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ABSTRACT
We provide a comprehensive and critical review of Yates’continuity cor-
rection for the normal approximation to the binomial distribution, in
particular emphasizing its poor ability to approximate extreme tail prob-
abilities. As an alternative method, we also review Cressie’s finely tuned
continuity correction. In addition,wedemonstrate howYates’continuity
correction is used to improve the coverage probability of binomial con-
fidence limits, and propose new confidence limits by applying Cressie’s
continuity correction. These continuity correction methods are numer-
ically compared and illustrated by data examples arising from industry
and medicine.

1. Introduction

In statistics, a continuity correction has long been employed when researchers try to approxi-
mate a discrete probability distribution by a continuous distribution. Yates (1934) introduced
an ad-hoc rule of “adding 0.5” in order to improve the accuracy of the normal approximation
to a discrete probability distribution, which is called “Yates’ correction.”

The investigation of the continuity correction has a fairly long history, originated from
Feller (1968) and Cox (1970) who provided its mathematical foundations. Nowadays, con-
tinuity corrections are treated as an essential tool in many textbooks, e.g. for mathematical
statistics [Chapter 3 of Casella and Berger (2002)], industrial statistics [Chapter 3 of Mont-
gomery (2009)], and medical statistics [Chapter 9 of Everitt 2003]. In addition, the continuity
correction has beenwidely used for handling discrete data, including the statistical analyses of
defective counts in process control (Montgomery 2009), consecutive failure counts in system
reliability (Makri and Psillakis 2011) and disease incident counts in clinic (Pradhan, Evans,
and Banerjee 2016).

Aside from applications, the continuity correction has played a fundamental role in
methodological and theoretical development. For instance, the continuity correction offers a
method to improve the coverage probability of the confidence interval for the binomial prob-
ability (Blyth and Still 1983; Schader and Schmid 1990). Theory and methods to approximate
significance probabilities and P-values in conditional and unconditional tests are discussed in
Haber (1982).
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2 T. EMURA AND Y.-T. LIAO

Researchers often use the normal approximation without paying much attention to the
approximation error. A study of Duran and Albin (2009) gave the cases where a careful
application of the normal approximation still produces a large error in terms of false alarm
rate and the average run length. They showed that, even for a quite large sample size (n =
1000), the average run length of the resultant np-chart is far from the true value. A study
of Brown, Cai, and DasGupta (2001) showed an unacceptably poor coverage performance
of the Wald type confidence interval which is a straight forward application of the normal
approximation to the binomial. Unfortunately, the study of the approximation error is very
limited in the recent statistical literature, except for Hansen (2011) and Emura and Lin (2015)
both of which focused on the normal approximation to the binomial.

Currently, most researchers employ Yates’ ad-hoc correction of “adding 0.5.” However, our
numerical analyses will reveal that Yates’ correction cannot improve the accuracy of the nor-
mal approximation in certain important cases. Besides, there exist more refined methods to
correct the approximation which performs remarkably better than Yates’ correction. Never-
theless, suchmethods have not beenwidely used in the literature. In this context, some critical
review and numerical comparison for the continuity correction procedures are demanded.

In this paper, we provide a comprehensive and critical review of Yates’ continuity correction
to approximate the binomial distribution, in particular emphasizing its poor ability to approx-
imate extreme tail probabilities. As an alternativemethod, we also reviewCressie’s finely tuned
continuity correction (Cressie 1978). In addition, we demonstrate how Yates’ continuity cor-
rection is applied to improve the coverage probability of binomial confidence limits. Here,
we propose new continuity-corrected confidence limits by applying Cressie’s finely tuned
correction.

The paper is organized as follows. Section 2 reviews the background and introduces conti-
nuity correctionmethods. Section 3 considers an application to statistical process control and
Section 4 considers an application to confidence limits. Section 5 concludes the paper.

2. Continuity correction for the binomial distribution

First, we review the backgrounds regarding the normal approximation to the binomial dis-
tribution. Next, we review Yates’ continuity correction (Yates 1934) and Cressie’s finely tuned
continuity correction (Cressie 1978).

2.1. Normal approximation to the binomial distribution

Before discussing continuity correction, we introduce some mathematical notations and
review the background behind the normal approximation. Let X be a random variable with a
probability function

Pr(X = k) =
(
n
k

)
pk(1 − p)n−k, k ∈ {0, 1, . . . , n},

where n ≥ 1 is the sample size and 0 < p < 1 is a binomial proportion. This distribution is
the binomial distribution, denoted as X ∼ Bin(n, p). The cumulative distribution function
(c.d.f.) is

FX (k) = Pr(X ≤ k) =
k∑

i=0

(
n
i

)
pi(1 − p)n−i.
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COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 3

One can write X = ∑n
j=1 Xj, where X1, X2, . . . , Xn are independent Bernoulli random

variables with Pr(Xj = 0) = 1 − p and Pr(Xj = 1) = p. The moment generating function
(m.g.f.) of Xj isMXj (t ) = E(etXj ) = pet + (1 − p), which is defined for ∀t .

The study of the sum of Bernoulli random variables, X = ∑n
j=1 Xj, and its the normal

approximation was initiated byDeMoivre (1756). Nowadays, the central limit theorem (CLT)
is a common approach to study the sum of independent and identically distributed random
variables whose m.g.f. exists around t = 0 (Casella and Berger 2002). According to the CLT,
one obtains

lim
n→∞

Pr

(
X − np√
np(1 − p)

≤ x

)
= �(x), for ∀x,

where �( x ) = ∫ x
−∞

1√
2π e

− u2
2 du is the c.d.f. of the standard normal distribution. Thus, if n is

large, one can obtain the “normal approximation to the binomial” as

FX (k) = Pr(X ≤ k) ≈ �

(
k − np√
np(1 − p)

)
.

The CLT only informs us that the approximation “≈” is reasonably accurate for large n. In
reality, however, the accuracy also depends on p. It is well known that the normal approxi-
mation is accurate if np or n(1 − p) is large enough. This is because the value of p very close
to 0 or 1 produces a highly skewed binomial distribution, leading to an unrealistic approxi-
mation even for a very large n. Table 1 gives six existing criteria that guarantee the accurate
performance of the normal approximation. Emura and Lin (2015) recommended the criterion
“(np > 10 and p ≥ 0.1) or (np > 15)” in applications to statistical process control.

If these criteria are not met, the normal approximation should not be applied. For instance,
one should not apply the normal approximation to p = 0.0001 and n = 10000 as none of
the criteria in Table 1 is met. In this kind of small p, the Poisson approximation is suggested
(Montgomery 2009).

Table . Six existing criteria for the normal approximation to the binomial.

Criteria Reference

C. np > 10 and p ≥ 0.1 Wetherill and Brown (), Montgomery ()
C. np > 15 Johnson ()
C. np > 5 and n(1 − p) > 5 Schader and Schmid (), Casella and Berger (), Ryan ()
C. np > 10 and n(1 − p) > 10 Hahn and Meeker ()
C. n(1 − p) > 9 Hald (, ), Schader and Schmid ()
C. (np > 10 and p ≥ 0.1) or (np > 15) Emura and Lin ()

2.2. Yates’ continuity correction

A continuity correction is an adjustment that is made when a discrete distribution is approxi-
mated by a continuous distribution. Since the binomial distribution is discrete and the normal
distribution is continuous, it is common to use the continuity correction in the approxima-
tion. The most popular continuity correction is Yates’ correction (Yates 1934) defined as

FX (k) ≈ �

(
k − np+ 0.5√
np(1 − p)

)
k ∈ {0, 1, . . . , n}.
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4 T. EMURA AND Y.-T. LIAO

One may consider a more “conservative correction” of adding 0.3 such that

FX (k) ≈ �

(
k − np+ 0.3√
np(1 − p)

)
, k ∈ {0, 1, . . . , n}.

To demonstrate the usefulness of Yates’ continuity correction, we consider a simple exam-
ple of X ∼ Bin(150, 0.1) and k = 14. Since np = 15 and

√
np(1 − p) = 3.6742, one can

approximate the binomial distribution as

FX (14) = Pr(X ≤ 14) ≈ �

(
14 − 15
3.6742

)
= 0.3927.

Yates’ continuity correction leads to

FX (14) = Pr(X ≤ 14) ≈ �

(
14 − 15 + 0.5

3.6742

)
= 0.4459.

The true probability is

FX (14) = Pr(X ≤ 14) =
14∑
k=0

(
150
k

)
(0.1)k(0.9)150−k = 0.4602.

Clearly, Yates’ correction gives a more precise approximation to the true probability.
Figure 1 graphically explains why the continuity correction improves the accuracy in this
example.

Regarding Yates’ correction, an important remark should be mentioned.

Remark I: Yates’ correction does not improve the accuracy for extreme tail probabilities
where FX (k) is very close to either 0 or 1.

This remark was already mentioned by Yates (1934). However, this problem is neither
described inmany textbooks nor explored in journal articles. Sincemany real statistical prob-
lems are concerned about tail probabilities, Remark I may avoid the incorrect usage of the

Figure . A normal approximation to the probability FX (14) = Pr(X ≤ 14) with and without a continuity
correction under n = 150 and p = 0.1.
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COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 5

continuity correction by users. We will further demonstrate this problem through our subse-
quent numerical studies.

2.3. Finely tuned continuity correction (Cressie 1978)

A sophisticated continuity correction was proposed by Cressie (1978) for the normal approx-
imation to the binomial distribution. The main argument of Cressie (1978) is to apply
Stirling’s formula to (

n
k) = n!

k!(n−k)! and then take logarithms for the binomial probability

Pr(X = k) = (
n
k)p

k(1 − p)n−k. Then, a high-order Taylor series expansion is employed to
derive the optimal correction rule. However, themathematical arguments are extremely com-
plicated. Accordingly, the finely tuned correction of Cressie (1978) is

FX (k) ≈ �

(
k − np+ d(k, p)√

np(1 − p)

)
, k ∈ {0, 1, . . . , n},

where the correction term is

d( k, p ) = 0.5 − (q − p)
(
δ2k−0.5 − 1

)
/6,

where q = 1 − p, and δk = ( k − np )/
√
np(1 − p).

Our extensive investigations on the mathematical derivations of Cressie (1978) reveal his
unclear mathematical arguments, especially about how the remainder terms are omitted. To
complete the mathematical understanding of Cressie’s derivations, additional research will be
demanded. Nevertheless, the numerical performance of Cressie’s correction is excellent.

3. Application to statistical process control

We demonstrate how the continuity correction is applied to problems on statistical process
control.

3.1. np-control chart

The goal of np-control chart (or np-chart) is to control the fraction of nonconforming items
produced in a factory [Chapter 10 of Wetherill and Brown (1991); Chap 7 of Montgomery
(2009)]. Nowadays, the np- chart is one of themost important and fundamental control charts
in statistical process control.

Let X be the number of nonconforming items which follows X∼Bin(n, p), where p is the
fraction nonconforming. We consider a one-sided control chart, consisting of

Center line = np
UCL( upper control limit ) = np+ 3

√
np(1 − p).

If X ≤ UCL, then the process is declared “in-control.” If X > UCL then the process is
declared “out-of-control.” The value of p is called “in-control value” which must be pre-
specified by an engineer. In some case, the value of p may be an estimate from preliminary
samples (Phase I samples). In any case, the value of p is regarded as a known constant and is
not estimated by X .
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6 T. EMURA AND Y.-T. LIAO

Accordingly, the in-control probability is defined as

P∗ = Pr(X ≤ UCL) = Pr(X ≤ [ UCL ]) =
∑

x≤[ UCL ]

(
n
x

)
px(1 − p)n−x, (1)

where [ UCL ] is the largest integer not greater thanUCL. By the CLT (Section 2.1), one can
approximate the in-control probability as

P∗ = Pr(X ≤ [ UCL ]) = Pr

(
X − np√
np(1 − p)

≤ [ UCL ] − np√
np(1 − p)

)
≈ �

(
[ UCL ] − np√

np(1 − p)

)
.

In practice, the calculation of P∗ is frequently necessary, e.g., to compute the average run
length and operating characteristic function (Wetherill and Brown 1991; Montgomery 2009).

3.2. Example of n= 150 and p= 0.1

For instance, we consider np-chart under n = 150 and p = 0.1. Then, UCL = np+ 3 ×√
np(1 − p) = 15 + 3 × 3.6742 = 26.0227 and hence, [ UCL ] = 26. Figure 2 shows an np-

chart under this setting based on 50 replications. Engineers use the np-chart to see if the
fraction of nonconforming is kept below the specified level of p = 0.1.

In the above setting, the in-control probability is

P∗ =
∑
x≤26

(
150
x

)
(0.1)x(0.9)150−x = 0.9981.

This means that 99.81% of data points fall below UCL (Figure 2). The value P∗ is approxi-
mated as

P∗ = Pr(X ≤ UCL) ≈ �

(
[ UCL ] − np+ d√

np(1 − p)

)
,

Figure . An example of np-control chart based on  replications under n = 150 and p = 0.1. The chart
has the upper control limitUCL = 26.0227, Center line= , and the in-control probability P∗ = 0.9981.
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COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 7

where d is the correction term. The approximated in-control probability without continuity
correction ( d = 0 ) is

�

(
26 − 15
3.6742

)
= 0.9986, (Error = 0.0005) .

Yates’ continuity correction ( d = 0.5 ) results in

�

(
26 − 15 + 0.5

3.6742

)
= 0.9991, (Error = 0.001)

Hence, Yates’ continuity correction does not improve the accuracy. Hence Yates’ continuity
correction should not be applied to the present case. This explains the poor performance of
Yates’ continuity correction for approximating extreme tail probabilities (0.9981 is very close
to 1; see Remark I).

To consider Cressie’s finely tuned continuity correction, we first calculate

δ[ UCL ]−0.5 = [ UCL ] − 0.5 − np√
np(1 − p)

= 26 − 0.5 − 15√
150 × 0.1 × (1 − 0.1)

= 2.8577.

With the correction d = 0.5 − (q − p)(δ2[ UCL ]−0.5 − 1)/6 = −0.4556, we obtain the
approximated in-control probability with Cressie’s finely tuned continuity correction

�

(
26 − 15 − 0.4556

3.6742

)
= 0.9979, (Error = 0.0002) .

Hence, Cressie’s correction greatly reduces the approximation error and shows the best
performance among the three approximations.

3.3. Numerical assessment

Further numerical assessments were conducted to generalize the conclusion of the previous
example of n = 150 and p = 0.1 (Section 3.2). We consider 19 different pairs:

(n, p) = (800, 0.02), (550, 0.03), (400, 0.04), (350, 0.05),
(300, 0.06), (250, 0.07), (200, 0.08), (200, 0.09), (150, 0.1),
(100, 0.11), (90, 0.12), (80, 0.13), (80, 0.14), (70, 0.15),
(70, 0.16), (60, 0.17), (60, 0.18), (60, 0.19), (60, 0.20).

These choices were carefully made such that either (np > 15) or (np > 10 and p ≥ 0.1) holds
(Table 1). The first 8 pairs satisfy (np > 15) while the last 11 pairs satisfy (np > 10 and p ≥
0.1). See Appendix A for the detailed algorithm of choosing these ( n, p ) pairs.

We define the error of approximating the true probability P∗ by

Err( n, p, [ UCL ] ) =
∣∣∣∣∣ P∗ − �

(
[ UCL ] − np+ d√

np(1 − p)

) ∣∣∣∣∣ ,
where

P∗ =
∑

x≤[UCL]

(
n
x

)
px(1 − p)n−x, UCL = np+ 3 × √

np(1 − p).
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8 T. EMURA AND Y.-T. LIAO

Figure . Comparison of four methods to approximate the true probability P∗. The error
Err( n, p, [ UCL ] ) is plotted against  different pairs of ( n, p )’s.

In terms of the error, we compare the performance of the four continuity corrections: i)
d = 0.5(Yates’ correction), ii) d = 0.5 − (q − p)(δ2[ UCL ]−0.5 − 1)/6 (Cressie’s correction), iii)
d = 0.3 (conservative correction), and iv) d = 0 (without correction).

Figure 3 summarizes the results.We find that using Cressie’s correction provides the small-
est error among the four corrections. Using Yates’ correction (d = 0.5) results in the largest
error. Accordingly, Yates’ correction does not improve the usual normal approximation of
d = 0 (without continuity correction). This result agrees with Remark I since we consider the
extreme tails P∗ ≈ 1 in Equation (1). The conservative correction (d = 0.3) reduced the error
compared to Yates’ correction, but it is still poorer than the choice d = 0 (without continuity
correction).

Numerical assessments in Figure 3 are specific to the application for statistical process con-
trol, wherewe use k = [UCL]. Nowwe perform additional numerical studies undermore gen-
eral statistical applications, where α = 0.05, 0.95, and other extreme quantiles are of interest.
Below, we examine the error of the normal approximation to FX (k) ≈ α, where α = 0.9973,
0.95, 0.05, and 0.0027. The error of the approximation is

Err(n, p, k) =
∣∣∣∣∣ FX (k) − �

(
k − np+ d√
np(1 − p)

) ∣∣∣∣∣ .

For each ( n, p ) and α, we choose k = [ np+ �−1(α)
√

np(1 − p) ].
The results are summarized in Figure 4. We find that using Cressie’s finely tuned continu-

ity correction performed excellently well, providing the smallest error among the four meth-
ods in majority of cases. One exception is the case of α = 0.95, where d = 0.3 showed the
smallest errors. The worst performance (largest error) is mostly achieved by Yates’ correction
(d = 0.5), showing no improvement over the usual normal approximation of d = 0 (with-
out continuity correction). This is natural since Yates’ correction should not be applied to the
tail probability (Remark I). Another interesting finding is that the choice d = 0.3 is always
better than d = 0.5. While there is no theoretical reason to use d = 0.3, it appears to give a
good compromise between Yates’ correction (d = 0.5) and the usual normal approximation
(d = 0).
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COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 9

Figure . Comparison of four methods to approximate the true probability FX (k) ≈ α. The error
Err( n, p, k ) is plotted against  different pairs of ( n, p )’s.

3.4. Data examples

We compare three different continuity correction methods using two data examples: Data 1
is from Example 7.1 (pp. 292–293) and Data 2 is from Exercise 7.2 (p. 335) of Montgomery
(2009). The two datasets are detailed in Appendices B and C.

Data 1 contains 30 replications of n = 50 orange juice cans, where cans were selected at half
hour intervals (Appendix B). Data 1 contains total 347 nonconforming cans and the fraction
nonconforming is estimated as

p = (12 + 15 + · · · + 9 + 6)/(30 × 50) = 347/1500 = 0.2313.

Then, np = 11.567,UCL = np+ 3 × √
np(1 − p) = 20.512, and [ UCL ] = 20. Accord-

ingly, the in-control probability is

P∗ =
∑
x≤20

(
50
x

)
(0.2313)x(1 − 0.2313)50−x = 0.9976.

The error of approximating P∗ = 0.9976 is

Err(n, p, [ UCL ]) =
∣∣∣∣0.9976 − �

(
20 − 11.567 + d

2.3097

)∣∣∣∣ .
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10 T. EMURA AND Y.-T. LIAO

If d = 0.5 (Yates’ correction), we have Err(n, p, [ UCL ]) = 0.0010 and if d = 0.3 , we
have Err(n, p, [ UCL ]) = 0.0006. To calculate Cressie’s fine correction, we use

δ[ UCL ]−0.5 = [ UCL ] − 0.5 − np√
np(1 − p)

= 2.6606,

d = 0.5 − (q − p)(δ2[UCL]−0.5 − 1)
6

= −0.0444.

Then we have the error Err(n, p, [ UCL ]) = 0.0001. Therefore, Cressie’s finely continu-
ity correction gives the best performance among the three continuity correction methods.
Also, the correction d = 0.3 performs better than d = 0.5.

Data 2 consists of 20 replications of n = 150 titanium forgings for automobile turbocharger
wheels (Appendix C). The overall fraction nonconforming is estimated as

p = (8 + 1 + 3 + · · · + 3 + 0)/150/20 = 0.023.

Then, np = 3.45, UCL = np+ 3 × √
np(1 − p) = 8.96, and [ UCL ] = 8. Accordingly,

the in-control probability becomes

P∗ =
∑
x≤8

(
150
x

)
(0.023)x(1 − 0.023)50−x = 0.9918.

The error of approximating P∗ = 0.9918 is

Err(n, p, [ UCL ]) =
∣∣∣∣0.9918 − �

(
8 − 3.45 + d

1.8359

)∣∣∣∣ .
If d = 0.5(Yates’ correction), one has Err(n, p, [ UCL ]) = 0.0053; if d = 0.3, one has

Err(n, p, [ UCL ]) = 0.0041. To calculate Cressie’s finely continuity correction, we use

δ[ UCL ]−0.5 = [ UCL ] − 0.5 − np√
np(1 − p)

= 2.206,

d = 0.5 − (q − p)(δ2[UCL]−0.5 − 1)
6

= −0.1147.

Then one has Err(n, p, [ UCL ]) = 0.0004. Therefore, Cressie’s finely continuity correc-
tion gives the best performance among the three continuity correction methods. Also, the
conservative correction (d = 0.3) performs slightly better than Yates’ correction (d = 0.5).

4. Application to binomial confidence limits

We reviewmethods to improve the accuracy of binomial confidence limits by applying conti-
nuity corrections.We follow an argument of Blyth and Still (1983) who applied Yates’ continu-
ity correction to the one-sided confidence limit or confidence interval for p. In our paper, we
also propose new confidence limits by applying Cressie’s finely tuned continuity correction.
The new method is then compared with existing procedures by numerical analyses.

4.1. One-sided confidence limit with continuity correction

We explain how to apply a continuity correction to the one-sided confidence limit for p.While
the two-sided interval (i.e., confidence interval) ismore common than the one-sided limit, the
latter gives us more transparent derivations of formulas, especially when applying Cressie’s
complicated correction method.
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COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 11

Let X∼Bin(n, p). Similar to Blyth and Still (1983), it follows that

Pr

{
( X + d) − np√

np(1 − p)
≤ Zα

}

= Pr
[
p2n

(
Z2

α + n
) − pn

{
2( X + d) + Z2

α

} + ( X + d)2 ≤ 0
]

= Pr

⎧⎨
⎩p ≤

2n( X + d) + nZ2
α +

√
4( X + d)n2Z2

α + n2Z4
α − 4nZ2

α( X + d)
2

2n(Z2
α + n)

⎫⎬
⎭

= Pr

⎧⎨
⎩ p ≤

( X + d) + Z2
α/2 + Zα

√
( X + d) − ( X + d)

2
/n + Z2

α/4

(Z2
α + n)

⎫⎬
⎭ ,

where Zα = �−1(1 − α). By the CLT, an approximate “upper” confidence limitUd(X ) with a
continuity correction d is

Ud(X ) =
( X + d ) + Z2α

2 + Zα

√
( X + d ) − ( X+d )2

n + Z2α
4

(Z2
α + n)

for X = 0, 1, . . . , n − 1, and Ud(n) = 1. Blyth and Still (1983), Schader and Schmid
(1990), and Casella and Berger (2002) consideredUd(X ) with d = 0.5 (Yates’ correction).

... New upper confidence limit by using the finely tuned correction
To apply the finely tuned correction of Cressie (1978) toUd(X ), one needs to calculate the cor-
rection term d( k, p ) = 0.5 − (q − p)(δ2k+0.5 − 1)/6, where δk = ( k − np )/

√
np(1 − p).

If ( k, p ) were known, one could useUd(k,p)(X ) as the new upper confidence limit.
First, we consider how to compute k given p. By the CLT,

FX (k) = Pr(X ≤ k) ≈ �

(
k − np√
np(1 − p)

)
.

The approximate value of k is chosen such that

�

(
k − np√
np(1 − p)

)
≈ α.

This yields

k =
[
np+ �−1(α)

√
np(1 − p)

]
.

Next, we consider how to compute p which is unknown. There are a number of different
ways, such as the maximum likelihood estimate (MLE), minimax estimate, and Bayes estima-
tors under various different priors. If we use the MLE p̂ = X/n, the upper confidence limit
is

Ud̂(X ) = ( X + d̂ ) + Z2α
2 + Zα

√
( X + d̂ ) − ( X+d̂ )

2

n + Z2α
4

(Z2
α + n)

for X = 0, 1, . . . , n − 1, and Ud̂(n) = 1, where d̂ = d( k̂, p̂ ) and k̂ = [ np̂+
�−1(α)

√
np̂(1 − p̂) ].
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12 T. EMURA AND Y.-T. LIAO

... Numerical assessments
Theprobability that the upper confidence limit covers the true p isC(n, p) = Pr{p ≤ Ud(X )}.
To have a specified confidence level (1 − α), it must satisfy the following condition

C(n, p) = Pr{p ≤ Ud(X )} ≥ 1 − α, ∀p ∈ (0, 1), (2)

or equivalently inf p∈(0,1)C(n, p) ≥ 1 − α. Equation (2) holds for n → ∞ according to
the CLT, but it is rarely true for finite samples. It has been known that Yates’ continu-
ity correction (d = 0.5) improves the accuracy of the confidence level in the sense of
Equation (2); see Schader and Schmid (1990). It is our interest to examine if Cressie’s finely
tuned continuity correction further improves the performance relative to other correction
methods.

We performed numerical analyses under the pairs of ( n, p )’s with ( n = 50, p =
0.001, 0.002, 0.003, . . . , 0.998, 0.999). For each ( n, p ), we computedC(n, p) = Pr{p ≤
Ud(X )} under the confidence level 1 − α = 0.95 using four different correctionmethods. Our
evaluation criteria were whether the inequalityC(n, p) ≥ 0.95 holds for p ∈ (0, 1) and how
C(n, p) is close to 0.95.

Figure 5 shows the results. If the continuity correction is not employed (d = 0), the con-
dition C(n, p) ≥ 0.95 is violated in many cases in 0.001 ≤ p ≤ 0.999. If Yates’ correction is
employed, the conditionC(n, p) ≥ 0.95 holds for 0.001 ≤ p ≤ 0.55. If Cressie’s correction is
employed, the conditionC(n, p) ≥ 0.95 holds for 0.001 ≤ p ≤ 0.85. Furthermore, Cressie’s
finely tuned correction gives the value of C(n, p) closer to 0.95 than Yates’ correction did.
The performance of Cressie’s correction method is almost unchanged even if p is estimated
by p̂ = X/n.

Figure . The coverage probability C(n, p) = Pr{p ≤ Ud(X )} for the four confidence limits under ( n =
50, p = 0.001, 0.002, 0.003, . . . , 0.998, 0.999) and the confidence level 1 − α = 0.95.
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COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 13

4.2. Confidence interval with continuity correction

We demonstrate how to apply a continuity correction to the confidence interval for p based
onX∼Bin(n, p). Following similar calculations to Section 4.1, the continuity-corrected con-
fidence interval is [ Lc(X ), Ud(X ) ], where

Lc(X ) = ( X − c ) + Z2
α/2
2 − Zα/2

√
( X − c ) − ( X−c )2

n + Z2
α/2
4(

Z2
α/2 + n

)
for X = 1, 2, . . . , n, and Lc(0) = 0, and

Ud(X ) = ( X + d ) + Z2
α/2
2 + Zα/2

√
( X + d ) − ( X+d )2

n + Z2
α/2
4(

Z2
α/2 + n

)
for X = 0, 1, . . . , n − 1, and Ud(n) = 1.

If c = d = 0 (without continuity correction), the confidence interval is called the Wil-
son interval (Wilson 1927; Brown, Cai, and DasGupta 2001). It is well-known that the Wil-
son interval (without continuity correction) has a superior coverage performance over the
Wald interval (Brown, Cai, and DasGupta 2001; Casella and Berger 2002; Pradhan, Evans
and Banerjee 2016).

Blyth and Still (1983), Schader and Schmid (1990), and Casella and Berger (2002) consid-
ered the interval [ Lc(X ), Ud(X ) ] with c = d = 0.5 (Yates’ correction). The resultant interval
will be called the Wilson interval with Yates’ correction.

... New confidence interval by using the finely tuned correction
Using similar mathematical arguments to the one-sided case (Section 4.1), we pro-
pose to apply the finely tuned correction of Cressie (1978) to the confidence interval
[ Lc(X ), Ud(X ) ]. We suggest replacing the correction terms c and d with

c( kL, p ) = 0.5 + (q − p)
(
δ2kL−0.5 − 1

)
/6,

d( kU , p ) = 0.5 − (q − p)
(
δ2kU+0.5 − 1

)
/6,

where q = 1 − p, δk = ( k − np )/
√
np(1 − p),

kL = [
np+ �−1(1 − α/2)

√
np(1 − p)

]
, kU = [

np+ �−1(α/2)
√

np(1 − p)
]
.

The estimates k̂L and k̂U are obtained by replacing p by p̂ = X/n. Consequently, the con-
fidence interval is [ Lĉ(X ), Ud̂(X ) ], where ĉ = c( k̂L, p̂ ), and d̂ = d( k̂U , p̂ ). We will also
consider the shrinkage estimate p̃ = (X + 2)/(n + 4) due to Agresti and Coull (1998).

... Numerical assessments
The probability that the confidence interval covers the true p is C(n, p) = Pr{Lc(X ) ≤ p ≤
Ud(X )}. To have a specified confidence level (1 − α), it must satisfy

C(n, p) = Pr{Lc(X ) ≤ p ≤ Ud(X )} ≥ 1 − α, ∀p ∈ (0, 1), (3)

or equivalently inf p∈(0,1)C(n, p) ≥ 1 − α. However, Equation (3) is rarely true for finite sam-
ples (e.g., Brown, Cai, and DasGupta 2001). It has been known that Yates’ continuity correc-
tion improves the accuracy of the confidence level in the sense of Equation (3); see Blyth and
Still (1983), Schader and Schmid (1990), and Casella and Berger (2002). It is our interest to
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14 T. EMURA AND Y.-T. LIAO

Figure . The coverage probability C(n, p) = Pr{Lc(X ) ≤ p ≤ Ud(X )} for the % confidence intervals
under ( n = 50, p = 0.001, 0.002, 0.003, . . . , 0.998, 0.999). The four panels correspond to theWilson
intervals with four different continuity correction terms. The bottom-left panel is Cressie’s correction with p
assumed known while the bottom-right panel is Cressie’s correction with p estimated by p̂ = X/n.

examine if Cressie’s finely tuned continuity correction further improves the performance over
Yates’ correction.

We performed numerical analyses under ( n = 50, p = 0.001, 0.002, 0.003, . . . , 0.998,
0.999). For each ( n, p ), we computed C(n, p) = Pr{Lc(X ) ≤ p ≤ Ud(X )} under the con-
fidence level 1 − α = 0.95 using four different correction methods. Our evaluation criteria
were whether the inequalityC(n, p) ≥ 0.95 holds for p ∈ (0, 1) and howC(n, p) is close to
0.95.

Figure 6 shows the results. If the continuity correction is not employed (d = 0), the con-
dition C(n, p) ≥ 0.95 is violated in many cases in 0.001 ≤ p ≤ 0.999. If Yates’ correction
is employed, the conditionC(n, p) ≥ 0.95 holds for all cases in 0.002 ≤ p ≤ 0.998, but does
not for p = 0.001 and p = 0.999. If Cressie’s correction is employed, the conditionC(n, p) ≥
0.95 holds everywhere for 0.001 ≤ p ≤ 0.999. However, Yates’ correction and Cressie’s cor-
rection have similar values ofC(n, p). The performance of Cressie’s correction is less changed
when p is estimated by p̂ = X/n.

In the literature, there exist other methods to construct the binomial confidence interval.
Hence, it would be interesting to see how these methods perform against the method based
on Cressie’s correction. We consider four methods:

(i) Wald interval: [ LW (X ), LW (X ) ], where

LW (X ) = p̂− Zα/2

√
p̂(1 − p̂)

n
, UW (X ) = p̂+ Zα/2

√
p̂(1 − p̂)

n
, p̂ = X

n
.

(ii) Agresti-Coull interval (Agresti and Coull 1998): [ LAC(X ), LAC(X ) ], where

LAC(X ) = p̃− Zα/2

√
p̃(1 − p̃)

ñ
, UAC(X ) = p̃+ Zα/2

√
p̃(1 − p̃)

ñ
, p̃ = X + 2

n + 4
.
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COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 15

This is the Wald interval with p̂ replaced by its shrinkage estimator p̃ (Agresti and Coull
1998).
(iii) Jeffreys interval: [ LJ(X ), LJ(X ) ], where

LJ(X ) = B−1(α/2; X + 0.5, n − X + 0.5),
UJ(X ) = B−1(1 − α/2; X + 0.5, n − X + 0.5),

where B−1(p ; a, b) is the p-th quantile of a Beta distribution with parameters a and b. This
quantile is based on the posterior distribution of p under the Jeffreys prior (the Beta distribu-
tion with a = b = 0.5).
(iv) Wilson interval with Cressie’s correction term estimated by Agresti-Coull

estimate:

[ Lc̃(X ), Ud̃(X ) ], where c̃ = c( k̃L, p̃ ), d̃ = d( k̃U , p̃ ), p̃ = X + 2
n + 4

.

This is the proposed interval using the shrinkage estimate p̃ (Agresti and Coull 1998).
Figure 7 shows the results. The Wald interval showed the worst performance due to the

considerable under-coverage, C(n, p) << 0.95, for most cases of 0.001 ≤ p ≤ 0.999. The
Agresti and Coull method substantially improved upon the Wald interval and were com-
petitive with the proposed interval (Wilson interval with Cressie’s correction). The Jefferys
interval also performed considerably better than the Wald interval, but violated the condi-
tion C(n, p) ≥ 0.95 in many values of p. Nevertheless, the Jefferys interval had the small-
est error |C(n, p) − 0.95| on average (not shown). In summary, the proposed interval had
competitive performance with the Agresti and Coull interval and exhibited a good control for
the confidence level.

Figure . The coverage probability C(n, p) = Pr{Lc(X ) ≤ p ≤ Ud(X )} for the % confidence intervals
under ( n = 50, p = 0.001, 0.002, 0.003, . . . , 0.998, 0.999). The four panels correspond to the Wald
interval (upper-left), the Agresti and Coull interval (upper-right), the Jeffreys interval (bottom-left), and the
Wilson interval with Cressie’s correction with p estimated by p̃ = (X + 2)/(n + 4) (bottom-right).
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16 T. EMURA AND Y.-T. LIAO

Table . % confidence intervals calculated for children with cardiac arrest.

Standard-dose group (n = ) X = ,
p̂ = X/n = .

High-dose group (n = ) X = ,
p̂ = X/n = .

Method % Conf. interval Length % Conf. interval Length

Wald (., .) . (−., .) .
Agresti and Coull (., .) . (−., .) .
Jeffreys (., .) . (., .) .
Wilson (c = d = 0) (., .) . (., .) .
Wilson (c = d = 0.5) (., .) . (., .) .
Wilson (c = ĉ, d = d̂)∗ (., .) . (., .) .
Wilson (c = c̃, d = d̃)∗∗ (., .) . (., .) .

∗Cressie’s correction ĉ = c( k̂L, p̂ ) and d̂ = d( k̂U , p̂ ), where p̂ = X/n
∗∗Cressie’s correction c̃ = c( k̃L, p̃ ) and d̃ = d( k̃U , p̃ ), where p̃ = (X + 2)/(n + 4)

4.3. Data example

We apply the seven methods for calculating the confidence interval (Section 4.2) to the data
on children with cardiac arrest (Perondi et al. 2004). We used the data summarized in Table
2 of Fagerland, Lydersen, Laake (2015) that consists of two treatment groups: standard-dose
group (n = 34) and high-dose group (n = 34). The standard group has X = 7 survivors with
the success rate p̂ = X/n = 0.2059 while the high dose group has X = 1 survivor with the
success rate p̂ = X/n = 0.0294.Wewill calculate the confidence intervals for the success rates
in each group.

The 95% confidence intervals for the seven methods are given in Table 2.
In the standard-dose group, all the sevenmethods yielded similar confidence intervals. The

Jeffreys interval gave the shortest interval length, and theWilson interval (without correction)
was the second shortest. This may be expected as these two intervals occasionally lead to
under-coverage (i.e.,C(n, p) < 0.95 in Figures 6 and 7). The Agresti and Coull interval was
very similar to the three Wilson intervals (with three different continuity corrections).

In the high-dose group, the seven methods yielded remarkably different behavior, except
that the Jeffreys interval again achieved the shortest interval length. First, the Wald interval
and the Agresti and Coull interval exhibited negative values in the lower limit. This disad-
vantage did not appear in the four Wilson intervals. The Wilson interval without continuity
correction is somewhat different from the Wilson intervals with continuity corrections. This
highlights the strong influence of a continuity correction in the high-dose group. If the nega-
tive lower limit of the Agresti and Coull interval is simply regarded as 0, the resultant interval
is very similar to the Wilson interval with continuity corrections.

In conclusion, the three Wilson intervals with three different continuity corrections gave
similar results on the confidence interval of the success rates in both groups. Hence, they may
be more trusted than other intervals that exhibit some extreme behavior. Perhaps, the two
Wilson intervals with Cressie’s corrections (the last two in Table 2) may be recommended as
they had shorter interval lengths than the Wilson interval with Yates’ correction.

5. Conclusion

Statisticians have long recognized Yates’ continuity correction to be useful and convenient for
approximating the discrete probability distribution. This paper shows that Yates’ correction
does not improve the accuracy for approximating extreme tail probabilities. While this issue
was initially observed by Yates (1934), it has not been seriously discussed in the literature. As
a promising solution to the problem, we review Cressie’s finely tuned continuity correction
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COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 17

(Cressie 1978) that produced very accurate approximation to extreme tail probabilities in our
numerical analysis. In addition to the normal approximation, we also review how these con-
tinuity corrections are applied to improve the coverage performance of the confidence limits
for binomial proportion.

A numerical study is performed, comparing Yates’ correction, Cressie’s finely tuned correc-
tion, and a conservative correction of “adding 0.3.”We try our numerical study to be practical
by considering applications to statistical process control with the in-control probability of the
np-chart and applications to statistical inference with tail probabilities corresponding to α =
0.9973, 0.95, 0.05, and 0.0027. In majority of cases, Yates’ correction gave the worst perfor-
mance while Cressie’s finely tuned correction achieved the best performance. The failure of
Yates’ correction is due to our settings that focused on the normal approximation to extreme
tail probabilities (close to 0 or 1). Interestingly, the conservative correction performed better
than Yates’ correction in these setting. However, we have no theoretical justification of using
the value of 0.3.

A novel contribution of this paper is a newly proposed continuity-corrected confidence
limit (interval) for the binomial proportion in Sections 4.1.1 (Section 4.2.1). The new con-
fidence limit is derived by applying Cressie’s continuity correction to the Wilson interval
of Blyth and Still (1983). Unlike the setting of statistical process control where p is known,
Cressie’s correction and Yates’ correction yield similar performance on the coverage proba-
bilities of their corrected confidence limits. Both of them appear to work well on the Wil-
son interval. This also reflects the difference between “how to reduce the error of a normal
approximation to the binomial” and “how to improve the coverage performance of binomial
confidence intervals.”
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Appendix A: Choice of (n, p)

We explain howwe chose pairs of (n, p) for our numerical analyses.We follow the rule (np >

10 and p ≥ 0.1 ) or (np > 15 ) given by Emura and Lin (2015) to choose the value of (n, p)
from 24 × 20 = 480 pairs of

n = (10, 20, . . . , 90, 100, 150, . . . , 750, 800︸ ︷︷ ︸
×24

),

p = (0.01, 0.02, . . . , 0.19, 0.20︸ ︷︷ ︸
×20

).
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18 T. EMURA AND Y.-T. LIAO

Figure A. The areas satisfying (np > 10 and p ≥ 0.1 ) or (np > 15 ).

In Figure A, we display
(blue) satisfy the rule (np > 10 and p ≥ 0.1 )or (np > 15 )

(yellow) satisfy the rule and it is the boundary of the rule (np > 10 and p ≥ 0.1 )or
(np > 15 )

The boundary cases (yellow color in Figure A) result in

(n, p) = (800, 0.02), (550, 0.03), (400, 0.04), ( 350, 0.05),
( 300, 0.06), (250, 0.07), (200, 0.08), (200, 0.09), (150, 0.1),
(100, 0.11), (90, 0.12), (80, 0.13), (80, 0.14), (70, 0.15),
(70, 0.16), (60, 0.17), (60, 0.18), (60, 0.19), (60, 0.20).

Appendix B: Data 1 (orange juice cans)

The data come from Example 7.1 (pp. 292–293) of Montgomery (2009). In 6-oz cans, frozen
orange juice concentrate is packed. By inspection of a can, manufacturers determine whether
the can leaks either on the side seam or around the bottom joint. Table B shows the number
of leaks (nonconformings) in n = 50 cans during 30 replications.

Table B. Data  (orange juice cans).

Replication The number of nonconforming cans Replication The number of nonconforming cans
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Appendix C: Data 2 (titanium forgings for automobile turbocharger wheels)

The data come from Exercise 7.2 (p. 335) of Montgomery (2009). Manufactures examine tita-
nium forgings for automobile turbocharger wheels in a set of n= 150 samples. Table C shows
the number of nonconforming switches observed during 20 days.

Table C. Data  (titanium forgings for automobile turbocharger wheels).

Replication (day) The number of nonconformings Replication (day) The number of nonconformings
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