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Abstract In ecology and evolutionary biology, controlled animal experiments are
often conducted to measure time to metamorphosis which is possibly censored by
the competing risk of death and the follow-up end. This paper considers the problem
of estimating the survival function of time-to-event when it is subject to dependent
censoring. When the censorship is due to competing risks, the traditional assumption
of independent censorship may not be satisfied, and hence, the usual application of
the Kaplan–Meier estimator yields a biased estimation for the survival function of
the event time. This paper follows an assumed copula approach (Zheng and Klein in
Biometrika 82(1):127–138, 1995) to adjust for dependence between the event time
of interest and the competing event time. While the literature on an assumed copula
approach has mostly focused on semiparametric settings, we alternatively consider a
parametric approach with piecewise exponential models for fitting the survival func-
tion. We develop maximum likelihood estimation under the piecewise exponential
models with an assumed copula. A goodness-of-fit procedure is also developed, which
touches upon the identifiability issue of the copula.We conduct simulations to examine
the performance of the proposed method and compare it with an existing semipara-
metric method. The method is applied to real data analysis on time to metamorphosis
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for salamander larvae living in Hokkaido, Japan (Michimae et al. in Evol Ecol Res
16:617–629, 2014).

Keywords Bivariate survival analysis · Copula-graphic estimator ·
Goodness-of-fit test · Kendall’s tau · Survival analysis

1 Introduction

Competing risks data appear in many scientific fields, where subjects experience mul-
tiple event types and the interest lies in the time up to events (Crowder 2001, 2012;
Klein andMoeschberger 2003). By the definition of competing risks, these event types
are mutually exclusive in that each subject exhibits only one of the multiple events.
Usually, statistical analyses for competing risks data are performed without assuming
independence between event times. Competing risks data are popular, especially in
biological research involving the experimentally designed follow-up for human and
animal subjects (Andersen et al. 2002; Chap 8 of Kalbfleisch and Prentice 2002).

When analyzing animal subjects’ time to event data arising from ecology and evolu-
tionary biology, competing risks arise when subjects under study experience only one
of multiple events. For instance, in a controlled follow-up experiment of salamander
larvae, time to metamorphosis is unavailable if death comes earlier than metamor-
phosis (Michimae et al. 2014). Conversely, death occurring after metamorphosis no
longer has the intended meaning as “death of larvae”. Due to the possible dependence
between metamorphosis and death, the Kaplan–Meier estimator (Kaplan and Meier
1958) for the survival function may be biased. For analyzing such data, the standard
recommendation is the use of the sub-distribution function (Crowder 2001, 2012;
Klein and Moeschberger 2003; Bakoyannis and Touloumi 2012) also known as the
cumulative incidence function. Hereafter, we focus on the case that an event time
(denoted by T , such as time to metamorphosis) is subject to a single competing risk
(the competing event time denoted by U , such as time to death).

In a situation where a pair of event times (T,U ) is subject to competing risks, the
marginal survival function ST (t) = Pr(T > t) is unidentifiable from data (Tsiatis
1975). The identifiability problem can be remedied by imposing some assumptions
on the joint distribution of (T,U ). The traditional assumption is the independence
between T and U . With this strong assumption, the marginal survival function ST (t)
is estimated by the Kaplan–Meier estimator treating U as an independent censoring
variable. However, the independence assumption is rarely true in many biological
settings.

An assumed copula model on (T,U ) makes ST (t) identifiable (Zheng and Klein
1995), where a copula only specifies the form of dependency but does not specify
the forms of the marginal survival functions. With an assumed copula, Zheng and
Klein (1995) proposed a semiparametric estimator of ST (t), called the copula-graphic
(CG) estimator that is an extension of the Kaplan–Meier estimator. The asymp-
totic properties of the CG estimator were well-understood with aid of a martingale
technique (Rivest and Wells 2001). De Uña-Álvarez and Veraverbeke (2013, 2017)
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generalized the CG estimator to allow for additional independent right-censoring and
left-truncation.

Adopting the idea of an assumed copula, semiparametric estimators for themarginal
survival and hazard functions are derived in the presence of covariates (Braekers and
Veraverbeke 2005; Chen 2010; Emura et al. 2015; Emura and Chen 2016). Theoretical
and numerical properties of these estimators are studied within the same references.

An assumed copula approach has also been adopted to perform parametric analyses.
However, compared to the semiparametric approaches, the literature is scarcer for the
parametric approaches. A maximum likelihood estimator (MLE) under the Weibull
marginal models for T andU is considered by Escarela and Carriere (2003). TheMLE
under a more general log-location-scale model is studied by Hsu et al. (2016) in the
reliability analysis of a series system.

Here in our paper, we aim to contribute to the parametric approaches for the copula-
based competing risks data analysis by developing maximum likelihood inference
under a new parametric model. With an assumed copula model for dependence as in
Zheng and Klein (1995), we adopt piecewise exponential models for the two marginal
distributions as in Staplin et al. (2015). However, our proposed copula model is differ-
ent from themodel of Staplin et al. (2015)who specify the dependence through the con-
ditional density for (U |T = t). The likelihood function under themodel of Staplin et al.
(2015) involves some numerical integrations of the joint density of (T,U ) while our
likelihood function has an explicit form (Sect. 4.2).Another important advantage of our
approach over Staplin et al. (2015) is that a copula parameter (say, α) is transformed to
Kendall’s tau, which is convenient when performing the sensitivity analysis (Sect. 4.3).

This paper is organized as follows. Section 2 describes the background on com-
peting risks data analysis. Section 3 reviews piecewise exponential models. Section 4
describes our proposed inference procedures. Section 5 conducts simulations and
Sect. 6 performs a real data analysis on salamander larvae. Section 7 concludes.

2 Competing risks framework

We consider a situation where a pair of event times (T,U ) is subject to competing
risks. Let T be the event time of interest (e.g., time to metamorphosis) and U be the
competing event time (e.g., time-to-death). The independence between T and U is
not assumed. Let M be a fixed censoring time point (Type I censoring). The event
time T is observed if T ≤ U and T < M . Conversely, the event time U is observed
if U < T and U < M . What we actually observe is the first-occurring event time
t = min(T,U, M), the event indicator δ = I{T ≤ U }, and the censoring indicator
ρ = I{min(T,U ) < M}, where I{·} is the indicator function. Note that δ is observed
only when ρ = 1.

In the standard approach to competing risks analysis, the sub-distribution function
(also knownas cumulative incidence function), H(t) = Pr(T ≤ t, T ≤ U ), is often the
target for estimation (Crowder 2001, 2012;Klein andMoeschberger 2003;Bakoyannis
andTouloumi 2012). This is the proportion of events occurring before time t and can be
estimated nonparametrically under the above data structure (Klein and Moeschberger
2003).
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In an alternative approach to competing risks analysis, the marginal survival func-
tion ST (t) = Pr(T > t) is assessed. If T and U were independent, one could use
the Kaplan–Meier estimator for ST (t). More generally, if the copula of (T,U ) is
known, a consistent estimator of ST (t) is obtained, e.g., by the generalized copula
graphic (GCG) estimator (De Uña-Álvarez and Veraverbeke 2013). When calculating
the estimates of ST (t), the form of the copula is assumed to be known. This is because
statistical inference of the copula is inherently difficult under the competing risks
setting (Sect. 4.3). For this reason, estimates from competing risks data are typically
suppliedwith sensitivity analysis (Rivest andWells 2001; Chen 2010; DeUña-Álvarez
and Veraverbeke 2013, 2017; Staplin et al. 2015).

Ourmotivating example is a biological study on time tometamorphosis for salaman-
der larvae living in Hokkaido, Japan (Michimae et al. 2014). A subset of the original
data is given in Online Resource A. The event time of interest is days from placing
the salamander larvae in the cage to the completion of metamorphosis. If larval death
occurs before metamorphosis, the event time is censored. To account for the effect
of dependent censoring, Michimae et al. (2014) assessed time to metamorphosis by
using a sub-distribution function (or cumulative incidence function). Alternatively, we
aim to assess the time to metamorphosis by using a survival function. This is mainly
because survival functions are common tools for biologists dealing with animal sub-
jects; see case studies of Kuparinen et al. (2008) for the common frog and Fieberg and
DelGiudice (2011) for the female deer.

3 Piecewise exponential model

This section reviews the piecewise exponential model and introduces relevant nota-
tions. A good introduction to the piecewise exponential model is found in the book of
Lawless (2003).

We define the piecewise exponential models by following Lawless (2003). Let
0 = a0 < a1 < · · · < am = M be a knot sequence, where m is the number of knots
and M is the follow-up end (Type I censoring time). Assume that the hazard function
for T in an interval (a j−1, a j ] is a constant,

hT (t; θ) = eθ j ; a j−1 < t ≤ a j , j = 1, . . . ,m,

where θ = (θ1, . . . , θm) are unknown parameters. The survival function is

ST (t; θ) = exp

⎧
⎨

⎩
−eθ j (t − a j−1) −

j−1∑

k=1

eθk (ak − ak−1)

⎫
⎬

⎭
, t ∈ (a j−1, a j ], (1)

where
∑0

k=1 (·) ≡ 0. The survival function is also derived by using the lack ofmemory
among the exponentially distributed events across intervals,

ST (t; θ) = Pr(T > t |T > a j−1) × Pr(T > a j−1|T > a j−2) · · · × Pr(T > a1).

123



Environ Ecol Stat (2017) 24:151–173 155

The probability density function is

fT (t; θ) = eθ j exp

⎧
⎨

⎩
−eθ j (t − a j−1) −

j−1∑

k=1

eθk (ak − ak−1)

⎫
⎬

⎭
, t ∈ (a j−1, a j ].

The usefulness of the piecewise exponential model is due to amathematically tractable
framework for statistical inference and to a flexibility to approximate accurately any
model by increasing the number of knots (Friedman 1982). The model is also straight-
forwardly extended to include a vector of covariates (Friedman 1982; Lawless 2003).

In practice, the true knot sequence is unknown and needs to be chosen by users.
In general, the chosen knot sequence may not coincide with the true one. If the true
hazard function is smooth, the true knot sequence is not unique or does not exist.
Even for these circumstances, the piecewise exponential model can still reasonably
approximate the underlyingmodel by lettingm → ∞ andmax j (a j−a j−1) → 0. This
is because the maximum likelihood estimate for each interval (a j−1, a j ] is consistent
for the average hazard in the interval (Friedman 1982). This feature allows one to
apply the piecewise exponential as a realistic approximation to any application with
less concern for the knot specification.

Staplin et al. (2015) imposed the piecewise exponential model on the competing
event time (dependent censoring time) distribution of U in addition to the event time
distribution of T . To save notations, we use the same knot sequence 0 = a0 < a1 <

· · · < am = M as the event time. The knot sequences of the event time and dependent
censoring time can be different in practice. Then, the hazard for U in an interval
(a j−1, a j ] is a constant, and hence

hU (u; γ) = eγ j ; a j−1 < u ≤ a j , j = 1, . . . ,m,

where γ = (γ1, . . . , γm) are unknown parameters. The corresponding survival func-
tion is

SU (u; γ) = exp

⎧
⎨

⎩
−eγ j (u − a j−1) −

j−1∑

k=1

eγk (ak − ak−1)

⎫
⎬

⎭
, u ∈ (a j−1, a j ]. (2)

The probability density function is defined as fU (u; γ) = −dSU (u; γ)/du.

Example 1 Consider a piecewise exponential model on three intervals (0, 1], (1, 2],
and (2, 3], which are set by a1 = 1, a2 = 2, and a3 = M = 3 with m = 3. Then, the
survival function is

ST (t; θ) =

⎧
⎪⎪⎨

⎪⎪⎩

exp{−eθ1 t} if t ∈ (0, a1],
exp{−eθ2(t − a1) − eθ1a1} if t ∈ (a1, a2],
exp{−eθ3(t − a2) − eθ2(a2 − a1) − eθ1a1} if t ∈ (a2, a3].
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Fig. 1 Survival functions for piecewise exponential models under a knot sequence a1 = 1, a2 = 2, and
a3 = 3. The solid (black) line depicts ST (t; θ1, θ2, θ3) under three hazards eθ1 = 0.135, eθ2 = 0.368, and
eθ3 = 0.601 (θ1 = −2, θ2 = −1, and θ3 = −0.5). The dashed (red) line depicts SU (t; γ1, γ2, γ3) under
three hazards eγ1 = 0.05, eγ2 = 0.223, and eγ3 = 1 (γ1 = −3, γ2 = −1.5, and γ3 = 0) (Color figure
online)

We set three hazards eθ1 = 0.135, eθ2 = 0.368, and eθ3 = 0.601 (θ1 = −2, θ2 = −1,
and θ3 = −0.5) in the intervals. In this model, we set M = 3 as the follow-up end
(Type I censoring time). For dependent censoring time, we consider three hazards
eγ1 = 0.05, eγ2 = 0.223, and eγ3 = 1 (γ1 = −3, γ2 = −1.5, and γ3 = 0) in the
same intervals. Figure 1 shows the two survival functions for event time and dependent
censoring time. We see that the survival functions are mixtures of three exponential
survival functions on the three intervals (0, a1], (a1, a2], and (a2, a3].

4 Proposed methods

4.1 Copula-based survival model

A copula is a bivariate distribution function for a pair of uniformly distributed random
variables on [0, 1] (Nelsen 2006). Let Cα : [0, 1]2 �→ [0, 1] be a family of one-
parameter copulas, where α is a dependence parameter.

Some examples of copulas include the Clayton copula (1978)

Cα(v,w) = (v−α + w−α − 1)−1/α, α ≥ 0,

and the Joe copula (1993)

Cα(v,w) = 1 − {(1 − v)α + (1 − w)α − (1 − v)α(1 − w)α}1/α, α ≥ 1.

The Clayton copula has a lower tail dependence while the Joe copula has an upper
tail dependence. Hence these two copulas capture quite different dependence struc-
tures and supplement each other in statistical modeling. The independence copula
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C(v,w) = vw is obtained as the limit α → 0 under the Clayton copula and α → 1
under the Joe copula. The degree of dependence increases as α departs from these
limits.

An important property of copulas is that the dependence parameter α has the one-
to-one correspondence with Kendall’s tau

τ(α) = 4

1∫

0

1∫

0

Cα(v,w)Cα(dv, dw) − 1.

The Clayton copula has a form τ(α) = α/(α +2) while the Joe copula has an integral
form

τ(α) = 1 − 4

∞∫

0

t

α2 {1 − exp(−t)}2/α−2 exp(−2t)dt.

In both cases, τ(α) is a monotone increasing function of α with τ(∞) = 1.
We consider a model for the joint survival function of T and U given as

Pr(T > t,U > u) = Cα{ST (t; θ), SU (u; γ)}, (3)

where ST (t; θ) and SU (u; γ) follow the piecewise exponential models (1) and (2),
respectively. Escarela and Carriere (2003) considered the model (3) where both
ST (t; θ) and SU (u; γ) are Weibull survival functions. Since the copula in the model
(3) captures the dependence structure for the joint survival function (rather than the
joint distribution function), the tail dependence of the copula is rotated 180 degrees.
For instance, the Clayton copula yields an upper tail dependence while the Joe copula
yields a lower tail dependence between T and U . Figure 2 compares the scatter plots
for (Ti , Ui ), i = 1, . . . , 1000, between the Clayton copula and Joe copula under the
piecewise exponential models of Example 1. The two copulas have the same Kendall
tau τ(α) = 0.5, but show remarkably different dependence patterns in the upper and
lower tails.

4.2 Maximum likelihood estimation

For the maximum likelihood estimator (MLE) under the model (3) to be well-
defined, we impose a mild assumption that all the derivatives C [i, j]

α (v,w) =
∂(i+ j)Cα(v,w)/∂vi∂w j exist for (i, j) = (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0),
(2, 1), (1, 2), (0, 3). We give the explicit forms for C [i, j]

α (v,w) under the Clayton and
Joe copulas in Online Resource B. Let

Dα,1(v,w) = C [1,0]
α (v,w)/Cα(v,w), Dα,2(v,w) = C [0,1]

α (v,w)/Cα(v,w),

which are related to cause-specific hazards (crude hazards) under dependent censoring
(Rivest andWells 2001; Chen 2010; Emura and Chen 2016). For instance, the Clayton
copula gives
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Fig. 2 Scatter plots for (Ti , Ui ), i = 1, . . . , 1000 under the model (3). The data are generated from the
Clayton (left) and Joe (right) copulaswith the sameKendall tau, τ(α) = 0.5 under the piecewise exponential
models of Example 1. Algorithms for generating the data are given in Sect. 5

Dα,1(v,w)=v−α−1(v−α+w−α − 1)−1, Dα,2(v,w)=w−α−1(v−α + w−α − 1)−1

and the Joe copula gives

Dα,1(v,w) = Aα(v,w)1/α−1{1 − (1 − w)α}(1 − v)α−1

1 − Aα(v,w)1/α
,

Dα,2(v,w) = Aα(v,w)1/α−1{1 − (1 − v)α}(1 − w)α−1

1 − Aα(v,w)1/α
,

where Aα(v,w) = (1 − v)α + (1 − w)α − (1 − v)α(1 − w)α .
Let Ti be event time andUi be dependent censoring time for i = 1, . . . , n. Observed

data consist of ti = min{Ti ,Ui , M}, δi = I{Ti ≤ Ui }, and ρi = I{min(Ti ,Ui ) < M},
where I{·} is the indicator function. Given observations (ti , δi , ρi ), i = 1, . . . , n, the
log-likelihood function is

	(θ, γ) =
n∑

i=1

ρiδi
[
log fT (ti ; θ) + log Dα,1{ST (ti ; θ), SU (ti ; γ )}]

+
n∑

i=1

ρi (1 − δi )
[
log fU (ti ; γ) + log Dα,2{ST (ti ; θ), SU (ti ; γ)}]

+
n∑

i=1

logCα{ST (ti ; θ), SU (ti ; γ)}, (4)

where fT and fU are the probability density functions as defined in Sect. 3. Under
the case of the independence copula, we have D1(v,w) = v−1 and D2(v,w) = w−1.
Hence, Eq. (4) reduces to the log-likelihood under the independent risks.
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We let (θ̂, γ̂) be the MLE that maximizes 	(θ, γ). It suffices to find (θ̂, γ̂) that holds
∂	(θ, γ)/∂(θ, γ) = 0 with negative definiteness of the converged Hessian matrix

H(θ̂, γ̂) = ∂2	(θ, γ)

∂(θ, γ)∂(θ, γ)T

∣
∣
∣
∣
(θ,γ)=(θ̂,γ̂)

.

For instance, the “nlm()” function in R offers a convenient and reliable Newton-
type optimization algorithm, where the score vector and Hessian matrix are internally
calculated from the log-likelihood function defined by users. Recommended starting
values are θ1 = · · · = θm = γ1 = · · · = γm = 0. In the “nlm()” function, the matrix
H(θ̂, γ̂) is automatically obtained by specifying the option “nlm(,hessian=TRUE)”.

Remark In the log-likelihood of Staplin et al. (2015), the terms corresponding to
Dα,1{ST (ti ; θ), SU (ti ; γ)}, Dα,2{ST (ti ; θ), SU (ti ; γ)}, and Cα{ST (ti ; θ), SU (ti ; γ)} in
Eq. (4) must be calculated by doing some numerical integrations of the joint density
of Ti and Ui . The necessity of the numerical integrations is attributed to their model
specification in terms of the joint density fU |T (u|T = t) fT (t). In contrast, we made
our model specification in terms of the copula function between Ti and Ui in Eq.
(3). Our approach only requires partial derivatives of the copula function that are
technically easier than the numerical integrations. Dependence between Ti and Ui

may arise as a consequence of ignoring covariates (environmental, clinical or genetic
factors), which is often the case of meta-analysis (Emura et al. 2015, 2017). In such
a case, the copula model arises naturally (Emura and Chen 2016).

4.3 Identifiability and sensitivity analysis

For any underlying distribution on (T,U ), Tsiatis (1975) constructed the independent
random variables T ∗ and U∗ which satisfy

(min(T,U ), I(T ≤ U ))
d=(min(T ∗,U∗), I(T ∗ ≤ U∗)),

where
d= implies the equality of the distribution. The above expression states that

observed data cannot distinguish the underlying model from the independent model,
a phenomenon known as “nonidentifiability”.

The nonidentifiability of Tsiatis (1975) was derived under the non-parametric set-
ting. The nonidentifiability may not occur if the model of (T,U ) is restricted to some
parametric or semi-parametric classes. Model parameters were claimed to be identifi-
able in some bivariate parametric classes with one- or two-parameter margins (David
andMoeschberger 1978; Basu and Ghosh 1978), parametricWeibull regressionmodel
(Escarela and Carriere 2003), and the semi-parametric Cox regression model (Heck-
man and Honore 1989). However, although the parameters are identifiable, estimation
of the dependence parameter remains difficult or unrealistic (Chen 2010; Hsu et al.
2016).

Therefore, it is natural to imagine the difficulty of estimating α in the model (3),
though all the model parameters may probably be identifiable. Accordingly, when
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performing maximum likelihood inference based on 	(θ, γ ), it is more effective to
assume that the copula form and the copula parameter α are known. Then, we suggest
a sensitivity analysis that tries a range of possibleα and see how the results change. This
approach has been well-established in semiparametric models (Rivest andWells 2001;
Chen 2010; De Uña-Álvarez and Veraverbeke 2013) and the piecewise exponential
model (Staplin et al. 2015). Further explanation of the sensitivity analysis is given in
the data analysis.

4.4 Standard error and confidence interval

We apply the asymptotic normality of the MLE to obtain the standard error (SE)
and the confidence interval (CI) for target parameters. For instance, the SE of θ̂ j is

SE(θ̂ j ) =
√

[−H−1(θ̂, γ̂)]θ j , j = 1, . . . ,m. The (1−β)×100% confidence interval

for θ j is θ̂ j ± Zβ/2 × SE(θ̂ j ), where Z p is the p-th upper quantile for N (0, 1). The
delta method is used to obtain the SE of ST (t; θ̂) as

SE{ST (t; θ̂)} =
√

{
∂θ1,...,θ j ST (t; θ̂)

}T × [−H−1(θ̂, γ̂)
]

θ1,...,θ j
× {

∂θ1,...,θ j ST (t; θ̂)
}
,

for t ∈ (a j−1, a j ], where
∂θ1,...,θ j ST (t; θ) = − [

eθ1a1, e
θ2 (a2 − a1),. . . ,e

θ j−1 (a j−1 − a j−2), e
θ j (t − a j−1)

]T
ST (t; θ).

Similarly, the (1 − β) × 100% CI for ST (t; θ̂) is ST (t; θ̂) ± Zβ/2 × SE{ST (t; θ̂)}.

4.5 Goodness-of-fit test

As the proposed maximum likelihood method strongly relies on the model assump-
tions, we supplement the method with a formal goodness-of-fit test for testing

H0 : Pr(T > t,U > u) = Cα{ST (t; θ), SU (u; γ)}, ∃(Cα, θ, γ).

Since our target parameter is ST , it is intuitive to assess the goodness-of-fit in terms
of the distance between a semiparametric estimator (ŜT ) and the proposed parametric
estimator of ST (t). Particularly, the Cramér–von-Mises type statistics is

C =
∞∫

0

[√
n{ŜT (t) − ST (t; θ̂)}

]2
dFn(t) =

∑

i

δiρi

{
ŜT (ti ) − ST (ti ; θ̂)

}2
,

where Fn(t) = ∑n
i=1 δiρi I{ti ≤ t}/n. A large value of C indicates a possible mis-

specification in one of the three parametric forms Cα , ST (·; θ), and SU (·; γ).
As we mentioned in Sect. 3, the important advantage of the piecewise exponential

model is the ability to approximate accurately anymodel by a careful choice of the knot

123



Environ Ecol Stat (2017) 24:151–173 161

sequence. It follows that there may be little concern or interest to test the goodness-
of-fit for the models on ST (·; θ) and SU (·; γ ). This implies that a large value of C can
be reasonably interpreted as a misspeficication of Cα .

We particularly pick up a semiparametric estimator of ST (t), called the generalized
copula-graphic (GCG) estimator (De Uña-Álvarez and Veraverbeke 2013), as it can
be applied to the present data structure. The GCG estimator is derived under the
Archimedean copula model

Pr(T > t,U > u) = S(t, u) = φ−1
α [{φα{ST (t)} + φα{SU (u)}] ,

where φα is a generator function (Nelsen 2006). The GCG estimator of ST (t) is

ŜT (t) = φ−1
α

{

−1

n

n∑

i=1

φ′
α{H̄n(ti )}I(ti ≤ t)δiρi

}

,

where H̄n(t) = 1 − ∑n
i=1 I(ti ≤ t)ρi/n.

Under the Clayton copula with the generator function φα(t) = (t−α − 1)/α, the
form is

ŜT (t) =
{

1 + α

n

n∑

i=1

H̄n(ti )
−α−1I(ti ≤ t)δiρi

}−1/α

.

Under the Joe copula with the generator function φα(t) = − log{1 − (1 − t)α}, the
form is

ŜT (t) = 1 −
(

1 − exp

[

−α

n

n∑

i=1

{1 − H̄n(ti )}α−1

1 − {1 − H̄n(ti )}α
I(ti ≤ t)δiρi

])1/α

.

To test the hypothesis H0 with level α, one can apply the parametric bootstrap (Efron
and Tibshirani 1993). Let B be a large integer. Then, we perform:

The goodness-of-fit test with parametric bootstrap

Step 1 Generate independent and identically distributed pairs of observations
(t (b)i , δ

(b)
i , ρ

(b)
i ), i = 1, . . . , n, b = 1, 2, . . . , B, under the estimated model

Pr(T > t,U > u) = Cα{ST (t; θ̂), SU (u; γ̂)}.
Step 2 Compute the bootstrap Cramér–von-Mises statistic C (b) using data
{(t (b)i , δ

(b)
i , ρ

(b)
i ); i = 1, . . . , n } for each b = 1, 2, . . . , B.

Step 3 Reject H0 with level α if the Cramér–von-Mises statistics C is greater than
the 100 × (1 − α) percent point of { C (b), b = 1, 2, . . . , B }.

4.6 Knot selection

In practice, the knot sequence a1 < · · · < am and the number m are unknown and
must be determined by users. The use of the percentiles, such as 33th, 67th, and 100th
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percentiles of observed event times, often leads to unreasonable results, especially if
the data contain ties or are sparsely scattered. In addition, it is not a valid maximum
likelihood approach to treat a1 < · · · < am and m as unknown parameters to be
optimized (Kalbfleisch and Prentice 1973). Alternatively, Kalbfleisch and Prentice
(1973) suggested selecting the knot independently from the data and used equally
spaced knots in their data analysis.

Rather than fully data-driven routines, the following simple strategy works well in
the present setting.We construct an equally spaced knot sequencewith a j−a j−1 = a1,
j = 2, . . . ,m. If an interval (a j−1, a j ] does not contain any observed event time, we
set θ j = −∞ to be known. Then, maximum likelihood inference is performed for
those intervals which contain at least one event times. One may choose the number
m such that the displayed survival function facilitates biological interpretations for
researchers.

5 Simulations

We performed Monte Carlo simulations to examine the performance of our approach
and to compare ours with the GCG estimator. We examined the accuracy of the pro-
posed estimators, standard errors and confidence intervals when the knots are known.
We also examine the case where the knots are misplaced and the number of knots
increases with sample sizes. Finally, we examined the performance of the proposed
goodness-of-fit test.

5.1 Simulation designs

The copula model (3) allows a simple scheme to generate a pair of Ti and Ui . In the
first step, we generate a pair (Vi ,Wi ) from a copula Cα in the following way:

Algorithm: Generate a pair (Vi ,Wi ) from a copula Cα

Step1 Generate Vi , Vi1 ∼ U (0, 1).
Step2For theClayton copula, setWi = [V−α

i {V−α/(1+α)
i1 −1}+1]−1/α; For the Joe

copula, setWi as the solutionofVi1 = Aα(Vi ,Wi )
1/α−1{1−(1−Wi )

α}(1−Vi )α−1,

where Aα(v,w) = (1 − v)α + (1 − w)α − (1 − v)α(1 − w)α .

In all the simulations, we assume that α is known at the value τ(α) = 0.5, which
corresponds to α = 2 under the Clayton copula and α = 2.856 under the Joe copula
(Sect. 4.1). In the next step, we use inverse transformations Ti = S−1

T (Vi ; θ) and
Ui = S−1

U (Wi ; γ) under piecewise constant hazardswithm = 3 knots, a1 = 1, a2 = 2,
and a3 = M = 3 (Example 1). The explicit forms of the inverse transformations are

S−1
T (v; θ1, θ2, θ3)

=

⎧
⎪⎪⎨

⎪⎪⎩

−e−θ2 log(v) if 0 > log(v) ≥ −eθ1a1,

a1−e−θ2{log(v)+eθ1a1} if −eθ1a1> log(v)≥−eθ1a1− eθ2(a2−a1),

a2−e−θ3{log(v)+eθ1a1+eθ2(a2−a1)} if −eθ1a1 − eθ2(a2 − a1) > log(v).
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Table 1 The misplaced knots sequences where m grows with n

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17

n=200,m=5 0.0 0.6 1.2 1.8 2.4 3

n=400,m=11 0.0 0.3 0.6 0.8 1.1 1.4 1.6 1.9 2.2 2.5 2.7 3

n=600,m=17 0.0 0.2 0.4 0.5 0.7 0.9 1.1 1.2 1.4 1.6 1.8 1.9 2.1 2.3 2.5 2.7 2.8 3

The true knot sequence is a1 = 1, a2 = 2, and a3 = M = 3 with m = 3
These sequences are generated by rounding the results of R commands, seq(0,3,length=6), seq(0,3,length=12),
and seq(0,3,length=18)

and S−1
U (w; γ1, γ2, γ3) in a similar fashion. Parameters for the piecewise exponential

hazards (θ1, θ2, θ3,γ1, γ2, γ3) are chosen to yield different observed event proportions.

Scenario (i) θ1 = −2, θ2 = −1, θ3 = −0.5,γ1 = −3, γ2 = −1.5, γ3 = 0:
T is moderately censored as Pr(T ≤ U, T < M) = 0.46 (Clayton copula) and
Pr(T ≤ U, T < M) = 0.37 (Joe copula).

Scenario (ii) θ1 = −2, θ2 = −2, θ3 = −2,γ1 = −3, γ2 = −1.5, γ3 = 0: T
is heavily censored as Pr(T ≤ U, T < M) = 0.22 (Clayton copula) and Pr(T ≤
U, T < M) = 0.13 (Joe copula).

After a pair (Ti ,Ui ) is generated, we set ti = min{Ti ,Ui , M}, δi = I{Ti ≤ Ui },
and ρi = I{ti < M}. Based on observations (ti , δi , ρi ), i = 1, . . . , n, we calculate the
estimators for the survival function ST (t; θ) in three different ways using:

(a) Piecewise exponential model with known knots; a1 = 1, a2 = 2, and a3 = M = 3
with m = 3

(b) Piecewise exponential model where the knots are misplaced and the number of
knots increases (Table 1)

(c) GCG estimator

Based on 500 repetitions, we compare the performance of the three estimators.

5.2 Results for the proposed estimator

Table 2 shows the simulation results under the Clayton copula. If the knots are
known, the estimates appear to be nearly unbiased for ST (1; θ), ST (2; θ), and ST (3; θ).
The standard deviation (SD) of the estimates decreases as the sample size increases
from n = 200 to 600. The values of the SE are all very close to the values of the
SD. Accordingly, the resulting 95% confidence intervals give satisfactory coverage
rates.

A close inspection of Table 2 reveals some patterns for the SD. First, the SD for
ST (3; θ) is larger than the SD for ST (1; θ). The reason is that ST (3; θ) involves three
parameters, say θ = (θ1, θ2, θ3), whichmakes more variation than estimating ST (1; θ)

involving only θ1. Second, Scenario ii) gives the larger SD for ST (3; θ) than Scenario
i) does. This is due to the heavier censoring percentage of Scenario ii), yielding more
uncertainty in estimation. However, Scenario ii) gives the smaller SD for ST (2; θ)
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than Scenario i) does. This phenomenon occurs since the value of ST (2; θ) = 0.763
under Scenario ii) is closer to 1 than the value ST (2; θ) = 0.605 under Scenario
i). These patterns are commonly observed in many available estimators for survival
functions.

Table 2 also shows the simulation results under the misplaced knot sequences. In
Scenario i), the estimates exhibit systematic biases, especially for the small sample
size (n = 200). Nevertheless, the biases tend to vanish as the sample sizes increase
from n = 200 to n = 600. This is because the approximation to the true survival
function gets improved as the he number of knots increases with the sample sizes.
In Scenario ii), the estimates appear to be almost unbiased even under the misplaced
knots. This phenomenon is due to the homogeneous parameter values in all intervals
(i.e., θ1 = −2, θ2 = −2, and θ3 = −2). In this case, the true survival function can be
correctly approximated by any knot sequence.

Table 3 summarizes simulation results under the Joe copula. The patterns of the
results are very similar to those under the Clayton copula. All the parameters are nearly
unbiasedly estimatedwith satisfactory performances on theSEand confidence interval.
Even under the misplaced knot sequences, the estimates are virtually unbiased under
Scenario ii) due to the homogeneous parameter setting (i.e., θ1 = −2.5, θ2 = −2.5,
and θ3 = −2.5). Also in Scenario i), the biases due to themisplaced knots aremitigated
by increasing the sample size (i.e., increasing the number of knots).

5.3 Comparison with the GCG estimator

Tables 2 and 3 compare the proposed estimator with the GCG estimator. In all param-
eter settings, the proposed estimator shows the advantage over the GCG estimator in
terms of the bias and SD, but the difference is very modest. The results are some-
what surprising since the GCG estimator performs competitively without requiring
any parametric forms for marginal distributions. The comparison between the two
estimators will be discussed further in Sect. 7.

5.4 Performance of the goodness-of-fit test

The performance of the proposed goodness-of-fit test (Sect. 4.5) is assessed via sim-
ulations. In this study, we set the null hypothesis to be the Clayton copula while we
generated data from four different copulas (Clayton, Joe, Plackett, and independent).
The parameter α in the Clayton, Joe and Plackett copulas is assumed known at the
value τ(α) = 0.5. For each repetition, we calculate the Cramér–von-Mises statistic
and test the goodness-of-fit hypothesis (the null hypothesis of the Clayton copula with
α = 2) based on B = 500 bootstraps. To examine Type I error rate and power of the
test, we count the number of rejections under levels 0.01, 0.05, or 0.10 during 500
repetitions.

Table 4 shows the performance of the goodness-of-fit test. When the data are
generated from the Clayton copula (null hypothesis), the rejection rates are in good
agreement with all the pre-specified levels. In addition, the mean of the Cramér–von-
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Table 4 Simulation results for the goodness-of-fit test for the Clayton copula

Underlying copula Sample
size

Test
statistics
E[C]

Bootstrap
statistics
E[C(·)]

Rejection
rate at
level 0.01

Rejection
rate at
level 0.05

Rejection
rate at
level 0.10

Clayton(correct) n = 200 0.024 0.025 0.010 0.030 0.088

n = 400 0.023 0.023 0.014 0.044 0.112

n = 600 0.022 0.022 0.004 0.036 0.092

Joe(incorrect) n = 200 0.029 0.028 0.016 0.040 0.104

n = 400 0.034 0.027 0.042 0.108 0.192

n = 600 0.039 0.026 0.080 0.196 0.328

Plackett(incorrect) n = 200 0.024 0.026 0.014 0.034 0.066

n = 400 0.024 0.025 0.022 0.056 0.096

n = 600 0.025 0.024 0.024 0.074 0.138

Independence(incorrect) n = 200 0.037 0.036 0.012 0.066 0.134

n = 400 0.039 0.032 0.016 0.090 0.180

n = 600 0.042 0.032 0.046 0.132 0.240

Results are based on 500 Monte Carlo replications under θ1 = −2, θ2 = −1, θ3 = −0.5, γ1 = −3,
γ2 = −1.5, and γ3 = 0
E[C] = The mean of the Cramér–von Mises test statistics C
E[C(·)] =The mean of the averaged bootstrap Cramér–von Mises test statistics

∑B
b=1 C

(b)/B, where
B =500

Mises statistics C is fairly close to the mean of the averaged bootstrap Cramér–von
Mises statistics

∑B
b=1 C

(b)/B. Hence, the bootstrap approximation to the null distri-
bution of the test statistic works well.

When data are generated from the Joe copula, the rejection rates are systematically
higher than the specified levels (Table 4). The rejection rates increase as the sample
sizes increase from n = 200 to 600. Indeed, the Joe copula and Clayton copula show
remarkably different dependence patterns even though they have the same Kendall’s
tau (Fig. 2). However, the rejection rate is still 0.196 (at level 0.05) even under n = 600,
showing about 20% power to reject the null hypothesis. The modest power is also
observed when the data are generated from the independence model. The rejection
rate is 0.132 (at level 0.05) under n = 600, showing about 13% power to reject the
null hypothesis.

When data are generated from the Plackett copula, the rejection rates does not differ
much from the specified Type I error rates (Table 4). However, as the sample sizes
increase from 200 to 600, rejection rates are slowly increasing up to the rejection
rate 0.074 (at level 0.05). This implies the poor ability of distinguishing between the
Clayton copula and Plackett copula.

Overall, the proposed goodness-of-fit test offers a good control for Type I error rate
and exhibitsmodest power. In practice, the test can reject the null hypothesis onlywhen
the underlying copula structure is remarkably different from the null hypothesis, or
when the sample size is very large. The power properties are natural due to the inherent
difficulty of identifying the dependence model from the competing risks data.
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6 Data analysis

6.1 Salamander data

Michimae et al. (2014) conducted a designed follow-up study for salamander larvae
living in Hokkaido, Japan. At the beginning of the follow-up, a randomization was
used to divide the larvae into three experimental groups of morphologies “broad head”
(n = 30), “anti-predator” (n = 30), and “control” (n = 30). The event time of interest
is days from placing the salamander larvae in the experimental cage to the comple-
tion of metamorphosis. During the follow-up, the presence of metamorphosis was
examined, and the time to metamorphosis was recorded as the first day that exhibits
metamorphosis.

As pointed out by Michimae et al. (2014), their collected data comprise the com-
peting risks setting. Time to metamorphosis is censored if death occurs before meta-
morphosis; time to death is censored if metamorphosis occurs before death. Although
death might still be observed even after metamorphosis, time to death measured after
metamorphosis may lose the original meaning. In other words, our target outcome is
“death in a larval stage”, which becomes undefined after larvae become adult salaman-
ders. This confounding effect is not only restricted to our animal experiment but also
seen in clinical trials involving human subjects. For instance, a medical intervention at
the time of cancer relapse may confound the original interpretation of overall survival
measured from a randomization (Pazdur 2008; Buyse et al. 2011; Emura et al. 2015).

Statistical analyses of Michimae et al. (2014) were based on the estimated sub-
distribution functions (i.e., estimated probability of metamorphosis in the presence
of death over time). They compared the estimated sub-distribution functions between
the three experimental groups to see how the experimental condition affects the meta-
morphic timing. They concluded that the broad head group had shorter incidence for
metamorphosis than the other two groups did.

Instead of their comparison in terms of the difference of the sub-distribution func-
tions between the three groups, our proposed method offers a comparison in terms
the survival functions for time to metamorphosis. Survival function would be more
straightforwardly understood bymany biologists due to its popularity (Kuparinen et al.
2008).

We remove the control group that has no dependently censored (dead) subjects.
Our goal is to estimate the two survival functions of time to metamorphosis for the
broad head group (n = 30 with 4 death) and the anti-predator group (n = 30 with 8
death), separately. According to the range of the observed time to metamorphosis and
the sample sizes, we choose the following equally spaced knot sequences: a1 = 25,
a2 = 50, and a3 = M = 75 for the broad head group; a1 = 33.3, a2 = 66.6,
and a3 = M = 100 for the anti-predator group. This choice turns out to facilitate a
biological interpretation for comparing the metamorphic timing between two groups.

6.2 Results

Initially, we performed the proposed goodness-of-fit test (Sect. 4.5) for the piecewise
exponential model with the Clayton copula with α = 2 (τ = 0.5). By fitting this

123



Environ Ecol Stat (2017) 24:151–173 169

Fig. 3 Estimated survival functions based on the salamander data. TheClayton copulawithα = 2 (τ = 0.5)
is fitted to estimate the survival function using the proposed estimator (black line) and the GCG estimator
(red line). The left panel shows the broad head group (n = 30) and the right panel shows the anti-predator
group (n = 30). 95% confidence intervals are based on the normal approximation and P-values of the
goodness-of-fit test are based on the parametric bootstrap method. The knot sequences are; a1 = 25,
a2 = 50, and a3 = M = 75 for the broad head group; a1 = 33.3, a2 = 66.6, and a3 = M = 100 for the
anti-predator group (Color figure online)

model, the estimated survival function was in good agreement with the estimated
survival function with the GCG estimator (Fig. 3). The tests for a goodness-of-fit
hypothesis based on the distance between the two estimated survival functions was
not rejected at 5% level (P-value = 0.098 for the broad head group; P-value = 0.114
for the anti-predator group). Therefore, there is little evidence against the piecewise
exponential models with the Clayton copula with α = 2 (τ = 0.5).

More generally, the goodness-of-fit test with the Clayton model was not rejected
in the range 0.1 ≤ α ≤ 2.5 (0.05 ≤ τ ≤ 0.56) with 5% level, but the test with the
independence copula was rejected for both the broad head group and anti-predator
group (P-value <0.05). This result gives some evidence against the independence
assumption between time-to-metamorphosis and time to death. Hereafter we adopt the
Clayton copula and examine the sensitivity of the results in the range 0.1 ≤ α ≤ 2.5.

We also fitted the Joe copula with α = 0.2856 (τ = 0.5) and then obtained
very similar estimated survival functions as those under the Clayton copula in Fig. 3.
However, the numerical algorithm for maximizing the log-likelihood becomes more
sensitive to the choice of the initial values, which is especially inconvenient to perform
the bootstrap replications. In this respect, we center our analysis on the Clayton copula.

We compared the estimated survival functions between the broad head group and
anti-predator group with piecewise exponential models under the Clayton copula. The
comparison is performed in terms of a sensitivity analysis in the range 0.1 ≤ α ≤ 2.5
(Fig. 4). Clearly, the broad head group has lower survival probability than the anti-
predator group in all the range of α, providing convincing evidence of shorter time
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Fig. 4 Estimated survival functions with piecewise exponential models based on the salamander data. The
dependence model is the Clayton copula with α = 0.1 (left, τ = 0.05), α = 1 (center, τ = 0.33), and
α = 2.5 (right, τ = 0.56). The solid (black) line depicts the estimated survival function for the broad head
group (n = 30) and the dashed (red) line depicts the estimated survival function for the anti-predator group
(n = 30) (Color figure online)

to metamorphosis in the broad head group. This conclusion agrees with the results of
Michimae et al. (2014) who utilized the sub-distribution functions for the comparison.

A close look to Fig. 4 reveals that the two survival functions for the broad head and
anti-predator groups share some similar characteristics. In both groups, the survival
function is initially flat and then drops steeply after a1 = 25 (days) in the broad head
group and a2 = 66.6 (days) in the anti-predator group. These time points may be
interpreted as “change points”, where physiological mechanisms in larvae changes
from an inactive state to an active state for metamorphosis (Rose 2005). Accordingly,
one can conclude that the experimental intervention for the broad head group expedites
the change point by 41.6 days (66.6-25), which appears to be substantial amount. Note
that such a conclusion about the change point cannot be easily derived by the GCG
estimator.

7 Discussion and conclusion

Our study has demonstrated that piecewise exponential models can be useful for ana-
lyzing time-to-event data in the presence of dependent censoring. The present approach
differs from the commonly employed approach based on sub-distribution functions
(or cumulative incidence functions). We utilize an assumed copula model (Zheng and
Klein 1995) as a way to adjust for the effect of dependent censoring. Under the piece-
wise exponential models with an assumed copula, we developed maximum likelihood
inference methods, including point and interval estimations and a goodness-of-fit test.
The simulations show that the proposedmethods exhibit desirable sampling properties,
guaranteeing that valid statistical inference for a survival function is possible.
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Escarela and Carriere (2003) and Hsu et al. (2016) developed copula-based models
for estimating a parametric survival function in the presence of competing risks. They
estimated the copula parameter α by the MLE, but the estimates may have a large
sampling variation. Instead, we fixed a few values of α and performed the sensitivity
analysis (Rivest and Wells 2001; Chen 2010; De Uña-Álvarez and Veraverbeke 2013;
Staplin et al. 2015). Staplin et al. (2015) also used the sensitivity analysis under
piecewise exponential models but did not utilize copulas for dependent censoring. The
idea of the sensitivity analysis is to examine the data analysis results under differing
amount of α which determines the degree of dependence between event time and
dependent censoring time. A remarkable feature of our approach is that the copula
parameter has a simple relationship with Kendall’s tau without being influenced by
marginal distributions.We have demonstrated the usefulness of the sensitivity analysis
through our real data analysis of the salamander larvae (Sect. 6).

Using simulations, we compared our approach with the existing semiparametric
estimator (GCG estimator). The results showed that our estimator exhibits only a
minor advantage in terms of the reduction in bias and standard deviation. However,
this small gain in bias and standard deviation would not be served as amajor advantage
of our approach. It is rather an interesting phenomenon that the semiparametric GCG
estimator for a survival function is nearly efficient with little loss of bias and variation
over our parametric estimator. While the asymptotic properties of the GCG estimator
are deeply investigated by De Uña-Álvarez and Veraverbeke (2013), closed form
expressions for the interval estimations (the standard error and confidence intervals)
have not been available. They proposed the bootstrap-based interval estimation, but
its numerical validity remains to be checked. Thus, in terms of interval estimation, our
approach provides some advantage over theGCG estimator according to the numerical
and theoretical support of the proposed interval estimations. Another advantage of the
proposed estimator over the GCG estimator is the applicability of non-Archimedean
copulas, such as Gaussian, t- and FGM copulas (Nelsen 2006). For instance, the
FGM copula is an interesting choice as it offers an explicit form of Kendall’s tau and
an analytically tractable likelihood function under the piecewise exponential model.
However, the GCG estimator is undefined under the FGM copula.

To supplement the strong parametric assumptions made on the underlying model in
our approach, we have devised a formal goodness-of-fit test with aid of the paramet-
ric bootstrap. The proposed test is associated with the distance between model-based
estimator and model-free estimator of a survival function. In this way, the result of
the goodness-of-fit test is not only expressed as a formal decision rule (reject or
accept), but also interpreted through the graphical comparison of two estimated sur-
vival functions. We have explained how the validity of a chosen parametric model is
formally andgraphically justified thoughour real data analysis of the salamander larvae
(Sect. 6). In the simulations, where we focused on the goodness-of-fit test for a cop-
ula, a good control of Type I error rate and moderate statistical power were observed.
This demonstrated the ability to distinguish the underlying copula from amisspecified
copula. However, due to the inherent difficulty of identifying the dependence structure
between two competing event times, the test can reject the null hypothesis only when
a large number of samples are available or the true model is remarkably different from
the null model.
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An important topic that we did not discuss in this paper is the issue of left-truncation
(Lawless 2003; Klein and Moeschberger 2003). Consideration for left-truncation is
essential in animal experiments if the time scale of event is age, where the inference
focuses on the age-specific hazard (Fieberg and DelGiudice 2011). In this case, left-
truncation corresponds to entry age, and the available samples are restricted to those
who experience an event after entry. In our salamander data, the entry times (time at
placing the salamander larvae in the experimental cage) for all subjects are regarded
as the time origin, and so there is no issue for left-truncation. The modified expression
of the log-likelihood under independent left-truncation is often easily obtained under
parametric models (Lawless 2003; Klein and Moeschberger 2003). De Uña-Álvarez
and Veraverbeke (2017) modified their semiparametric GCG estimator to account
for left-truncation. In this respect, all the proposed estimation and goodness-of-fit
procedures can, in principle, be modified to account for left-truncation. A more chal-
lenging but interesting issue is to account for “dependent” left-truncation in competing
risks analysis (Bakoyannis and Touloumi 2015). The model of dependent truncation
demands another copula model between event time and left-truncation time (Chaieb
et al. 2006; Emura and Wang 2012; Emura and Murotani 2015).

Electronic supplementary material: Supplementary Materials include Online
Resource A (the salamander data) and Online Resource B (Derivatives of copulas).
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