
Stat Papers (2012) 53:133–149
DOI 10.1007/s00362-010-0321-x

REGULAR ARTICLE

Multivariate normal distribution approaches
for dependently truncated data

Takeshi Emura · Yoshihiko Konno

Received: 28 May 2009 / Revised: 17 March 2010 / Published online: 13 April 2010
© Springer-Verlag 2010

Abstract Many statistical methods for truncated data rely on the independence
assumption regarding the truncation variable. In many application studies, however,
the dependence between a variable X of interest and its truncation variable L plays a
fundamental role in modeling data structure. For truncated data, typical interest is in
estimating the marginal distributions of (L , X) and often in examining the degree of
the dependence between X and L . To relax the independence assumption, we present
a method of fitting a parametric model on (L , X), which can easily incorporate the
dependence structure on the truncation mechanisms. Focusing on a specific exam-
ple for the bivariate normal distribution, the score equations and Fisher information
matrix are provided. A robust procedure based on the bivariate t-distribution is also
considered. Simulations are performed to examine finite-sample performances of the
proposed method. Extension of the proposed method to doubly truncated data is briefly
discussed.
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1 Introduction

Ever since the pioneering work of Cohen (1959, 1961), statistical analysis of randomly
truncated data has been an important topic in both applied and theoretical statistics.
Randomly truncated data is commonly seen in studies of education, epidemiology,
astronomy and engineering. As an instance, in analysis of test scores in educational
research, only observations with the scores above a threshold may appear in the sam-
ple. Such sampling scheme occurs when the variables of interest can be observed if
their values satisfy a certain inclusion criterion. These samples that do not satisfy the
inclusion criterion can never been observed and even their existence is unknown. In
this sense, truncated data are fundamentally different from missing data where the
indicator variables for missing subjects are typically available.

A parametric approach for truncation data under the normal distribution is well
known (Cohen 1959, 1961; Hansen and Zeger 1980). They considered the case where
a variable X O of interest can be included in the sample if it exceeds a deterministic
value l. Assuming that the value l is known, they formulated the problem of estimat-
ing parameters that determine the distribution of X O . They presented the maximum
likelihood estimator (MLE) based on the conditional density of X O given X O ≥ l
under the normal distribution. They also studied some asymptotic properties of the
MLE, including an explicit formula of the Fisher information matrix.

In many application studies, a variable of interest is truncated by another random
truncation variable. In left-truncated data, a variable X O can be included in the sample
only if it exceeds another random variable L O . Such type of data is commonly seen in
medical and astronomical research (Klein and Moeschberger 2003). In left-truncated
data, the estimation for the distribution function FX O (x) = Pr(X O ≤ x) or some
parameter θ = θ(FX O ) is of primary interest, and the distribution for L O is consid-
ered nuisance. Conversely, left-truncated data can be regarded as right-truncated data
if L O is the variable of interest and X O is truncation variable.

Construction of a nonparametric estimator for FX O (x) is first proposed by Lynden-
Bell (1971) under left-truncation. Asymptotic properties of Lynden-Bell’s estimator
have been extensively studied by Woodroofe (1985), Wang et al. (1986) and He and
Yang (1998) to name but a few. It is well known that the independence between L O

and X O is a fundamental assumption for the consistency of Lynden-Bell’s estimator.
Tsai (1990), Martin and Betensky (2005), Chen et al. (1996) and Emura and Wang
(2010) present methods for testing the independence assumption. For positive random
variables L O and X O , Lakhal-Chaieb et al. (2006) proposed to model the dependency
between L O and X O using copula models.

Compared with the nonparametric and semiparametric inference, there is not much
in literature on the analysis of truncated data based on parametric modeling when L O

is considered random. Although Lynden-Bell’s nonparametric approach has validity
under any form of the underlying distribution, it has some unfortunate disadvantage;
it relies on the assumption that L O is independent of X O . This assumption may be
doubtful in many practical examples (Tsai 1990; Martin and Betensky 2005; Emura
and Wang 2010). A semipararmetric approach proposed by Lakhal-Chaieb et al. (2006)
is an alternative in such examples if L O and X O are positive random variables and the
association between L O and X O can be modeled via an Archimedean copula model.
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Multivariate normal distribution approaches 135

However, a class of Archimedian copula models does not include many important
examples such as bivariate normal distribution and bivariate t-distribution.

Truncated data in many practical applications may be suitably modeled by the
bivariate normal distribution. For example, the National Center Test for University
Admissions is a type of standardized test used by public and some private universi-
ties in Japan. Many universities have their own cut-off scores, for example, by 120
points in the sum of Japanese (X O) and English (Y O) for acceptance of students with
majors in the school of humanities. Here, one can define a left-truncation variable
L O = 120 − Y O so that the acceptance criteria for the university can be written as
L O ≤ X O . In this example, it is natural to assume that L O and X O may be nega-
tively correlated through unobserved factors related to students’ intellectual ability.
Fitting a bivariate normal distribution for L O and X O would be a sensible way since
it characterizes important quantities, such as the mean scores or the correlation coeffi-
cient. Other examples of dependent truncation include the two-stage course placement
system discussed in Schiel and Harmston (2000) and Emura and Konno (2009).

In this article, we consider parametric approaches to truncated data, which take into
account dependence in the truncation variable. In particular, Sect. 2 presents a frame-
work of likelihood inference under truncation. Section 3 considers a method of fitting
the bivariate normal distribution, where the explicit formula of the Fisher information
matrix is provided. A goodness-of-fit procedure is also considered. Section 4 presents
a robust procedure using the bivariate t-distribution. In Sect. 5, the performance of the
present approaches is studied via simulations. Section 6 discusses an extension of the
proposed method to doubly truncated data. Section 7 concludes this article.

2 Likelihood inference

2.1 Likelihood construction

Let (L O , X O) be a pair of random variables having a density function

fθ(l, x) = ∂2

∂l∂x
Pr(L O ≤ l, X O ≤ x)

where θ is a vector of parameters. In a truncated sample, a pair (L O , X O) is not directly
observable but it is observed only if L O ≤ X O holds. That is, X O is left-truncated
by L O , and L O is right-truncated by X O . Assume that c(θ) = Pr(L O ≤ X O) > 0
holds for every θ. The joint density of the observed pair (L , X) can be written as
c(θ)−1 fθ(l, x)1(l ≤ x) where 1(l ≤ x) is the indicator function of the set in brackets.
For observed data {(L j , X j ); j = 1, 2, . . . , n} subject to L j ≤ X j , the likelihood
function has the form

L(θ) = c(θ)−n
∏

j

fθ(L j , X j ). (1)
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136 T. Emura, Y. Konno

Due to truncation, the form of L(θ) tends to be complicated. If θ̂ denotes the maxi-
mum likelihood estimator (MLE) that maximizes (1), almost all well-known bivariate
distributions on (L O , X O) do not provide the explicit solution for θ̂. Furthermore,
the explicit formula for c(θ) is usually impossible to obtain since it requires some
integration on {(l, x) : l ≤ x}. An interesting exception is the Marshall and Olkin
(1967) bivariate exponential model specified by

Pr(L O > l, X O > x) = exp{−λLl − λX x − λL X max(l, x)} (l ≥ 0, x ≥ 0),

where parameters θ = (λL , λX , λL X )′ satisfy λL > 0, λX > 0 and λL X ≥ 0. In this
model, a simple form c(θ) = (λL +λL X )(λL +λX +λL X )−1 can be obtained. In what
follows, we focus our discussions on the bivariate normal distribution on

(
L O , X O

)

that has a tractable form in c(θ) and that can be applied to common sampling designs
in practical applications. In Sect. 4, we introduce a robust method by the bivariate
t-distribution that also has a simple form in c(θ).

2.2 Large sample analysis

The large sample theory for the likelihood procedure can be applied when both fθ(l, x)

and c(θ) are sufficiently smooth in θ. Let l1(θ) = log{c(θ)−1 fθ(L1, X1)} and l̇1(θ) =
∂l1(θ)/∂θ be log-likelihood and score functions based on a single observation respec-
tively. Throughout the article, we denote by N (μ,�) a multivariate normal distribution
with mean μ and covariance matrix �. If the third derivative of l1(θ) is available and
certain boundedness conditions on the third derivative are satisfied, it can be shown
that, when n tends to infinity,

√
n(θ̂ − θ) →d N (0, I (θ)−1),

where I (θ) = E{l̇1(θ)l̇1(θ)′|L O ≤ X O} is the Fisher information matrix based on
a single observation and the notation “→d” signifies the convergence in distribution
(Knight 2000, p. 115). Except for simple models, such as the one that will be discussed
in Sect. 3.2, an explicit formula for I (θ) is generally impossible to obtain due to the
distorted likelihood function by truncation. We recommend using the observed Fisher
information

∑
j l̇ j (θ̂)l̇ j (θ̂)

′/n in constructing the asymptotic approximation for I (θ),

which is useful for calculating the standard error of θ̂.

Let ĉ = c(θ̂) be an estimate of c(θ). By the invariance property of the MLE, ĉ is
also the MLE of c(θ). By the delta method (Knight 2000, Theorem 3.4), we obtain
the convergence result:

√
n(ĉ − c) →d N (0, ċ(θ)′ I (θ)−1ċ(θ)),

where ċ(θ) = ∂c(θ)/∂θ. Thus, the standard error of ĉ can be obtained from the asymp-
totic variance by replacing θ by θ̂.

We will explore the implications of the asymptotic results by giving an explicit
formula of I (θ) in the subsequent discussions. For a purpose of applying the above
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Multivariate normal distribution approaches 137

asymptotic results, checking the existence of the third derivatives of fθ(l, x) and c(θ)
will usually suffice. For more rigorous conditions, one can refer conditions (B1)–(B6)
in page 257 of Knight (2000).

3 Likelihood inference under normal populations

The multivariate normal distribution is perhaps the most common in modeling mul-
tivariate responses in applied statistical analysis. To implement the framework of the
likelihood analysis developed in Sect. 2, we present an example with detailed analyses
for a bivariate normal distribution on fθ(l, x).

3.1 Truncation under normal distribution

We assume that pre-truncated variables follow a bivariate normal distribution

(
L O

X O

)
∼ N

([
μL

μX

]
,

[
σ 2

L σL X = ρL XσLσX

σL X = ρL XσLσX σ 2
X

])
. (2)

Let θ′ = (
μL , μX , σ 2

L , σ 2
X , σL X

)
be unknown parameters, where σ 2

L > 0, σ 2
X > 0 and

−1 < ρL X < 1. Then, the inclusion probability is given by

c(θ) = Pr
(

L O ≤ X O
)

= �

⎛

⎝ μX − μL√
σ 2

X + σ 2
L − 2σL X

⎞

⎠ , (3)

where �(·) is the cumulative distribution function for the standard normal distribu-
tion. Since σ 2

X + σ 2
L − 2σL X > 0 always holds, it follows that 0 < c(θ) < 1 for any

θ. By combining the likelihood of n truncated samples, we obtain the log-likelihood
function:

l(θ) = −n log(c(θ)) − n log(2π) − n

2
log(σ 2

Lσ 2
X − σ 2

L X ) − 1

2

∑

j

D2
j (θ), (4)

where

D2
j (θ) = σ 2

X (L j − μL)2 − 2σL X (L j − μL)(X j − μX ) + σ 2
L(X j − μX )2

(
σ 2

Lσ 2
X − σ 2

L X

) .
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Let

U j (θ) = 1

σ 2
Lσ 2

X − σ 2
L X

⎡

⎢⎢⎢⎢⎢⎢⎣

σ 2
X (L j − μL) − σL X (X j − μX )

−σL X (L j − μL) + σ 2
L(X j − μX )

−σ 2
X/2 + σ 2

X D2
j (θ)/2 − (X j − μX )2/2

−σ 2
L/2 + σ 2

L D2
j (θ)/2 − (L j − μL)2/2

σL X − σL X D2
j (θ) + (L j − μL)(X j − μX )

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Then the score functions can be written as

− n
ċ(θ)

c(θ)
+
∑

i

Ui (θ) = 0. (5)

We recommend finding θ̂ by a Newton-type iteration algorithm in which both (4) and
(5) are used. The algorithm can be easily done using “nlm” command in R with the
starting value chosen to the solution to (5) under c(θ) = 1. This is very easy to obtain
from the sample means and sample covariance matrix.

If one can assume the independence between L O and X O , the maximum likelihood
estimator for θ′ = (

μL , μX , σ 2
L , σ 2

X

)
under σL X = 0 should be used. In this case, Eq. 5

reduces to

− n
ċ∗(θ)
c∗(θ)

+
∑

i

U∗
i (θ) = 0, (6)

where

c∗(θ) = �

⎛

⎝ μX − μL√
σ 2

X + σ 2
L

⎞

⎠ , U∗
i (θ) =

⎡

⎢⎢⎢⎣

(Li − μL)/σ 2
L

(Xi − μX )/σ 2
X

−σ 2
L/2 + (Li − μL)2/

(
2σ 4

L

)

−σ 2
X/2 + (Xi − μX )2/

(
2σ 4

X

)

⎤

⎥⎥⎥⎦ .

Solving (6) still requires some iteration algorithms. The solution obtained by solv-
ing (6), denoted by θ̂

∗
, is consistent for θ only under the independence assumption.

Instead of this unfortunate advantage, θ̂
∗

has higher efficiency than that of θ̂ under
the independence assumption. In fact, by simulations provided in Sect. 5, the gain in
efficiency turns out to be substantial.

To take advantage of the high efficiency of θ̂
∗

under the independence as well
as to take into account the dependency, it is natural to consider the preliminary test
for H0 : σL X = 0 using the likelihood ratio 2[l(θ̂) − l{(θ̂∗

, 0)}]. If the test rejects
H0 : σL X = 0, then we adopt θ̂. Otherwise we accept H0 : σL X = 0 and adopt θ̂

∗
.

This motivates a statistic, similar to the two stage shrinkage “testimator” (Waiker et al.
1984) of the form:
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Multivariate normal distribution approaches 139

θ̂
T E ST = θ̂

∗ + (θ̂ − θ̂
∗
)I(2[l(θ̂) − l{(θ̂∗

, 0)}] > q) (7)

where a constant q may be chosen to be the cutoff value for the chi-square distribution

with one degree of freedom. By definition, θ̂
T E ST

is shrunk to θ̂
∗
, whereby it borrows

strength from the small variability of θ̂
∗
. The testimator for the inclusion probability

is defined similarly as ĉT E ST = c(θ̂
T E ST

).

3.2 The effect of truncation

For truncated data, it is important to investigate the effect of truncation since data are
more or less subject to information loss. In this subsection, we derive some useful
formulas which systematically describe the impact of truncation on the estimators
under the bivariate normal model (2). We consider the case where the covariance
matrix for (L O , X O) is known, where the calculations become tractable. It is shown
in Appendix A that the Fisher information matrix for estimating the mean parameters
θ′ = (μL , μX ) is explicitly written as

Ĩ {c(θ)} =
[

σ 2
L σL X

σL X σ 2
X

]−1

− w{c(θ)}
σ 2

L + σ 2
X − 2σL X

[
1 −1
−1 1

]
, (8)

where w(·) : (0, 1) → [0, 1] is defined to be

w(c) = �−1(c)φ{�−1(c)}
c

+ φ{�−1(c)}2

c2 ,

where φ(x) = �̇(x). As shown in Fig. 1, w(·) is a strictly decreasing function of c
with the maximum slope of ẇ(1/2) = √

2/π (1 − 4/π) < 0. Also, it follows that
limc↓0 w(c) = 1 and limc↑1 w(c) = 0. Notice that, given the covariance matrix, Eq. 8
depends on θ′ = (μL , μX ) as a function of c(θ). Considering that the first term in (8)
is the Fisher information matrix for the complete data, the second term in (8) reflects
the loss of information due to truncation. For instance, w(0.50) = 0.64 signifies that
there is 64% loss of information when the probability of truncation is 50% (Fig. 1).
Taking the limit c(θ) ↑ 1 in (8) corresponds to the complete data and limc↑1 w(c) = 0
implies that the information loss vanishes. The monotonicity of the information loss
can be expressed as the fact that Ĩ {c} − Ĩ {c′} is positive semi-definite for c > c′. In
data analysis, one may use w(ĉ) as a measure to examine the truncation effect.

Establishing the monotone relationship between c and the Fisher information matrix
under more general models is not only a mathematically interesting problem, but also is
useful in practical applications. It can be conjectured that the level of c is related to the
Fisher information matrix in a similar fashion as (8). Unfortunately, when the covari-
ance matrix is unknown under the bivariate normal distribution, the Fisher information
matrix becomes untractable due to the complicated form of the second moments on a
truncated pair (L , X). Instead, we will investigate the relationship between c and the
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Fig. 1 The graph of the function w(c) = �−1(c)φ{�−1(c)}
c + φ{�−1(c)}2

c2 that describes the information
loss under the inclusion probability c. About 64% information loss is expected when 50% of the population
is truncated

accuracy of θ̂ by simulations in Sect. 5.3. We will also verify the correctness of the
Fisher information matrix in (8) by the simulations.

3.3 Goodness-of-fit procedure

The proposed method relies on the assumption of bivariate normality. One of the
popular classes of goodness-of-fit tests consists of comparing the distance between
F̂(l, x) = ∑

j I (L j ≤ l, X j ≤ x)/n and F
θ̂
(l, x)/c(θ̂), where

Fθ(l, x) =
∫∫

u≤x,u≤v≤x

fθ(u, v)dudv

=
(l−μL )/σL∫

−∞

⎡

⎣�

⎧
⎨

⎩
x−μX−σL X s/σL√

σ 2
X−σ 2

L X/σ 2
L

⎫
⎬

⎭−�

⎧
⎨

⎩
μL+σLs − μX−σL X s/σL√

σ 2
X − σ 2

L X/σ 2
L

⎫
⎬

⎭

⎤

⎦φ(s)ds

is derived for bivariate normality. The Kolmogorov-Smirnov type test is based on

K = sup
l≤x

|F̂(l, x) − F
θ̂
(l, x)/c(θ̂)|.

The calculation of K requires of the numerical integrations for Fθ(l, x) at n ∼ n2

different points in {(l, x); l ≤ x}. A computationally simpler alternative is to use the
Cramér-von-Mises type statistics

C =
∫∫

l≤x

{
F̂(l, x)−F

θ̂
(l, x)/c(θ̂)

}2
d F̂(l, x)=

∑

j

{
F̂(L j , X j )−F

θ̂
(L j , X j )/c(θ̂)

}2
.
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This requires exactly n evaluations of the numerical integrations. In either case, the
null distributions have not been derived and depend on the true value of θ. To obtain
the approximate p-values of the two tests, one can perform the following parametric
bootstraps:

Step 1: For some large integer B, generate independently and identically distrib-

uted pairs of
(

L(b)
j , X (b)

j

)
, j = 1, 2, . . . , n, b = 1, 2, . . . , B, which follows the

truncated distribution F
θ̂
(l, x)/c(θ̂).

Step 2: For each b = 1, 2, . . . , B, compute statistics K (or C) using data{(
L(b)

j , X (b)
j

)
; j = 1, 2, . . . , n

}
, which is denoted by K (b) (or C (b)).

Step 3: Approximate p-values for the test is given by

B−1
B∑

b=1

I
(

K (b) ≥ K
) (

or B−1
B∑

b=1

I
(

C (b) ≥ C
))

.

In Step 1, using B = 1,000 would usually suffice as suggested by Efron and Tib-
shirani (1993), which is also checked by subsequent simulations in Sect. 5.4. A pair(

L(b)
j , X (b)

j

)
in Step 1 may be easily generated as a truncated sample from the pre-

truncated distribution of F
θ̂
(l, x).

4 Robust modeling

An important issue for fitting the bivariate normal distribution is the robustness prop-
erties of the likelihood methods. In general, results from fitting the normal distribution
are sensitive to model misspecifications and extreme outliers, and they lead to bias in
estimation. A simple way to deal with outliers is to exclude or downweight them in
some way. The robust procedures proposed by Huber (1974) involve the modification
of the score function by certain weighting techniques. The term of truncation effect
−nċ(θ)/c(θ) in (5) distorts the likelihood equation and makes it difficult to directly
apply the weighting scheme. For truncated data, none of the above approaches can be
applied straightforwardly.

A relatively simple robust procedure may be obtained by fitting the multivariate
t-distribution distributions (Lang et al. 1989) on (L O , X O). We replace the model (2)
by the bivariate t-distribution:

fθ(l, x)=
(
σ 2

Lσ 2
X−σ 2

L X

)−1/2
	{(ν+2)/2}

π	(ν/2)ν

{
1+ Q2

(
μL , μX , σ 2

L , σ 2
X , σ 2

L X

)

ν

}−(ν+2)/2

,
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where

Q2
(
μL , μX , σ 2

L , σ 2
X , σ 2

L X

)

= σ 2
Lσ 2

X

σ 2
Lσ 2

X − σ 2
L X

{(
l − μL

σL

)2

− 2σL X
(l − μL)(x − μX )

σ 2
Lσ 2

X

+
(

x − μX

σX

)2
}

and θ′ = (
μL , μX , σ 2

L , σ 2
X , σL X , ν

)
.

The t-distribution supplies the degree of freedom parameter v for the robustness.
The low values of ν results in the heavy tails while ν → ∞ corresponds to the bivariate
normal distribution. If data are contaminated by a few outliers in the tails, one can
expect that the bivariate t-distribution fits better than the bivariate normal distribution
due to the flexibility of ν. Using the fact that L O − X O is also a t-distribution (Fang
et al. 1990), one can derive a simple formula of the inclusion probability:

c(θ) = Pr(L O ≤ X O) = �

⎛

⎝ μX − μL√
σ 2

X + σ 2
L − 2σL X

; ν

⎞

⎠ ,

where �(·; ν) is the cumulative distribution function for the standard t-distribution
with ν degree of freedom. Thus, the likelihood inference discussed in Sect. 2 can be
applied quite straightforwardly.

Although the degree of freedom parameter provides a tool for achieving the robust-
ness, there exist some types of model deviations which cannot be handled by the
t-distribution. Such example includes asymmetric outliers. We leave this as a future
topic for investigation.

5 Numerical analysis

Simulation studies are conducted to investigate the performances of the proposed
approaches. In Sect. 5.1, we describe the experimental design used in subsequent sub-
sections. Section 5.2 is concerned with the comparison between the proposed para-
metric approaches and the existing nonparametric approach. Section 5.3 investigates
the effect of the inclusion probability on the likelihood estimators, which supplements
the theoretical results of Sect. 3.2. Finally, Sect. 5.4 studies the performance of the
goodness-of-fit procedure.

5.1 Design

The sum of Japanese and English test scores plays one of the most important factors in
the admission to Japanese universities for students with majors in the school of human-
ities. Based on the record for National Center Test for University for 2008 (http://www.
dnc.ac.jp/modules/center_exam/content0196.html), Japanese score (X O ) and English
score (Y O) follows a bivariate normal distribution
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(
X O

Y O

)
∼ N

([
60.82
62.63

]
,

[
16.812 (19.64)(16.81)ρX O Y O

(19.64)(16.81)ρX O Y O 19.642

])
. (9)

Here, the mean and standard deviation of X O are calculated from 481,315 samples
and those of Y O are calculated from 497,101 samples. The correlation between X O

and Y O is not available publicly and it is denoted as ρX O Y O .

Now we consider a hypothetical university having a policy to accept students whose
sum of Japanese and English score reaches a pre-specified cut-off point K . Formally,
the inclusion criteria is written as

X O + Y O ≥ K

One can define L O = K − Y O so that the acceptance criteria can be written as
L O ≤ X O . Also, the strength of dependency between L O and X O is described by the
correlation ρL O X O = −ρX O Y O . If one is interested in estimating the population mean
of the Japanese score, namely μX = 60.82, data X O is said to be left-truncated by
L O . Two scenarios are considered for the model parameters:

(i) Fix the constant at K = 120 and move the correlation in the range of ρX O Y O ∈
[−0.7, 0.7], or equivalently ρL O X O ∈ [−0.7, 0.7].

(ii) Fix the correlation at ρX O Y O = 0.5 and move the cut-off point in the range of
K ∈ [76.81, 152.51] so that c ∈ [0.2, 0.9].

Scenario (i) is used in Sects. 5.2 and 5.4 while scenario (ii) is used in Sect. 5.3.
We choose n = 400 since it is one of the common prescribed numbers of students
in a department in Japanese universities (years 2003–2009). For instance, the Japan
women’s university has the annual admission number of 400 in the Faculty of Inte-
grated Arts and Social Sciences. In what follows, we compare the estimators for
μX based on truncated data

{
(L j , X j ); j = 1, 2, . . . , n

}
, which is the scores for the

admitted students.

5.2 Comparison with the nonparametric estimator

Under (i), we compare the performances of the proposed parametric estimators with
the existing nonparametric estimator. For each run, we computed the four estimators of
μX , namely μ̂X , μ̂0

X , μ̂T E ST
X and μ̂N P

X , defined as follows. The proposed parametric
estimator μ̂X is calculated based on (5) while μ̂0

X is based on (6) under the working
independence assumption of ρL O X O = 0. The compromise between μ̂X and μ̂0

X is the
μ̂T E ST

X defined in (7), where the cutoff value q is the upper 5% point of the chi-squared
distribution with one degree of freedom. The nonparametric estimator is defined by

μ̂N P
X =

∞∫

−∞
xd F̂X (x),
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Fig. 2 The mean square errors (MSE) of the four estimators μ̂X , μ̂0
X , μ̂T E ST

X and μ̂N P
X using a log-scale:

“0” represents μ̂0
X based on (6) under the independent normal distribution of ρXY = 0, “1” represents

μ̂X calculated based on (5), “T” represents the testimator μ̂T E ST
X defined in (7) and “N” represents the

nonparametric estimator μ̂0
X

where

F̂X (x) = 1 −
∏

u≤x

{
1 −

∑
j I(L j ≤ u, X j = u)

∑
j I(L j ≤ u ≤ X j )

}

is the Lynden-Bell’s nonparametric estimator. Note that μ̂N P
X is consistent under the

independence assumption of H0 : L O⊥X O , and that it does not require the normality
assumption. Among the three estimators, μ̂0

X requires the strongest assumption since
it assumes both the normality and independence. The mean squared error (MSE) of
μ̂0

X , μ̂X , μ̂N P
X and μ̂T E ST

X was then computed over the 1,000 runs, where the MSE is
defined by

∑1000
r=1 (θ̂r − μX )2/1000 for θ̂r representing each of the four estimators in

r th simulation run.
Figure 2 summarizes the simulation results. In terms of the MSE, the estimator μ̂X

and μ̂T E ST
X has clear advantage when the dependency between L O and X O becomes

strong. Especially when |ρL O X O | ≥ 0.2, the other estimators μ̂N P
X and μ̂0

X that are
not adjusted for the dependency leads to very large MSE. On the other hand, μ̂N P

X and
μ̂0

X have smaller MSE than that of μ̂X and μ̂T E ST
X when L O and X O are close to the

independence. More specifically, when ρL O X O = 0, then the MSE of μ̂0
X was 1.867

while that of μ̂X was 6.451, leading to substantial difference in efficiency. Notice that
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μ̂T E ST
X is a compromise between μ̂0

X and μ̂X . As a result, μ̂T E ST
X takes advantage of

the both approaches and provides more stable results than the other three estimators.
In general, we found that the proposed estimators μ̂X and μ̂T E ST

X adjust for the
dependent truncation in all cases. Instead, due to the additional modeling of the depen-
dency of a truncation variable, μ̂X tends to have large variability. If the independence
is known a priori, μ̂N P

X , μ̂0
X , μ̂T E ST

X are recommended to reduce the variability.

5.3 Numerical studies on the effect of truncation

This subsection studies the impact of the inclusion probability on the efficiency of the
proposed estimator μ̂X . If the covariance matrix in (9) is known, then the asymptotic
efficiency of μ̂X is directly measured by the asymptotic variance:

AVμX {c(θ); n} =
(

Ĩ {c(θ)}−1/n
)

2,2
, (10)

where (B)i, j denotes the (i, j) component of a matrix B. Figure 3 depicts the func-
tion AVμX (c; 400) calculated under model (9). As expected from (8), AVμX (c; 400)

decreases as c increases. To confirm the correctness of AVμX (c; n), we also calculated
the MSE of μ̂X , using 1,000 replications of {(L j , X j ); j = 1, 2, . . . , 400}, under the
known covariance matrix. As shown in Fig. 3, the MSE of μ̂X is very close to the
asymptotic variance AVμX (c; 400) for all c examined. This result is natural since
the MSE and AVμX (c; n) should be very close for large n from the large sample
theory of the MLE.

If the covariance matrix in (9) is unknown, the asymptotic variance for μ̂X does
not have a closed form expression. We calculated the MSE of μ̂X by simulations
for selected values of c(θ) as shown in Fig. 3. The MSE decreases as c increases,
which follow our conjecture on the impact of the inclusion probability discussed in
Sect. 3.2. As expected, the MSE is uniformly larger than that calculated under the
known covariance matrix. We also calculated the MSE of μ̂X , using 1,000 replica-
tions of {(L j , X j ); j = 1, 2, . . . , 400} under the bivariate t-distribution with unknown
covariance matrix. Again, the MSE gets small when c increases, as in the previous
two normal distribution models. The MSE under the bivariate t-distribution is slightly
larger than that for the bivariate normal model due to the additional estimation of the
degree of freedom parameter.

5.4 Numerical studies on the goodness-of-fit test

The performance of the parametric bootstrap-based goodness-of-fit tests described in
Sect. 3.3 was assessed via simulations. The experimental design is based on (ii). Due to
its very high computational cost as each parametric bootstrap iteration requires numer-
ical integrations for F

θ̂
(l, x)/c(θ̂), we only present the result from Cramér-von-Mises

type statistics. For each run, we test the null hypothesis of the bivariate normality
based on B = 1,000 bootstrap replications.
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Fig. 3 The log of asymptotic variance, denoted by log(AVar), and the log of mean squared errors,
denoted by log(MSE), for estimating μX under the three parametric models. The asymptotic variance

is calculated by the log of AVμX (c; n) =
(

Ĩ {c}−1/n
)

2,2
in (10). The log of the MSE is defined by

log

{∑1000
r=1

(
μ̂

(r)
X − μX

)2
/1000

}
, where μ̂

(r)
X is the MLE for μX based on r th replicated data

Table 1 shows the type I error rates of the test for selected levels of α = 0.10, 0.05
and 0.01, which is calculated based on 300 runs. For all the three levels, the type I
error rates are in good agreement with their nominal levels. This result is also sup-
ported from the empirical suggestion of B = 1,000 in Efron and Tibshirani (1993).
More complete simulations, including numerical studies of the test under alternative
hypotheses are beyond the scope of this paper and are left for our future topic for
investigation.

Table 1 Type I error rates of the Cramér-von-Mises type goodness-of-fit test at level α based on 300
replications

ρX O Y O

−0.70 −0.35 0.00 0.35 0.70

α = 0.10 0.113 0.090 0.107 0.123 0.083

α = 0.05 0.056 0.040 0.047 0.060 0.050

α = 0.01 0.013 0.007 0.007 0.023 0.013

The cut-off value is obtained by the parametric bootstrap-based procedure based on 1,000 resamplings
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6 Extension

Recent research has been focusing on doubly truncated random variables. In doubly
truncated data, X O is in the sample only if X O ∈ [L O , RO ] holds, where (L O , RO) is
either random or deterministic. Navarro and Ruiz (1996), Sankaran and Sunoj (2004)
and Bar-Lev and Boukai (2009) introduce several key quantities that characterize
the distribution of X O when (L O , RO) is deterministic. Efron and Petrosian (1999)
proposed nonparametric estimator for FX O (x) when (L O , RO) is random and inde-
pendent of X O . Truncation models discussed in Marchetti and Stanghellini (2007) is
the multivariate generalization of the doubly truncated data. All of the above papers
assume that there is no interaction between X O and the truncation interval.

The present multivariate normal distribution approach is useful for modeling the
association between X O and (L O , RO). We assume the model

⎛

⎝
L O

X O

RO

⎞

⎠ ∼ N

⎛

⎝

⎡

⎣
μL

μX

μR

⎤

⎦ ,

⎡

⎣
σ 2

L σL X σL R

σL X σ 2
X σX R

σL R σX R σ 2
R

⎤

⎦

⎞

⎠ .

Under this model, the probability c(θ) = Pr(L O ≤ X O ≤ RO) is very complicated,
involving an integral on three dimensional space. To facilitate the calculation, one can
impose the conditional independence assumption on the density:

fL O RO |X O (l, r |x) = fL O (l|x) fRO (r |x).

Under this structure, the inclusion probability is simplified as

c(θ) =
∫

�

⎛

⎝μX − μL + σ t
X − ρL Xσ t

L√
σ 2

L

(
1 − ρ2

L X

)

⎞

⎠

×
⎧
⎨

⎩1 − �

⎛

⎝μX − μR + σ t
X − ρR Xσ t

R√
σ 2

R

(
1 − ρ2

R X

)

⎞

⎠

⎫
⎬

⎭φ(t)dt

where θ′ = (
μL , μX , μR, σ 2

L , σ 2
X , σ 2

R, σL X , σR X
)
. To implement this procedure, one

needs to check the practical utility of the conditional independence assumption and
develop numerical procedure to solve the likelihood equations.

7 Conclusions

This article illustrates the ability of parametric modeling to deal with truncated data.
This approach can handle the dependent truncation by a simple likelihood construction.
Therefore, the present approach is of greatest value when the independence between
L O and X O does not hold. The independence can be empirically checked by using one
of quasi-independence tests proposed by Tsai (1990), Chen et al. (1996), Martin and
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Betensky (2005) and Emura and Wang (2010). If the test accepts quasi-independence,
one can apply Lynden-Bell’s nonparametric estimator for the distribution of X O . If
L O and X O can be assumed to be normal, then the proposed parametric approach
under σL X = 0 leads to more efficient estimator for the parameters. If quasi-inde-
pendence test is rejected, either the proposed method or the copula-based approach of
Lakhal-Chaieb et al. (2006) can be applied. Although both approaches can model the
dependency of truncation, they can be applicable for very different circumstances. The
method of Lakhal-Chaieb et al. (2006) is applied when the dependency is modeled by
Archimedean copula (AC) models and L O and X O are positive random variables. On
the other hand, the proposed bivariate normal distribution is not included in AC models
and L O and X O are distributed on the real line. The full parametric specification of the
proposed approach is a drawback relative to Lakhal-Chaieb et al. (2006) in which the
marginal distributions are unspecified. Nevertheless, the full-specification leads to an
asymptotically efficient estimator, where the variance is easily estimated by inverting
the observed Fisher information. On the other hand, the asymptotic variance of the
estimator of Lakhal-Chaieb et al. (2006) has not been derived and jackknife method is
recommended. What is more important for practitioners is that the parameters of the
multivariate normal distribution are much easier to understand.
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Appendix A: Derivation of the Fisher information matrix

Let θ′ = (μL , μX ). Then, the first derivative of the log-likelihood can be written as

l̇1(θ) = − z(ξ)√
σ 2

L + σ 2
X − 2σL X

(−1
1

)
+
[

σ 2
L σL X

σL X σ 2
X

]−1 (
L1 − μL

X1 − μX

)

where z(x) = φ(x)/�(x) and

ξ = μX − μL√
σ 2

L + σ 2
X − 2σL X

.

By noting that ż(x) = −xz(x) − z(x)2, we obtain the Fisher information

I (θ) = ξ z(ξ) + z(ξ)2

σ 2
L + σ 2

X − 2σL X

[−1 1
1 −1

]
+
[

σ 2
L σL X

σL X σ 2
X

]−1

.

Equation 8 follows by letting

ξ z(ξ) + z(ξ)2 = �−1(c)φ{�−1(c)}
c

+ φ{�−1(c)}2

c2 ≡ w(c).
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