X (L j , x)dx

×
∫
L j≤x fL ,X (L j , x)dx
∫∫

l≤x
fL ,X (l, x)dxdl

=
n∏

j=1

fX (X j )∫
L j≤x fX (x)dx

×
n∏

j=1

∫
L j≤x fL ,X (L j , x)dx
∫∫

l≤x
fL ,X (l, x)dxdl

≡ L1,n × L2,n .

Traditional statistical methods for left-truncated data are constructed by maximizing
L1,n while ignoring L2,n . For instance, the nonparametric estimator of Lynden-Bell
(1971) is regarded as the maximizer of L1,n . The above likelihood decomposition
avoids the calculation of a complicated double integral in L2,n .

Kalbfleisch and Lawless (1992) and Lawless (2003) analyzed the brake bad data
by maximizing L1,n under the lognormal distribution on fX . It is easy to see that the
likelihood is

L1,n(μ, σ ) =
n∏

j=1

1√
X jσ

φ[{log(X j ) − μ}/σ ]
1 − �[{log(L j ) − μ}/σ ] .

All the first and second derivatives of log L1,n(μ, σ ) with respect to (μ, σ ) are ana-
lytically obtained, and hence, the Newton–Raphson (NR) algorithm can be employed
to maximize L1,n(μ, σ ). Our numerical analysis results in (μ̂, σ̂ ) = (4.109, 0.421)
which are exactly the same values as those reported in Lawless (2003).

Clearly, the likelihood decomposition is meaningless if the independence assump-
tion fL ,X (l, x) = fL(l) fX (x) is violated. The problem of dependent truncation
necessarily involves the full-likelihood. Here, a key computational challenge is to
obtain the expressions of the double integral c(θ) = ∫∫

l≤x fL ,X (l, x)dxdl, where
θ is a vector of parameters for the joint density fL ,X . Furthermore, the truncated
distribution function,

FL≤X (l, x; θ) = Prθ(L ≤ l, X ≤ x, L ≤ X) =
∫∫

s≤l, s≤t≤x

fL ,X (s, t; θ)dsdt,

is useful in goodness-of-fit assessment, which again requires a double integral. This
becomes a serious burden when computing these integrals during the iterations of the
NR algorithm and hundreds of the bootstrap replications.
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This paper proposes novel expressions of c(θ) and FL≤X (l, x; θ) in terms of uni-
variate integrals of some functions on the unit interval (Theorems 1 and 2). Beside
the analysis of dependently left-truncated data, obtaining such expressions would
facilitate the analysis of reliability R = Pr(Y < X) (Sect. 1) and the analysis of
doubly-truncated data (Sect. 7). With aid of the new expressions, we develop compu-
tational procedures in maximum likelihood estimation, including the NR algorithm,
the formulas of standard errors (SEs), and the formal goodness-of-fit tests.

3 Proposed method

3.1 Copula models for dependent truncation

A bivariate copula is a bivariate distribution function for a pair of two uniform random
variables on [0, 1] (Nelsen 2006). Let (U1, U2) be a pair of uniform random variables
on [0, 1]2 following a copula Cα: [0, 1]2 �→ [0, 1], where α ∈ R is a dependence
parameter. For notational simplicity, we define the conditional distribution function
for U1|U2 = u2 as

hα (u1, u2) ≡ Pr (U1 ≤ u1|U2 = u2) = C [0,1]
α (u1, u2) = ∂Cα(u1, u2)

∂u2
.

The function hα: [0, 1]2 → [0, 1] is called “h-function” (Schepsmeier and Stöber
2014). The density function of (U1, U2) is

C [1,1]
α (u1, u2) = ∂2Cα(u1, u2)

∂u1∂u2
.

Let FL(l; θL) and FX (x; θX ) be the marginal distribution functions of L and X,

respectively. Here θL is a k-variate vector of parameters and θX is am-variate vector of
parameters. We assume that the inverse functions of FL(l; θL) and FX (x; θX ) exist.
Then the probability integral transformationsU1 = FL(L; θL) andU2 = FX (X; θX )

yield a joint distribution function

Prθ(L ≤ l, X ≤ x) = Cα [FL (l; θL) , FX (x; θX )] ,

where α represents the degree of dependence between L and X.Let θ = (α, θL , θX ) ∈
� be a (k + m + 1)-variate vector of parameters and � ⊂ Rk+m+1 be a parameter
space. Then the density function of (L , X) is

fL ,X (l, x; θ) = C [1,1]
α [FL (l; θL) , FX (x; θX )] fL (l; θL) fX (x; θX ) ,

where fL(l; θL) = dFL(l; θL)/dl and fX (x; θX ) = dFX (x; θX )/dx . The above
parametric model is different from the semiparametric model of Chaieb et al. (2006)
in which the marginal densities are unspecified.
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3.2 Likelihood construction

Given the observed data {(L j , X j ); j = 1, 2, . . . , n} subject to L j ≤ X j , the likeli-
hood function has the form

Ln(θ) = c(θ)−n
n∑

j=1

fL ,X
(
L j , X j ; θ

)
,

where

c(θ) = Pr(L ≤ X) =
∫∫

l≤x

fL ,X (l, x; θ)dxdl.

Asmentioned in Sect. 2, the form of c(θ) is necessary to perform likelihood inference.
Indeed, Emura and Konno (2012a, b) developed likelihood inference under the bivari-
ate normal and bivariate Poisson models where the simple forms of c(θ) are available.
The Monte Carlo method to approximate the numerical value of c(θ) is not a suitable
option since the likelihood inference requires repeated evaluation of c(θ) at different
values of θ.

To obtain the form of c(θ), we define H-function

H(u; θ) = hα

[
FL

{
F−1
X (u; θX ) ; θL

}
, u
]
.

Theorem 1 The inclusion probability is written as the univariate integral

c(θ) = Pr(L ≤ X) =
1∫

0

H(u; θ)du.

Proof By straight forward calculations, we have

c(θ) = Pr(L ≤ X) = Pr {FL (L; θL) ≤ FL (X; θL)}
= Pr

[
U1 ≤ FL

{
F−1
X (U2; θX ) ; θL

}]

= E
(
Pr
[
U1 ≤ FL

{
F−1
X (U2; θX ) ; θL

}
|U2

])

=
∫ 1

0
hα

[
FL

{
F−1
X (u; θX ) ; θL

}
u
]
du.

�	
Theorem 1 is quite general, which works on almost all types of bivariate continuous

lifetime models. The univariate integral in Theorem 1 can be accurately approximated
by numerical integration routines in software packages, much more accurately than
the Monte Carlo method.
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By Theorem 1, the log-likelihood is written as

�n(θ) = −n log

⎧
⎨

⎩

1∫

0

H(u; θ)du

⎫
⎬

⎭+
n∑

j=1

log fL
(
L j ; θL

)

+
n∑

j=1

log fX
(
X j ; θX

)

+
n∑

j=1

logC [1,1]
α

[
FL

(
L j ; θL

)
, FX

(
X j ; θX

)]
.

Then, the MLE is defined as

θ̂ = (
α̂, θ̂L , θ̂X

)= argmax
θ∈�

�n(θ).

3.3 Score vector and Hessian matrix

In order to perform likelihood inference, one needs the first- and second-order
derivatives of the log-likelihood �n(θ), such as ∂�n(θ)/∂α and ∂2�n(θ)/∂α2. These
derivatives comprise the score function and Hessian matrix whose expressions are
given in Supplementary Material. They involves the derivatives of copulas

C [i, j]
α (u1, u2) = ∂(i+ j)Cα(u1, u2)

∂ui1∂u
j
2

,

where (i, j) ∈ {0, 1, 2, 3} × {0, 1, 2, 3}. We provides all these derivatives of the
Clayton copula and the Joe copula (1993) in Supplementary Material. The Clayton
copula has the lower tail dependence while the Joe copula has the upper tail depen-
dence.

For R users, one can use the R package: VineCopula (Schepsmeier et al. 2015) to
calculate the derivatives of copulas.We have checked the correctness of the package by
comparing between our derivative formulas and the package outputs (Supplementary
Material).

The following lemma facilitates the subsequent calculus.

Lemma 1 (Khuri 2003, p. 301) Let D = {(u, θ1, θ2, . . . , θp) |0 ≤ u ≤ 1, ai ≤ θi ≤
bi , i = 1, . . . , p}, where ai and bi be real numbers with ai < bi , i = 1, 2, . . . , p.
Let Di = {(u, θi ) |0 ≤ u ≤ 1, ai ≤ θi ≤ bi } for fixed θ j with j 
= i. If H and ∂H/∂θi
are continuous in Di , then

∂

∂θi

1∫

0

H(u; θ)du =
1∫

0

∂H(u; θ)

∂θi
du, i = 1, . . . , p.
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If H(u; θ) in Theorem 1 satisfies the condition of Lemma 1, all the first- and
second-order derivatives of c(θ) with respect to θ = (α, θL , θX ) are again univariate
integrals of some functions on the interval [0, 1]. In particular,

⎡

⎣
cα(θ)

cθL (θ)

cθX (θ)

⎤

⎦ ≡
⎡

⎣
∂c(θ)/∂α

∂c(θ)/∂θL
∂c(θ)/∂θX

⎤

⎦ =
1∫

0

⎡

⎣
∂H(u; θ)/∂α

∂H(u; θ)/∂θL
∂H(u; θ)/∂θX

⎤

⎦du,

⎡

⎣
cαα(θ) cTαθL

(θ) cTαθX
(θ)

cαθL (θ) cθLθL (θ) cTθLθX
(θ)

cαθX (θ) cθLθX (θ) cθX θX (θ)

⎤

⎦

≡
1∫

0

⎡

⎢⎢⎣

∂2H(u; θ)/∂α2 ∂2H(u; θ)/∂α∂θ
T
L ∂2H(u; θ)/∂α∂θ

T
X

∂2H(u; θ)/∂α∂θL ∂2H(u; θ)/∂θL∂θ
T
L ∂2H(u; θ)/∂θL∂θ

T
X

∂2H(u; θ)/∂α∂θX ∂2H(u; θ)/∂θX∂θ
T
L ∂2H(u; θ)/∂θX∂θ

T
X

⎤

⎥⎥⎦du.

The derivative expressions of H(u; θ) are available in closed forms. With the above
expression, the first and second derivatives of the log-likelihood are obtained, which
are given in Supplementary Material.

3.4 Standard error and confidence interval

Under the regularity conditions stated in Emura and Konno (2012b), the asymptotic
theory holds for the MLE. The SE is obtained from the negative of the inverse Hes-
sian matrix of the log-likelihood (the observed Fisher information matrix), and the
confidence interval (CI) is formed by the normal approximation.

The SE of θ̂ j is

SE
(
θ̂ j

)
=
√√√√
[{

− ∂2

∂θ∂θT
�n(θ̂)

}−1
]

j j

,

where [A] j j is the j th diagonal element of a matrix A, and θ j is the j th component
of θ.

The (1− β) × 100% CI for θ j utilizes the pth upper quantile for N (0, 1), denoted
as Z p, If the range of parameter θ j is unrestricted, one can use the linear CI

θ̂ j ± Zβ/2 × SE
(
θ̂ j

)
.

For a positive parameter θ j > 0, one may use the log-transformed CI

θ̂ j exp
{
±Zβ/2 × SE

(
θ̂ j

)
/θ̂ j

}
.

Let g(θ̂) be an estimate of g(θ), where g is a differentiable function. By the delta
method, we obtain the SE of g(θ̂):
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SE{g(θ̂)} =
√√√√
{

∂

∂θ
g(θ̂)

}T
×
{
− ∂2

∂θ∂θT
�n(θ̂)

}−1

× ∂

∂θ
g(θ̂).

A quantity of interest is the mean lifetime g(θ) = E(X) = ∫
x fX (x; θX )dx . Since

the mean lifetime is positive, one may use the log-transformed CI.

Remark 1 Another quantity of interest is the CI for the marginal distribution function
g(θ) = FX (x; θX ). For this case, the quantile-based transformation may be recom-
mended for constricting the CI, especially for small samples (Hong et al. 2008).

3.5 Goodness-of-fit test

Goodness-of-fit tests provide a formal way to test the validity of the parametric form of
a given model. Following Emura and Konno (2012a, b), we consider a goodness-of-fit
test based on the distance between the empirical distribution function F̂L ,X (l, x) =∑

j I(L j ≤ l, X j ≤ x)/n and its parametric counterpart FL≤X (l, x; θ̂)/c(θ̂), where
I(·) is the indicator function and

FL≤X (l, x; θ) = Prθ(L ≤ l, X ≤ x, L ≤ X) =
∫∫

s≤l, s≤t≤x

fL ,X (s, t; θ)dsdt,

is the truncated distribution function. Emura and Konno (2012a, b) suggested the
Kolmogorov–Smirnov type statistics

K = sup
x, y

∣∣∣F̂L ,X (l, x) − FL≤X (l, x; θ̂)/c(θ̂)
∣∣∣ ,

and the Cramér–von Mises type statistic

C =
∫∫

l≤x

n
{
F̂L ,X (l, x) − FL≤X (l, x; θ̂)/c(θ̂)

}2
d F̂(l, x)

=
∑

j

{
F̂L ,X

(
L j , X j

)− FL≤X
(
L j , X j ; θ̂

)
/c(θ̂)

}2
.

Note that the truncated distribution function FL≤X (l, x; θ) is not equal to the untrun-
cated distribution function Prθ(L ≤ l, X ≤ x) = Cα[FL(l; θL), FX (x; θX )];
the former involves the double integral while the latter does not. The form of
FL≤X (l, x; θ) was previously obtained only under specific distributional forms of
the bivariate normal and bivariate Poisson model (Emura and Konno 2012a, b). We
will generalize the previous results.

Similar to the idea of Theorem 1, we derive the following theorem to reduce the
computational cost of the double-integral:
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Theorem 2 The truncated distribution function is expressed as the univariate inte-
grals

FL≤X (l, x; θ) = Pr(L ≤ l, X ≤ x, L ≤ X)

=
FX (l)∫

0

H(v; θ)dv +
FX (x)∫

FX (l)

hα {FL(l), v} dv.

Proof By straight forward calculations, we have

Pr(L ≤ l, X ≤ x, L ≤ X) =
l∫

0

Pr(L ≤ t, X = t) +
x∫

l

Pr(L ≤ l, X = t)

=
l∫

0

Pr (U ≤ FL(t)|V = FX (t)) fX (t)dt

+
x∫

l

Pr (U ≤ FL(l)|V = FX (t)) fX (t)dt

=
l∫

0

hα {FL(t), FX (t)} fX (t)dt

+
x∫

l

hα {FL(l), FX (t)} fX (t)dt .

The desired result is obtained by transformations to the last two integrals. �	
Obviously, Theorem 2 with l = x → ∞ agrees with Theorem 1.
For a given dataset, one can numerically evaluate the statistics K and C with aid of

Theorem 1. In the R depend.truncation package (Emura 2017), we have implemented
routines for computing K and C under three models; the Clayton copula with Weibull
margins, the Clayton copula with exponential margins, and the Gaussian copula with
lognormal margins. The P-value of the goodness-of-fit tests is obtained by a paramet-
ric bootstrap (Emura and Konno 2012a). However, since each bootstrap replications
involve re-computations for the MLE, K , and C, a huge number of integrations must
be evaluated. This is a real burden without aids of Theorems 1 and 2.

In conjunction with the test results, a graphical diagnostic procedure is useful
by plotting FL≤X (L j , X j ; θ̂)/c(θ̂) against F̂L ,X (L j , X j ). If the plot bend away
from the diagonal line, this indicates evidence that the fitted model is not a good
choice.
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3.6 Software

All aspects of numerical computations developed in this paper are made avail-
able in our R package, depend.truncation (Emura 2017). The three functions
(PMLE.Clayton.Weibull, PMLE.Clayton.Exponential, and PMLE.Normal) allow
users to calculate the MLE and estimates of the mean lifetimes with their SEs and
CIs. They also calculate goodness-of-fit statistics and output model-diagnostic plots.
For instance, the model with the Clayton copula and Weibull lifetimes is fitted by a
function PMLE.Clayton.Weibull.

4 An example under the Clayton copula

We demonstrate the method developed in a general copula model (Sect. 3) by using
specific models. Consider the Clayton copula

Cα (u1, u2) = (
u−α
1 + u−α

2 − 1
)−1/α

, α > 0.

Also, consider the Weibull lifetime models, defined as FL(l; λL , νL) = 1 −
exp(−λLlνL ) and FX (x; λX , νX ) = 1 − exp(−λX xνX ), where λL > 0 and λX > 0
are scale parameters and νL > 0 and νX > 0 are shape parameters. Let the parameter
space for θ = (α, λL , λX , νL , νX ) be � = [ε, M]5, where ε > 0 is a small number
and M > 0 is a large number.

4.1 Computation of c(θ)

By Theorem 1, the inclusion probability is

c(θ) = Pr(L ≤ X) =
1∫

0

H(u; θ)du, (1)

where

H(u; θ) = u−α−1B(u, θ)
−1/α−1,

B(u; θ) =
(
1 − exp

[
−λL

{
−λ−1

X log(1 − u)
}νL/νX

])−α

+ u−α − 1.

On the other hand, c(θ) can be computated by the double-integral of the joint density
such that

c(θ) = λLλXνLνX (1 + α)

×
∫∫

l≤x

lνL−1xνX−1 exp(−λLlνL ) exp(−λX xνX )[{1 − exp(−λLlνL )}{1 − exp(−λX xνX )}]−α−1

({1 − exp(−λLlνL )}−α + {1 − exp(−λX xνX )}−α − 1)1/α+2 dldx .

(2)

123



T. Emura, C.-H. Pan

We provide the R codes for computing Eqs. (1) and (2) below:

---------------------------------------------------------------------------------------------------------

lambda_L = 2; lambda_X = 1; nu_L=1; nu_X=1; alpha = 1 

H_func = func�on(u){

E = exp(-lambda_L*(-1/lambda_X*log(1-u))^(nu_L/nu_X))

RR = (E == rep(1,length(E))) 

E[RR] = 1-10^-8 

B=(1-E)^-alpha+u^-alpha-1 

u^(-alpha-1)*B^(-1/alpha-1)

} 

integrate(H_func, lower = 0, upper = 1)

f_func=func�on(x){

inner_func=func�on(l){

u1=1-exp(-lambda_L*l^nu_L)

u2=1-exp(-lambda_X*x^nu_X)

fL=lambda_L*nu_L*l^(nu_L-1)*exp(-lambda_L*l^nu_L)

fX=lambda_X*nu_X*x^(nu_X-1)*exp(-lambda_X*x^nu_X)

A=u1^(-alpha)+u2^(-alpha)-1 

fL*fX*(1+alpha)*(u1*u2)^(-alpha-1)/A^(1/alpha+2)

} 

integrate(inner_func,0,x)$value

} 

integrate(Vectorize(f_func),0,Inf)

---------------------------------------------------------------------------------------------------------------

By implementing the codes, one can see that Eqs. (1) and (2) yield exactly the same
value 0.7363999.

Table 1 evaluates the computation time required to calculate c(θ) under selected
values of θ = (α, λL , λX , νL , νX ). In all parameter values, the computing time based
on Eq. (1) is much shorter than that based on Eq. (2). The reduction of computation
time is more remarkable when the value of c(θ) is small.
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Table 1 Computation times of computing c(θ) based on the two methods

Parameters c(θ) B The number of
computations:
N = B × AI

Computing time
(sec.): Eq. (1)

Computing time
(sec.): Eq. (2)

α = 1, λL = 2, λX = 1,
νL = 1, νX = 1

0.736 100 660 0.02 1.98

200 1280 0.05 3.80

300 1920 0.08 5.64

α = 1, λL = 1, λX = 1,
νL = 1, νX = 1

0.500 100 900 0.02 2.62

200 1560 0.05 4.48

300 2340 0.08 6.72

α = 1, λL = 1, λX = 1,
νL = 2, νX = 1

0.416 100 3270 0.09 10.01

200 6100 0.18 18.89

300 8130 0.23 25.04

Thu number of computations is defined as N = B ×AI, where B is the number of bootstraps, and AI is the
average number of iterations in the Newton–Raphson algorithm obtained from Supplementary Material

4.2 Computation of the MLE

To obtain the score function, we need the first-order derivatives of H(u; θ) as:

∂H(u; θ)

∂α
= u−α−1B(u, θ)

−1/α−1

×
[
− log(u) + log{B(u; θ)}

α2 +
(

− 1

α
− 1

)
Bα(u; θ)

B(u; θ)

]
,

∂H(u; θ)/∂λL = (−1/α − 1)u−α−1B(u; θ)
−1/α−2BλL (u; θ),

∂H(u; θ)/∂λX = (−1/α − 1)u−α−1B(u; θ)
−1/α−2BλX (u; θ),

∂H(u; θ)/∂νL = (−1/α − 1)u−α−1B(u; θ)
−1/α−2BνL (u; θ),

∂H(u; θ)/∂νX = (−1/α − 1)u−α−1B(u; θ)
−1/α−2BνX (u; θ),

where by defining QX (u) ≡ {−λ−1
X log(1 − u)}1/νX ,

Bα(u; θ) ≡ − log(1 − exp[−λL QX (u)νL ])
(1 − exp[−λL QX (u)νL ])α + − log(u)

uα
,

BλL (u; θ) ≡ −αQX (u)νL exp[−λL QX (u)νL ]
(1 − exp[−λL QX (u)νL ])α+1 ,

BλX (u; θ) ≡ − αλLνL exp[−λL QX (u)νL ]
λ2XνX (1 − exp[−λL QX (u)νL ])α+1

×
{
−λ−1

X log(1 − u)
}νL/νX−1

log(1 − u),
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BνL (u; θ) ≡ −αλL QX (u)νL exp[−λL QX (u)νL ]
νX (1 − exp[−λL QX (u)νL ])α+1 × log

{
−λ−1

X log(1 − u)
}

,

BνX (u; θ) ≡ αλLνL QX (u)νL exp[−λL QX (u)νL ]
ν2X (1 − exp[−λL QX (u)νL ])α+1

× log
{
−λ−1

X log(1 − u)
}

.

As H and ∂H/∂θ are continuous with respect to (u, θ) in [0, 1] × �, by Lemma 1,

⎡

⎢⎢⎢⎢⎣

cα(θ)

cλL (θ)

cλX (θ)

cνL (θ)

cνX (θ)

⎤

⎥⎥⎥⎥⎦
≡

⎡

⎢⎢⎢⎢⎣

∂c(θ)/∂α

∂c(θ)/∂λL

∂c(θ)/∂λX

∂c(θ)/∂νL
∂c(θ)/∂νX

⎤

⎥⎥⎥⎥⎦
=

1∫

0

⎡

⎢⎢⎢⎢⎣

∂H(u; θ)/∂α

∂H(u; θ)/∂λL

∂H(u; θ)/∂λX

∂H(u; θ)/∂νL
∂H(u; θ)/∂νX

⎤

⎥⎥⎥⎥⎦
du.

The score function and Hessian matrix are available in Supplementary Material.
With the availability of the score function and Hessian matrix, we apply the NR

algorithm to obtain theMLE. Due to the large number of parameters, the NR algorithm
is sensitive to the initial values (Knight 2000). Thus, we apply the following the
randomized NR algorithm as previously developed (Hu and Emura 2015).

Algorithm 1: randomized NR algorithm for the Weibull model

Step 1 Set initial values α(0) = 2τ̂ /(1−τ̂ ), λ
(0)
L = 1/L̄, λ

(0)
X = 1/X̄ , ν

(0)
L = 1 and

ν
(0)
X = 1, where τ̂ is the sample Kendall tau, L̄ = ∑n

i=1 Li/n and X̄ = ∑n
i=1 Xi/n.

Step 2 Repeat the following iteration for k = 0, 1, 2, . . .:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

α(k+1)

λ
(k+1)
L

λ
(k+1)
X

ν
(k+1)
L

ν
(k+1)
X

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

α(k)

λ
(k)
L

λ
(k)
X

ν
(k)
L

ν
(k)
X

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2�n (θ)

∂α2
∂2�n (θ)
∂λL ∂α

∂2�n (θ)
∂λX ∂α

∂2�n (θ)
∂νL ∂α

∂2�n (θ)
∂νX ∂α

∂2�n (θ)
∂λL ∂α

∂2�n (θ)

∂λ2L

∂2�n (θ)
∂λL ∂λX

∂2�n (θ)
∂λL ∂νL

∂2�n (θ)
∂λL ∂νX

∂2�n (θ)
∂λX ∂α

∂2�n (θ)
∂λL ∂λX

∂2�n (θ)

∂λ2X

∂2�n (θ)
∂νL ∂λX

∂2�n (θ)
∂νX ∂λX

∂2�n (θ)
∂νL ∂α

∂2�n (θ)
∂νL ∂λL

∂2�n (θ)
∂νL ∂λX

∂2�n (θ)

∂ν2L

∂2�n (θ)
∂νL ∂νX

∂2�n (θ)
∂νX ∂α

∂2�n (θ)
∂νX ∂λL

∂2�n (θ)
∂νX ∂λX

∂2�n (θ)
∂νL ∂νX

∂2�n (θ)

∂ν2X

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂�n (θ)
∂α

∂�n (θ)
∂λL

∂�n (θ)
∂λX

∂�n (θ)
∂νL

∂�n (θ)
∂νX

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣ α = α(k)

λL = λ
(k)
L , λX = λ

(k)
X

νL = ν
(k)
L , νX = ν

(k)
X .

• If max{|α(k+1) − α(k)|, |λ(k+1)
L − λ

(k)
L |, |λ(k+1)

X − λ
(k)
X |, |ν(k+1)

L − ν
(k)
L |, |ν(k+1)

X −
ν

(k)
X |} < ε and the Hessian matrix is negative definite, then the values

(α(k+1), λ
(k+1)
L , λ

(k+1)
X , ν

(k+1)
L , ν

(k+1)
X ) are the MLE of (α, λL , λX , νL , νX ).

• If max{|α(k+1) − α(k)|, |λ(k+1)
L − λ

(k)
L |, |λ(k+1)

X − λ
(k)
X |, |ν(k+1)

L − ν
(k)
L |, |ν(k+1)

X −
ν

(k)
X |} > Err, α(k+1) > αmax, α(k+1) < αmin, min{λ(k+1)

L , λ
(k+1)
X , ν

(k+1)
L , ν

(k+1)
X }

< 10−8 or k = {100, 200, 300, . . .} holds, then replace the initial val-
ues (α(0), λ

(0)
L , λ

(0)
X , ν

(0)
L , ν

(0)
X ) with{α(0) × exp(u1), λ

(0)
L × exp(u2), λ

(0)
X ×

exp(u3), ν
(0)
L × exp(u4), ν

(0)
X × exp(u5)}, where ui ∼ U (−ri , ri ) for a radius

ri > 0, i = 1, . . . , 5. Then, restart Step 2.
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Remark 2 We used Err = 2, αmin = 10−4, αmax = 20, r1 = 1 and r2 = · · · = r5 =
0.5 for numerical analysis. We randomize the initial value when k = {100, 200, . . .}
to escape infinite roops occurring during the iterations.

The exponential distribution emerges as the case of νL = νX = 1, which however
requires a separate development (the details are given in Supplementary Material).

Copula models allow one to consider a “differing marginal model”, such as the
Clayton copula with the Weibull model for X and the lognormal model for L , and
vice versa. However, such models are more difficult to interpret as the two models
may have different meanings of parameters. Indeed, many medical and engineering
applications of the copula-based bivariate survival models apply the same martinal
forms (Escarela and Carriere 2003; Hsu et al. 2016; Emura and Michimae 2017).

5 Simulation

Monte Carlo simulations were performed to examine the performance of the proposed
method. Data were generated from the exponential andWeibull lifetime models under
the Clayton copula (detailed in Supplementary Material). Then, we checked the fol-
lowing factors: (1) convergence of the NR algorithm, (2) closeness of the estimate to
the true value, (3) closeness of the SE to the sample standard deviation, (4) correctness
of the coverage probability of the CI.

Our simulation results are given in SupplementaryMaterial, which demonstrate that
the NR algorithm converges quickly and robustly. The simulations also show that the
estimators are nearly unbiased and the CIs provide desirable coverage performance.
Overall, the proposed method had sound performance on the factors examined.

6 Data analysis

The proposed method is illustrated using the field reliability data of the brake pad
lifetimes (Kalbfleisch and Lawless 1992; Lawless 2003). The data is introduced in
Sect. 2.

6.1 Data preprocessing

We first extracted the data from Table 1 of Kalbfleisch and Lawless (1992). They
defined

• L = the number of kilometers driven for brake pads at sampling point,
• X = the number of kilometers driven for brake pads at failure.

The lifetime X is left-truncated by L as explained in Sect. 2.
We decided to remove one outlying data point (L = 6.951, X = 53.926) since

the presence of this point made all the candidate parametric models fit poorly (i.e.,
all models rejected by our goodness-of-fit tests). This data point has the smallest left-
truncation point, which is far away from other left-truncation points (extreme data
point).
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Fig. 2 Profile plots for �n(α, λL , λX ) under the Clayton copula with exponential margins based on
the automobile brake pads data. The vertical lines signify the MLEs α̂ = 0.000, λ̂L = 0.0537, and
λ̂X = 0.0224

In the presence of left-truncation, the identifiable region of the model for X is
[umin, ∞),where lmin = inf{l; FL(l) > 0} is the lower support for the left-truncation
variable (Woodroofe 1985). Thus, what we can estimate is the conditional distribution
X |X ≥ lmin. The value lmin is unknown, often replaced by the smallest left-truncation
point (Kalbfleisch and Lawless 1992; Lawless 2003). Thus, we set lmin = 10. In the
case of dependent truncation models, what we can actually estimate is the conditional
distribution (L , X)|L ≥ lmin, X ≥ lmin. This corresponds to the model fitted after
subtracting lmin from both L and X.

Kalbfleisch and Lawless (1992) performed a parametric analysis under the inde-
pendence between L and X. They chose the log-normal distribution for X. Here in
our paper, we analyze the data by fitting copula models allowing for the dependence
between L and X.

6.2 Numerical result

Under the exponential lifetime model with the Clayton copula, the NR algorithm
(Algorithm A in Supplementary Material) ascertained the MLEs α̂ = 0.000, λ̂L =
0.0537, and λ̂X = 0.0224. Figure 2 shows that the MLE attained the maximum of the
log-likelihood function. The goodness-of-fit tests yield significant evidence against
the model; K = 0.189 (P-value <0.000) and C = 1.066 (P-value <0.000).

Under the Weibull lifetime model with the Clayton copula, the randomized NR
algorithm (Algorithm 1) ascertained the MLEs α̂ = 0.242, λ̂L = 0.0192, λ̂X =
0.000126, ν̂L = 1.457 and ν̂X = 2.163. Figure 3 displays that the MLEs attained
the maximum of the log-likelihood function. The goodness-of-fit tests did not yield
significant evidence against the model; K = 0.079 (P-value=0.200) and C = 0.095
(P-value=0.113).
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Fig. 3 Profile plots for �n(α, λL , λX , νL , νX ) under the Clayton copula with Weibull margins based on
the automobile brake pads data. The vertical lines signify the MLEs α̂ = 0.242, λ̂L = 0.0192, λ̂X =
0.000126, ν̂L = 1.457 (not shown) and ν̂X = 2.163

We also fitted the lognormal lifetime model with the normal copula which can
be implemented by fitting log-transformed lifetimes to the bivariate normal model
(Emura and Konno 2012a). The estimates were obtained by PMLE.Normal rou-
tine in R depend.truncation package and were given in Table 2. The Cramér–von
Mises goodness-of-fit test yielded some evidence against the model (C = 0.099, P-
value=0.094), but the Kolmogorov–Smirnov goodness-of-fit test did not (K = 0.066,
P-value=0.494).

Table 2 compares the results of the three fitted models. Both the Weibull lifetime
model and the lognormal lifetime model showed weak positive dependence between
L and X. For the Weibull model, α̂ = 0.242 and 95% CI= [0.049, 1.193], and for the
lognormal model, ρ̂ = 0.209 and 95% CI= [−0.011, 0.429]. The exponential lifetime
model yield α̂ = 0 at the boundary of parameter space and hence 95% CI is not
available.

From the goodness-of-fit results (Fig. 4), the Weibull lifetime model and the log-
normal lifetime model were very competitive. The lognormal lifetime model reached
a significance level (P-value <0.10) by the Cramér–von Mises test while the Weibull
model did not (P-value=0.113). In general, the Cramér–von Mises test measures a
more global fit than the Kolmogorov–Smirnov test. The goodness-of-fit test yields
strong evidence against the exponential model. Note that information theoretic crite-
ria, such as AIC and BIC, may not be straightforwardly applied for model comparison
in the presence of truncation. Taking these into consideration, we finally chose the
Weibull model for the subsequent analysis. In addition, the Weibull model may be
more suitable for the brake pad example, where the study of aging properties is of
great importance for industrial manufacturers.
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Fig. 4 Goodness-of-fit tests for the brake pad lifetime data (Kalbfleisch and Lawless 1992). KS
Kolmogorov–Smirnov test, CvM Cramér–von Mises test, P P-value based on the parametric bootstrap

Fig. 5 Hazard functions and survival functions under the Weibull model

Under the Weibull model, we assess the mean lifetime for the brake pads based on

the estimate Ê(X) = �(1 + 1/ν̂X )/λ̂
1/ν̂X
X = 56.4 (SE=2.9). It is actually the mean

residual lifetime X − lmin|X ≥ lmin, where lmin = 10. Hence, on average, the brake
pad needs to be replaced after the car drives about 66.4 × 1000 km. We present the
fitted hazard functions and fitted survival functions of L and X in Fig. 5. The hazard
for X increases with time, which is the natural aging process of brake pads after long
drive. Note that this hazard plot is not possible by the semiparametric approaches in
which the survival curve is a step function.

7 Extension to double-truncation

Suppose that the sample is available only if L ≤ X ≤ R holds, where R is right-
truncation time. This is the setting of doubly-truncated data, where X is subject to
both left- and right- truncations. For much the same reason as left-truncated data,
finding the form of c = Pr(L ≤ X ≤ R) is crucial to conduct likelihood inference
(Emura and Konno 2012a).
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Suppose that the distribution of (L , X, R) follows the model,

Pr(L ≤ l, X ≤ x, R ≤ r) = C [FL(l), FX (x), FR(r)] ,

where C : [0, 1]3 �→ [0, 1] is a tri-variate copula. Let U = FL(L), V = FX (X) and
W = FR(R) be the probability integral transforms. Then, the conditional distribution
function is

h(u, v, w) ≡ Pr(U ≤ u, W ≤ w|V = v) = ∂Cα(u, v, w)

∂v
.

Theorem 3 The inclusion probability is written as the univariate integral

c =
1∫

0

h
[
FL{F−1

X (v), v, 1
]
dv −

1∫

0

h
[
FL{F−1

X (v), v, FR{F−1
X (v)

]
dv.

Proof By straightforward calculations, we have

c = Pr(L ≤ X, X ≤ R) = Pr
[
U ≤ FL

{
F−1
X (V )

}
, FR

{
F−1
X (V )

}
≤ W

]

= E
(
Pr
[
U ≤ FL

{
F−1
X (V )

}
, FR

{
F−1
X (V )

}
≤ W |V

])

= E
(
Pr
[
U ≤ FL

{
F−1
X (V )

}
|V
])

−E
(
Pr
[
U ≤ FL

{
F−1
X (V )

}
, W < FR

{
F−1
X (V )

}
|V
])

.

Finally, the last expression is re-written as the integral form that appears in
Theorem 3. �	
Theorem 3 implies that all the procedures developed for left-truncated data may be
extended to doubly-truncated data. However, the details of this topic is beyond the
scope of the paper.

8 Conclusion

This paper considers a copula model to account for dependence between a pair of
lifetime variables (L , X), where X is left-truncated by L . To resolve the method-
ological difficulty of maximum likelihood estimation, we propose a novel expression
of the inclusion probability (Theorem 1) and its derivatives. Also, in order to derive
a goodness-of-fit procedure, we propose a similar expression on the truncated distri-
bution function (Theorem 2). Due to space limitations, we have only demonstrated
these theorems under the Clayton copula withWeibull margins (Sect. 4). However, we
emphasize that the new expressions are fairly general, which can be applied to almost
all types of continuous bivariate lifetime models. Indeed, we have developed the R
package “depend.truncation” that can fit three different models.
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Unlike the semiparametric approaches ofChaieb et al. (2006),we adopt a parametric
approach that specified the form of the lifetime distribution. For purpose of reliability
assessments, parametric models are more easily analyzed and interpreted by engineers
than semiparametric models (see Sect. 6). A practical advantage of the parametric
approach is that one can easily deduce the mean lifetime and the hazard function.
For instance, our real data analysis (Sect. 6) demonstrated that the shape of the hazard
function expresses the natural aging process of brake pads after long drive, giving some
practical advice for engineers and consumers. In addition, our data analysis gives the
informative conclusion that the brake pad needs to be replaced after a long use. Note
that these conclusions are not straightforwardly deduced from the semiparametric
approaches.

The left-truncated data considered in Hong et al. (2009) provide a unique challenge
for applying the proposed approach. In their data, the left-truncation time is defined
as the elapsed time from the installation date of a machine to the study initiation date.
For those installed after the initiation date, the truncation time may be set as 0 (Hong
et al. 2009), or simply undefined (see Appendix II of Emura and Shiu 2016). In the
former case, the left-truncation distribution has a probability mass concentrated on 0.
Since the proposed method in this paper is developed for continuous left-truncation
times, further consideration is needed for handling this type of left-truncation.

Onemay consider the extension of our parametric models in the presence of covari-
ates. In the context of dependent censoring models, regression analyses have been
developed well (e.g., Escarela and Carriere 2003; Braekers and Veraverbeke 2005;
Chen 2010; Emura et al. 2015; Staplin et al. 2015; Emura and Chen 2016; Emura et al.
2017b). However, to the best of our knowledge, only Ding (2012) shortly discussed
the covariate models under a copula-based dependent truncation model.

Another direction of future researchmay be a reliability aspect of the lifetimemodel
under dependent truncation. Our real data example has demonstrated the successful
application of theWeibullmodel to express the aging process of the brake pad after long
drive. While our presentation of the aging process employs the marginal hazard plots
andmarginal survival curves (Fig. 5), there are several other alternatives.A recentwork
by Noughabi and Kayid (2017) suggests a bivariate quantile residual plots.While such
a plot is more difficult to interpret than the marginal plots, it contains rich information.
For instance, as explained by Noughabi and Kayid (2017), the quantile residual plots
may be used as an individualized prediction measure of the residual life (Emura et al.
2017a). Prediction of remaining life in a highly reliable products is an important issue
in the presence of left-truncation (Hong et al. 2009), but is less studied in the literature.
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