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Abstract Traditional analysis with truncated survival data has been developed under
the assumption that the lifetime variable of interest is statistically independent of
the truncation variable. However, empirical evidence has shown that the truncation
variable may depend on the lifetime of interest in many real-world examples. The lack
of independence can lead to seriously biased analysis. In this article, we revisit an
existing estimation procedure for survival under a copula-based dependent truncation
model. Here, the same estimating equation is adopted but a different algorithm to
solve the equation is proposed. We compare the new algorithm with the existing one
and discuss its theoretical and practical usefulness. Real data examples are analyzed
for illustration. We implemented the proposed algorithm in an R “depend.truncation”
package, available from CRAN.
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1 Introduction

Consider the situation that a pair of variables (X,Y ) can be included in the sample
only if X ≤ Y . The variable X is said to be right truncated by Y or Y is left truncated
by X . Left truncation refers to the situation that the samples are available only when a
variable of interest Y exceeds a threshold X . An example of such data is the survival
data collected from the Channing house retirement center in Palo Alto, California
(Hyde 1977, 1980). The data record residents’ lifetime subject to the criteria that a
resident had to live long enough to enter the center. Thus, the entry age stands for the
left-truncation variable. This type of left truncation is also known as ‘delayed entry’
(Andersen and Keiding 2002), since the residents are not under observation until they
enter the study. The data also include right censoring due to residents’ withdrawal. The
aim of the Channing house study is to draw statistical inference about the survival of
the residents in which the late entry bias is removed (Klein and Moeschberger 2003).

Traditionally, most literature on the truncated data considers statistical estimation
by assuming that X and Y are quasi-independent (Tsai 1990). In the case of delayed
entry (left truncation), the entry is assumed to be independent of the lifetime (Andersen
and Keiding 2002). The independence assumption however may not hold in practice.
For example in the study of transfusion-related AIDS, the incubation time X is right
truncated by the lapse time Y measured from the time of infection (Lagakos et al.
1988). Tsai’s test rejects the hypothesis of quasi-independence between X and Y . The
association might be attributed to the change of medical practice along the study period,
which would shed some light on AIDS research. Many authors propose statistical tests
for quasi-independence (Chen et al. 1996; Martin and Betensky 2005; Emura and
Wang 2010; Rodriguez-Girondo and de Uña-Álvarez 2012; de Uña-Álvarez 2012;
Strazalkowska-Kominiak and Stute 2013). A need for research for dependent left
truncation under competing risks setups is pointed out by Bakoyannis and Touloumi
(2012).

To assess the degree of dependence between lifetime and truncated variables,
Chaieb et al. (2006) propose a semi-parametric estimation for a copula model for
describing dependent truncation data. Beaudoin and Lakhal-Chaieb (2008) develop
a copula selection in terms of the distance between the nonparametric and model-
based dependence measures. Under the same copula models, Emura et al. (2011)
and Emura and Wang (2012) consider alternative estimators based on conditional
likelihood and nonparametric likelihood, respectively. Ding (2012) verifies the iden-
tifiability of the Archimedean copulas used in Chaieb et al. (2006). A recent proposal
is a copula-based nonparametric association study of Strazalkowska-Kominiak and
Stute (2013). All these analyses for dependent truncation parallel the copula-based
analyses for dependent censoring (Zheng and Klein 1995; Rivest and Wells 2001;
Escarela and Carriere 2003; Braekers and Veraverbeke 2005; Chen 2010; Emura and
Chen 2014).

This article revisits the estimation procedure of Chaieb et al. (2006) and proposes
a different algorithm of solving their estimating function. The proposed algorithm
is easier to understand than the original one that involves algebraically advanced
techniques. We derive a condition that the proposed algorithm leads to an equivalent
result as Chaieb et al. (2006). This condition provides some useful consequence in
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736 T. Emura, K. Murotani

real data analysis. In addition, the proposed algorithm offers a new derivation of the
well-known nonparametric estimators under quasi-independence.

The article is organized as follows. Section 2 reviews existing research. Section 3
presents the proposed algorithm. Section 4 compares the proposed algorithm with the
existing one. Section 5 modifies the proposed procedure to account for censoring and
small risk set. Section 6 analyses two real datasets. Section 7 concludes the article.

2 Preliminary

This section revisits the paper of Chaieb et al. (2006) and reviews key results that will
be used for subsequent discussions.

2.1 Copula models for dependent truncation

To assess the degree of association between lifetime and truncation variables, Chaieb
et al. (2006) suggested imposing a general class of Archimedean copulas:

π(x, y) = φ−1
α [φα{FX (x)} + φα{SY (y)}]/c, (x ≤ y), (1)

where π(x, y) ≡ Pr(X ≤ x,Y > y|X ≤ Y ), FX (·) and SY (·) are arbitrary continuous
distribution and survival functions, respectively, and c is a normalizing constant. Here,
φα : [0, 1] → [0,∞) is a copula generator (Nelsen 2006) with an unknown parameter
α. If φα(t) = − log(t), Eq. (1) corresponds to the independence on the upper wedge
{(x, y) : x ≤ y}, which is equivalent to quasi-independence.

The Clayton copula is defined by φα(t) = (t−(α−1) − 1)/(α − 1), α ≥ 0, which
yields dependence on (X,Y ) as measured by Kendall’s tau τα = −(α − 1)/(α + 1).
The case of α = 0 corresponds to the Fréchet–Hoeffding lower bound (Nelsen 2006).

The Frank copula is specified by φα(t) = log{(1 −α−1)/(1 −α−t )}, α > 0, which
yields Kendall’s tau on (X,Y ) in the form

τα = −
⎡
⎣1 + 4

γ

⎧⎨
⎩

1

γ

γ∫

0

x

ex − 1
dx − 1

⎫⎬
⎭

⎤
⎦ ,

where γ = − log α. More details about the Clayton and Frank copulas are found in
the online Supplementary Materials.

Due to the semi-survival structure, Kendall’s tau on (X,Y ) is the minus of Kendall’s
tau on the copula (Genest and Mackay 1986). For the Clayton and Frank copulas, 0 <

α < 1 corresponds to positive dependence, α = 1 corresponds to quasi-independence,
and α > 1 corresponds to negative dependence on (X,Y ), respectively. Hence, the
value α controls the degree of dependence.

The model (1) is adopted in many statistical methods for dependent truncation,
including Beaudoin and Lakhal-Chaieb (2008), Emura et al. (2011) and Emura and
Wang (2012). Ding (2012) gives a sufficient condition for an Archimedean copula
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Copula-based dependent truncation model 737

family that makes the model (1) identifiable. Commonly used Archimedean copulas,
such as the Clayton and Frank copulas, satisfy his condition.

2.2 Estimating procedure of Chaieb et al. (2006)

Let {(Xi ,Yi )( j = 1, . . . , n)}, satisfying X j ≤ Y j , be iid samples from the model
(1). We assume that the samples have no ties, i.e., all the 2n data points are different.
Ordered values of X and Y are denoted as X(1) < · · · < X(n) and Y(1) < · · · < Y(n),
respectively.

The model (1) facilitates estimation of (α, c, FX , SY ) by replacing π(x, y) with

π̂(x, y) ≡ 1

n

n∑
j=1

I(X j ≤ x,Y j > y),

where I(·) is the indicator function. Hence, in principle, the unknown quantities
(α, c, FX , SY ) are estimated on a basis of Eq. (1) with π(x, y) being replaced by
π̂(x, y).

Chaieb et al. (2006) utilize some algebraic techniques to find the estimator of
(α, c, FX , SY ). Letting x = y = t in Eq. (1), they propose estimating equations:

φα{cπ̂(t, t−)} = φα{FX (t)} + φα{SY (t−)} (2)

where t is an observed point for X j or Y j . Applying the idea of Rivest and Wells
(2001) to Eq. (2), the difference equations are obtained as:

φα{ SY (Y j )} − φα{SY (Y j−)} = φα

{
c
R̃(Y j ) − 1

n

}
− φα

{
c
R̃(Y j )

n

}
, (3a)

φα{FX (X j−)} − φα{FX (X j )} = φα

{
c
R̃(X j ) − 1

n

}
− φα

{
c
R̃(X j )

n

}
, (3b)

where R̃(t) ≡ ∑n
j=1 I(X j ≤ t,Y j ≥ t). Denote the estimators of FX (t) and SY (t) as

F̂X (t) and ŜY (t), respectively, which are step functions with jumps only at observed
points. Equations (3a) and (3b) yield the following recursive formulae:

φα

{
ŜY (Y( j))

}
=φα

{
ŜY (Y( j−1))

}
+φα

{
c
R̃(Y( j)) − 1

n

}
−φα

{
c
R̃(Y( j))

n

}
, (4a)

φα

{
F̂X (X( j))

}
= φα

{
F̂X (X( j+1))

}
+ φα

{
c
R̃(X( j)) − 1

n

}
− φα

{
c
R̃(X( j))

n

}
.

(4b)

123



738 T. Emura, K. Murotani

SY (y(1))

Y

X

SY (y(3))

SY (y(2))

FX (x(1)) FX (x(2)) FX (x(3))

×

×

×

Fig. 1 The algorithm of Chaieb et al. (2006) for solving estimators of (FX (·), SY (·)). Here, “×” rep-
resents three data points {(X1, Y1), (X2, Y2), (X3, Y3)}. The algorithm starts from ŜY (Y(1)−) = 1 and

F̂X (X(3)) = 1, and then proceeds as ŜY (Y(1)) → ŜY (Y(2)) → ŜY (Y(3)), and F̂X (X(3)) → F̂X (X(2)) →
F̂X (X(1)), respectively

Starting with ŜY (Y(1)−) = 1 and F̂X (X(n)) = 1, the estimators are successively solved
as

1 = ŜY (Y(1)−) → ŜY (Y(1)) → ŜY (Y(2)) → · · · → ŜY (Y(n)),

1 = F̂X (X(n)) → F̂X (X(n−1)) → F̂X (X(n−2)) → · · · → F̂X (X(1)).

Figure 1 depicts the schematic diagram of solving the estimating equations. It is
interesting to point out that the direction for solving F̂X follows a reverse-time scale.
The reverse-time representation is standard for constructing the product-limit estimator
for right truncated data (Wang et al. 1986; Lagakos et al. 1988). Nevertheless, we raise
a question: is it possible to solve for F̂X in the ordinary direction? The answer is not
easy due to φα(0) = ∞. In Sect. 3, we will answer this question using our proposed
algorithm.

Successively summing together Eqs. (3a) and (3b) up to time t , Chaieb et al. (2006)
obtains explicit solutions

φα{ŜY (t)} = −
∑
j :Y j≤t

[
φα

{
c
R̃(Y j )

n

}
− φα

{
c
R̃(Y j ) − 1

n

}]
, (5a)

φα{F̂X (t)} = −
∑

j : X j>t

[
φα

{
c
R̃(X j )

n

}
− φα

{
c
R̃(X j ) − 1

n

}]
. (5b)

2.3 Estimation of (α, c)

To estimate (α, c), two estimating functions are proposed in Chaieb et al. (2006). They
impose additional constraints that, for some x0 > y0 > 0,
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Copula-based dependent truncation model 739

FX (x0) = 1, SY (x0) > 0; FX (y0) > 0, SY (y0) = 1. (6)

By plugging in Eqs. (5a) and (5b) back to Eq. (2) with t = x0, the estimating function
becomes

Uc(α, c) =
∑

j :Y j<x0

[
φα

{
c
R̃(Y j )

n

}
− φα

{
c
R̃(Y j ) − 1

n

}]
+ φα

{
c
R̃(x0)

n

}
= 0.

(7)
A consistent and asymptotically normal estimator (α̂, ĉ) is obtained by solving the
estimating Eq. (7) jointly with another estimating function, namely Uα(α, c) = 0.
The equation Uα(α, c) = 0 is obtained by the moment-type equation based on the
conditional Kendall’s tau (Chaieb et al. 2006) or by the estimating equation based on
the conditional likelihood (Emura et al. 2011). While the moment method is simpler to
calculate, the conditional likelihood analysis is more efficient by utilizing the distrib-
utional information. We will use the former for all the subsequent numerical analyses
(Supplementary Material includes numerical results based on the latter).

3 Proposed method

3.1 Proposed algorithm

We propose an new algorithm to solve Eq. (2) for estimating (α, c, FX , SY ). We slightly
modify Eq. (2) by replacing π̂(t, t−) and SY (t−) with π̂(t, t) and SY (t), respectively.
This minor change is necessary for the subsequent algorithm to yield proper solutions.
We consider modified estimating functions:

φα

{
cπ̂ (t j , t j )

} = φα{FX (t j )} + φα{SY (t j )} ( j = 1, . . . , 2n − 1), (8)

where t1 < · · · < t2n−1 < t2n are ordered observed points of (X1, . . . , Xn,Y1, . . . ,Yn).
We excluded t2n from Eq. (8) since φα{cπ̂(t2n, t2n)} = φα(0) = ∞ does not provide
a proper estimating equation.

We propose to solve Eq. (8) together with two boundary constraints:

F̂X (t2n−1) = 1 and ŜY (t1) = 1.

For fixed values for (α, c), Eq. (8) can be regarded as an estimating function for
{FX (t j ), SY (t j )}. In the initial step, notice that π̂(t1, t1) = 1/n. Since nobody has yet
died at t1, we know ŜY (t1) = 1. Hence, Eq. (8) gives F̂X (t1) = c/n, yielding the initial
solution {F̂X (t1), ŜY (t1)} = (c/n, 1 ). Subsequent calculations for j = 2, . . . , 2n−1
are similarly performed using the solutions from the previous step. The key is that the
unknown quantity in Eq. (8) becomes either FX (t j ) or SY (t j ). For instance, if t j
corresponds to an observed value of X , then SY (t j ) is known to be ŜY (t j−1) and
FX (t j ) is unknown. The last solution F̂X (t2n−1) depends on (α, c) and hence does not
necessarily equal to 1. We propose to obtain (α̂, ĉ) that meets F̂X (t2n−1) = 1.
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740 T. Emura, K. Murotani

In summary, we propose the following procedure for j = 2, . . . , 2n − 1.

(Step 0) Set the initial solution {F̂X (t1), ŜY (t1)} = (c/n, 1 ).
(Step 1) If t j corresponds to an observed value of X , set

ŜY (t j ) = ŜY (t j−1) and φα{F̂X (t j )} = φα{cπ̂(t j , t j )} − φα{ŜY (t j−1)};

and if t j corresponds to an observed value of Y , set

F̂X (t j ) = F̂X (t j−1) and φα{ŜY (t j )} = φα{cπ̂(t j , t j )} − φα{F̂X (t j−1)}.

(Step 2) Set Uc(α, c) = φα{F̂X (t2n−1)} = 0 to meet F̂X (t2n−1) = 1. By jointly
solvingUc(α, c) = 0 andUα(α, c) = 0, the estimators (α̂, ĉ) can be obtained.

(Step 3) Redo (Step 1) by setting (α, c) = (α̂, ĉ) and then obtain {F̂X (t j ), ŜY (t j )}.
Explicit expressions of (Step 1) can be derived as

φα{ŜY (t)} = −
∑
j :Y j≤t

[
φα

{
c
R̃(Y j )

n

}
− φα

{
c
R̃(Y j ) − 1

n

}]
, (9a)

φα{F̂X (t)}=
∑

j : t1<X j≤t

[
φα

{
c
R̃(X j )

n

}
−φα

{
c
R̃(X j ) − 1

n

}]
+φα

( c
n

)
. (9b)

Similarly, the equation defined in (Step 2) can be written as

Uc(α, c) ≡ φα

{
F̂X (t2n−1)

}
=

∑
j : t1<X j

[
φα

{
c
R̃(X j )

n

}
− φα

{
c
R̃(X j ) − 1

n

}]

+φα

( c
n

)
. (10)

In the case of quasi-independence with φα(t) = − log(t), Eq. (9a) reduces to the
product-limit estimator (Lynden-Bell 1971; Wang et al. 1986)

ŜY (t) =
∏

j;Y j≤t

{1 − 1/R̃(Y j )},

and Eq. (10) yields the estimator of He and Yang (1998)

ĉ = n
∏

j;t1<X j

{1 − 1/R̃(X j )}.

With c = ĉ, Eq. (9b) produces the product-limit estimator

F̂X (t) =
∏

j;t<X j

{1 − 1/R̃(X j )}.
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Copula-based dependent truncation model 741

Hence, these well-known nonparametric estimators under quasi-independence are
derived from the algorithm of (Step 0)–(Step 3) that solve π̂(ti , ti ) = FX (ti )SY (ti )/c
with F̂X (t2n−1) = 1 and ŜY (t1) = 1. This finding gives us an alternative derivation of
the well-known estimators, which appears to be new in the literature.

3.2 Example

We demonstrate the proposed algorithm using small data (X1,Y1)=(1, 3), (X2,Y2)=
(2, 5) and (X3,Y3) = (4, 6), which are plotted in Fig. 2.

The initial solution is {F̂X (t1), ŜY (t1)} = (c/3, 1 ) for t1 = X1 = 1 (Step 0).
The subsequent calculations for (φα{F̂X (t j )}, φα{ŜY (t j )}), j = 2, . . . , 5, are given in
Table 1 (Step 1). By setting φα{F̂X (t5)} = 0, we need to solveUc(α, c) = 2φα(2c/3)−
φα(c/3) = 0 (Step 2). If one fits the Clayton copula withφα(t) = (t−(α−1)−1)/(α−1),
it is not difficult to show that the solution to Uα(α, c) = 0 and Uc(α, c) = 0 becomes
α̂ = 0 (Kendall’s tau = 1) and ĉ = 1, respectively. The resultant φα=0(t) = 1 − t is
the Fréchet–Hoeffding lower bound (Nelsen 2006). Accordingly, (Step 3) leads to the
solutions

FX (t1)

FX (t2)

FX (t4)

SY (t3)

SY (t5)

SY (t6)

X

Y

× 
×

× 

Fig. 2 The proposed algorithm for estimating (FX (·), SY (·)). “×” represents the data points (X1, Y1) =
(1, 3), (X2, Y2) = (2, 5) and (X3, Y3) = (4, 6)

Table 1 Results of performing (Step 1) of the proposed algorithm for a small dataset: (X1, Y1) = (1, 3),
(X2, Y2) = (2, 5) and (X3, Y3) = (4, 6)

π̂(t j , t j ) φα{cπ̂(t j , t j )} φα{F̂X (t j )} φα{ŜY (t j )}

t1 = X1 = 1 1
3 φα( c3 ) φα( c3 ) 0

t2 = X2 = 2 2
3 φα( 2c

3 ) φα( 2c
3 ) 0

t3 = Y1 = 3 1
3 φα( c3 ) φα( 2c

3 ) φα( c3 ) − φα( 2c
3 )

t4 = X3 = 4 2
3 φα( 2c

3 ) 2φα( 2c
3 ) − φα( c3 ) φα( c3 ) − φα( 2c

3 )

t5 = Y2 = 5 1
3 φα( c3 ) 2φα( 2c

3 ) − φα( c3 ) 2φα( c3 ) − 2φα( 2c
3 )

t6 = Y3 = 6 0
3 φα(0) Undetermined Undetermined
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742 T. Emura, K. Murotani

F̂X (t1) = F̂X (X(1)) = 1/3, F̂X (t2) = F̂X (X(2)) = 2/3, F̂X (t4) = F̂X (X(3)) = 1,

ŜY (t3) = ŜY (Y(1))=2/3, ŜY (t5) = ŜY (Y(2))=1/3, ŜY (t6)= ŜY (Y(3))=undefined.

Instead of the Clayton copula, we now fit the independence copula with φα(t) =
− log(t). Then, performing (Step 0)–(Step 3), one obtains the solutions

F̂X (t1) = F̂X (X(1)) = 1/4, F̂X (t2) = F̂X (X(2)) = 1/2, F̂X (t4) = F̂X (X(3)) = 1,

ŜY (t3) = ŜY (Y(1))=1/2, ŜY (t5)= ŜY (Y(2))=1/4, ŜY (t6)= ŜY (Y(3)) = undefined,

which are equivalent to the product-limit estimator.
The Clayton copula-based estimator and the product-limit estimator give quite dif-

ferent results. Figure 2 shows that all comparable pairs, (1, 2) and (2, 3), are concordant,
which indicates positive dependence. Hence, fitting the present Clayton copula with
α̂ = 0 would be preferable to the independence model.

4 Comparison between two algorithms

Qualitative difference between the two algorithms can be appreciated by comparing
Fig. 1 (algorithm of Chaieb et al.) and Fig. 2 (the proposed algorithm). The proposed
algorithm constitutes a single sequence {F̂X (t j ), ŜY (t j )} for j = 1, . . . , 2n − 1 while
the algorithm of Chaieb et al. (2006) runs two separate sequences for F̂X and ŜY
(compare Figs. 1, 2). The algorithm of Chaieb et al. (2006) for F̂X follows the reverse-
time scale (Fig. 1) while the proposed algorithm follows an ordinary time scale (Fig.
2). For the proposed algorithm, all ordered data points are projected onto the diagonal
line, and then the algorithm runs on the line (Fig. 2). The systems of equations are
successively solved along a single sequence:

FX (t1) → FX (t2) → SY (t3) → FX (t4) → SY (t5) → SY (t6).

The above mentioned difference of the two algorithms also yields different formulas
for F̂X (t). In particular, the proposed formula involves the summation for all subjects
j with X j ≤ t (Eq. 9b) while the formula of Chaieb et al. involves the summation for
all subject j with X j > t (Eq. 5b). Hence, the two formulas appear to use quite dif-
ferent information. Somewhat surprisingly, we will see that these apparently different
formulas are identical under some conditions.

For marginal estimation in competing risks data, Zheng and Klein (1995) suggest
running the algorithm on the ordered data points. Alternatively, Rivest and Wells (2001)
propose to run two separate algorithms. Hence, our proposal is similar to Zheng and
Klein (1995) while the algorithm of Chaieb et al. (2006) is similar to Rivest and Wells
(2001).

Although the two algorithms give two different principles for solving equations,
they are shown to be equivalent under some condition.

Theorem 1 The proposed estimating equation φα{F̂X (t2n−1)} = 0 is equivalent to
the estimating equation (7) of Chaieb et al. (2006) under x0 ∈ [X(n), t2n−1].

123



Copula-based dependent truncation model 743

Proof We will show that φα{F̂X (t2n−1)} = 0 is identical to Eq. (7). Note that
φα{F̂X (t2n−1)} = φα{F̂X (x0)} since there is no jump for X beyond x0 ∈ [X(n), t2n−1].
It follows that

φα

{
F̂X (x0)

}
= φα{cπ̂(x0, x0)} − φα

{
ŜY (x0)

}

= φα{cπ̂(x0, x0)} +
∑

j :Y j≤x0

[
φα

{
c
R̃(Y j )

n

}
− φα

{
c
R̃(Y j ) − 1

n

}]

= φα

{
c
R̃(x0)

n

}
+

∑
j :Y j<x0

[
φα

{
c
R̃(Y j )

n

}
− φα

{
c
R̃(Y j ) − 1

n

}]
.

Setting the last equation to zero is equivalent to solving Eq. (7). �	

Theorem 1 gives a guideline of choosing x0 in the estimating equation (7) of Chaieb
et al. (2006). Practitioners need to choose the value x0 defined in Eq. (6) on a basis of
observed data. Theorem 1 guarantees that any x0 ∈ [X(n), t2n−1] produces the same
estimating equation (yet different formulas for different values of x0). A convenient
choice is x0 = t2n−1, which coincides with the proposed estimating Eq. (10).

Theorem 2 Let x0 ∈ [X(n), t2n−1] in Eq. (7). If (α, c) satisfies Uc(α, c) = 0, the
algorithm of Chaieb et al. (2006) and the proposed algorithm yield the same estimator
for F̂X . That is, Eqs. (5b) and (9b) are identical.

Proof Suppose Uc(α, c) = 0. Then, Eq. (5b) is written as

−
∑

j : X j>t

[
φα

{
c
R̃(X j )

n

}
− φα

{
c
R̃(X j ) − 1

n

}]

= Uc(α, c) −
∑

j : X j>t

[
φα

{
c
R̃(X j )

n

}
− φα

{
c
R̃(X j ) − 1

n

}]

=
∑

j : t1<X j≤t

[
φα

{
c
R̃(X j )

n

}
− φα

{
c
R̃(X j ) − 1

n

}]
+ φα

( c
n

)
.

The last equation is equivalent to Eq. (9b). �	

Remark The conditionUc(α, c) = 0 is necessary for Eqs. (5b) and (9b) to be identical.
If (α, c) does not satisfyUc(α, c) = 0, they are not equal in general. As seen from (Step
2) of the proposed algorithm,Uc(α, c) = 0 is equivalent to the constraint F̂X (t2n−1) =
1. This constraint makes the proposed expression of Eq. (9b) to be identical to the
reverse-time expression of Eq. (5b).
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5 Extension to left-truncated and right-censored data

So far, we have considered the case that Y is left truncated by X . The proposed
algorithm described in Sect. 3.1 can be extended to the case where Y is also right-
censored by a censoring variable C . Assume that C is independent of (X,Y ). The
sample can be written as {(Xi , Zi , δi )(i = 1, . . . , n)} satisfying Xi ≤ Zi , where
Zi = Yi ∧Ci , δi = I(Yi ≤ Ci ) and (Xi ,Yi ,Ci )(i = 1, . . . , n) are random replications
of (X,Y,C) given X ≤ Z ≡ Y ∧ C .

Chaieb et al. (2006) expressed the model as

π∗(x, y) = Pr(X ≤ x, Z > y|X ≤ Z) = SC (y)φ−1
α [φα{FX (x)} + φα{SY (y)}]/c∗,

where SC (y) = Pr(C > y), x ≤ y and c∗ is a normalizing constant. The objective is
to estimate the unknown parameters (α, c∗FX , SY , SC ). Let t1 < · · · < t2n−1 < t2n
be ordered observed points of (X1, . . . , Xn, Z1, . . . , Zn), and let

π̂∗(t, t) ≡ 1

n

n∑
j=1

I(X j ≤ t, Z j > t).

The estimating functions become

φα

{
c∗ π̂∗(t j , t j )

SC (t j )

}
= φα{FX (t j )} + φα{SY (t j )}, ( j = 1, . . . , 2n − 1). (11)

To solve the above equations, we impose additional constraints that the estimators of
FX , SY and SC are step functions with jumps only at their observed values, and that

F̂X (t2n−1) = 1, ŜY (t1) = 1 and ŜC (t1) = 1. (12)

As in Sect. 3.1, notice that π̂∗(t1, t1) = 1/n. Hence, Eqs. (11) and (12) give the initial
solution {ŜY (t1), F̂X (t1), ŜC (t1)} = (1, c∗/n, 1). Subsequent solutions successively
solve Eq. (11) for j = 2, . . . , 2n − 1.

(Step 0) Set the initial solution {ŜY (t1), F̂X (t1), ŜC (t1)} = (1, c∗/n, 1).
(Step 1) If t j corresponds to an observed value of Xi , set ŜY (t j ) = ŜY (t j−1), ŜC (t j ) =

ŜC (t j−1) and φα{F̂X (t j )} = φα

{
c∗ π̂∗(t j ,t j )

ŜC (t j−1)

}
− φα{ŜY (t j−1)};

if t j corresponds to an observed value of Zi with δi = 1, set F̂X (t j ) =
F̂X (t j−1), ŜC (t j ) = ŜC (t j−1), and φα{ŜY (t j )} = φα

{
c∗ π̂∗(t j ,t j )

ŜC (t j−1)

}
−

φα{F̂X (t j−1)};
if t j corresponds to an observed value of Zi with δi = 0, set F̂X (t j ) =
F̂X (t j−1), ŜY (t j ) = ŜY (t j−1), and ŜC (t j ) = ŜC (t j−1)π̂

∗(t j , t j )/π̂∗(t j−1,

t j−1).
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(Step 2) Set Uc(α, c∗) = φα{F̂X (t2n−1)} = 0 to meet the constraint F̂X (t2n−1) = 1.
Jointly solving this andUα(α, c∗) = 0 produces the estimators (α̂, ĉ∗), where
Uα(α, c∗) = 0 is available in Chaieb et al. (2006) or Emura et al. (2011).

(Step 3) Redo (Step 1) by setting (α, c∗) = (α̂, ĉ∗) obtained in (Step 2) and then
obtain {F̂X (t j ), ŜY (t j ), ŜC (t j )}.

Explicit formulae for (Step 1) of the above algorithms are given by

φα

{
ŜY (t)

}
= −

∑
j;Z j≤t,δ j=1

[
φα

{
c∗ R̃(Z j )

nŜC (Z j )

}
− φα

{
c∗ R̃(Z j ) − 1

nŜC (Z j )

}]
, (13a)

φα

{
F̂X (t)

}
=

∑
j; t1<X j≤t

[
φα

{
c∗ R̃(X j )

nŜC (X j )

}
− φα

{
c∗ R̃(X j ) − 1

nŜC (X j )

}]
+ φα

(
c∗

n

)
,

(13b)

ŜC (y) =
∏

j :Z j≤y, δ j=0

{1 − 1/R̃(Z j )}. (13c)

The estimating function in (Step 2) is equivalent to

Uc(α, c∗) =
∑

j; t1<X j

[
φα

{
c∗ R̃(X j )

nŜC (X j )

}
− φα

{
c∗ R̃(X j ) − 1

nŜC (X j )

}]
+ φα

(
c∗

n

)
.

(14)
For φα(t) = − log(t), Eq. (13a) reduces to the product-limit estimator

ŜY (t) =
∏

j;Z j≤t,δ j=1

{1 − 1/R̃(Z j )},

and Eq. (14) reduces to the estimator of He and Yang (1998).
Small values of R̃ in Eqs. (13a–13c) and (14) often produce unreasonable estimates.

This problem of small risk sets even occurs in the product-limit estimator under quasi-
independence (Klein and Moeschberger 2003). We follow Lai and Ying (1991) and
Emura et al. (2011) who suggest simply discarding the calculations corresponding
to very small R̃. In particular, we suggest calculating the terms in the summation of
Eqs. (13a–13c) and (14) only when R̃ ≥ bna holds, where 0 < a < 1 and b > 0
are arbitrary tuning parameters. In the following data analysis, we will use b = 1 and
a = 1/4 as considered in Lai and Ying (1991), or b = 1 and a = 1/10 which produces
less biased results (Emura et al. 2011).

6 Data analysis

6.1 Channing house data

We analyze the survival data for elderly residents in the Channing house as introduced
in Sect. 1. The data are available in Hyde (1977), where 97 men are included in the
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746 T. Emura, K. Murotani

Fig. 3 The copula-based estimator and the product-limit estimator of the survival function SY (y) for
lifetime of elderly residents based on the Channing house data (Hyde 1977)

sample. After entry to the Channing house, 46 men die and the remaining 51 men
are censored due to the withdrawal from the Channing house. Hence, the data is
left truncated by the entry age and right censored by the withdrawal. The data are
a well-known example of left-truncated and right-censored survival data (Klein and
Moeschberger 2003).

Beaudoin and Lakhal-Chaieb (2008) and Emura and Wang (2010) analyzed the
same data by taking into account for dependent truncation. Both papers selected the
Frank copula as the best-fitting copula among candidates following their own model
selection criteria. In addition, the Frank copula satisfies the identifiability condition
given by Theorem 2 of Ding (2012). Thus, we also choose the Frank copula.

We break the ties by adding uniform random variables on [−0.4, 0.4] to the original
data, which do not change the original ordering (Emura et al. 2011). We set a = 1/4 to
prevent the problem of small risk set occurring at a few early deaths, and set x0 = t2n−1
to meet the condition of Theorem 1.

As discussed in Sect. 5, the estimates of (α, c∗) are obtained by jointly solving
Uc(α, c∗) = 0 in Eq. (14) and Uα(α, c∗) = 0 in Chaieb et al. (2006).1 The association
parameter estimate is α̂ = 0.083 (se = 0.11) under the Frank copula. The correspond-
ing Kendall’s tau τ̂α = 0.26 (se = 0.12) gives a positive association between the entry
age and age at death. This conclusion agrees with the previously reported results in
Beaudoin and Lakhal-Chaieb (2008) and Emura and Wang (2010).

We estimate the resident’s survival function using the proposed algorithm of Sect. 5.
Figure 3 depicts the estimated survival function. Clearly, the copula-based estimates of
survival probability are higher than the product-limit estimates over the study period.

1 One can replace the estimating equation of Chaieb et al. (2006) by the estimating equation of Emura et al.
(2011). We refer the detailed results under the estimating equation of Emura et al. (2011) to the Supplemental
Materials. Although we found some numerical difference between the two approaches of Chaieb et al. (2006)
and Emura et al. (2011), the substantive conclusions on the resident’s lifetime distribution are similar. Please
refer to the Supplemental Materials for the detailed comparison.
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For instance, the survival probability at t = 970 months is 72.2 % by the copula-based
estimator while it is 60.9 % by the product-limit estimator. Hence, the product-limit
estimator seriously underestimates the survival probability of residents in the Channing
house. In summary, the dependent truncation model gives more survival benefit for
the Channing house than the independent model does.

6.2 Japanese centenarian data

We analyze the survival data for centenarians (those who live beyond the age of 100
years) in Japan. The data is prepared from the National Oldest-old Survivors List
and Population Movement Statistics by the Ministry of Health and Labor in Japan,
as previously reported by Sibuya and Hanayama (2004) and Murotani et al. (2014).
The objective is to estimate the lifetime distribution of centenarians. For purpose of
illustration, we restrict our samples of n = 662 Japanese male centenarians ascertained
before year 1980, as summarized in Table 2. Since those centenarians who still survived
in 1980 are not counted in the table, the lifetime is right truncated. Specifically, each
subject has age at death (X), constrained by X ≤ Y ≡ 1980.5 − T , where T is the
birth year. This scenario is similar to the right truncation of AIDS transfusion data (p.
19 of Klein and Moeschberger 2003).

We choose a = 1/10 to avoid the problem of small risk set, and set x0 = t2n−1 to
meet the condition of Theorem 1. We break the ties by adding small random noises,
which shows little change in the result.

As discussed in Sect. 3.1, the estimates of (α, c) are obtained by jointly solving
Uc(α, c) = 0 in Eq. (7) and the moment-type equation Uα(α, c) = 0 of Chaieb
et al. (2006).2 Then, we estimate the cumulative distribution function FX of male
centenarians using the proposed algorithm.

Figure 4 depicts the estimated cumulative distribution functions. The cumulative
distribution function under the Frank copula is nearly identical to the product-limit
estimate under quasi-independence. The reason is that the association parameter esti-
mate α̂ = 0.604 (se = 0.186) yields the Kendall’s tau nearly equal to zero (τ̂α = 0.056,
se = 0.035).

The results under the Clayton copula show little difference from those under the
Frank copula in Fig. 4. The association parameter estimate is α̂ = 0.921 (se = 0.047)
and the corresponding Kendall’s tau is τ̂α = 0.041 (se = 0.026). Though we did not
find significant amount of dependence between truncation and lifetime variables, the
results of fitting copulas can confirm the traditional analysis by taking into account
the potential dependence.

7 Conclusion and discussion

This article revisits the estimating equation proposed by Chaieb et al. (2006), and then
proposes a different algorithm to solve it. Unlike the reverse-time representation of

2 One can replace the estimating equation of Chaieb et al. (2006) by the estimating equation of Emura
et al. (2011). Although the two estimating equations are different, there is virtually no numerical difference
between the two estimates. This phenomenon occurs in the absence of censoring (Emura et al. 2011).
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Copula-based dependent truncation model 749

Fig. 4 The copula-based estimator and the product-limit estimator of the cumulative distribution function
FX (x) for lifetime of Japanese male centenarians based on the National Oldest-old Survivors List and
Population Movement Statistics by the Ministry of Health and Labor in Japan (Sibuya and Hanayama 2004;
Murotani et al. 2014)

Chaieb et al. (2006), the proposed method follows an ordinary time scale, which gives
easier understanding and clearer mathematical presentation. In Theorem 1, we give
sufficient conditions that the proposed algorithm becomes equivalent to the algorithm
of Chaieb et al. (2006). Theorem 1 also offers some practical guideline for the initial
conditions (namely, x0 = t2n−1) under which the two algorithms are identical. We
implemented automatic routines in R “depend.truncation” package (Emura 2014),
available from CRAN. All the given numerical results in the article are reproduced by
the package.

This article systematically discusses the qualitative difference between the algo-
rithm of Chaieb et al. (2006) and the proposed algorithm (see Sect. 4). Especially,
we highlight the remarkable difference graphically (Figs. 1 vs. 2) and mathematically
(Eqs. 5b vs. 9b). Nevertheless, we show that these apparently different algorithms can
yield identical results under the conditions of Theorem 1.

Copulas are increasingly popular tools for dependence modeling that is fundamental
in bivariate survival analysis. While a firm mathematical understanding for the depen-
dent censoring is obtained (e.g., Zheng and Klein 1995; Rivest and Wells 2001), the
models for dependent truncation are relatively new and technically more challenging.

This situation is similar in the presence of covariates. Regression analyses under
copula-based dependent censoring models have been well developed (e.g., Escarela
and Carriere 2003; Braekers and Veraverbeke 2005; Chen 2010; Emura and Chen
2014). However, to the best of our knowledge, only Ding (2012) discusses the identi-
fiability of the covariate models under a copula-based dependent truncation model. A
great deal of work will be necessary to the regression models before they can be used
for statistical inference.

The extension might be straightforward with a parametric approach. One possibil-
ity is to develop marginal Weibull regression under copula-based dependent trunca-
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750 T. Emura, K. Murotani

tion models and to perform standard likelihood inference. This parallels the work of
Escarela and Carriere (2003) under competing risks models. One technical challenge
under dependent truncation models is the complexity of the truncation probability,
which would appear in the likelihood function. We refer Emura and Konno (2012)
that points out this problem.

One would consider semi-parametric marginal regression approaches to copula-
based dependence models along the line of Braekers and Veraverbeke (2005), Chen
(2010) and Emura and Chen (2014), all studied under the competing risks setting.
A similar approach is to introduce the proportional hazard structures for marginal
distributions and perform the nonparametric maximum likelihood estimation under
a copula-based dependent truncation model as in Emura and Wang (2012). These
approaches would face the computational challenge due to the joint estimation of the
two infinite dimensional marginal functions.
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