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a b s t r a c t

Suppose that one can observe bivariate random variables (L, X) only when L ≤ X holds.
Such data are called left-truncated data and found in many fields, such as experimental
education and epidemiology. Recently, a method of fitting a parametric model on (L, X)
has been considered, which can easily incorporate the dependent structure between the
two variables. A primary concern for the parametric analysis is the goodness-of-fit for the
imposed parametric forms. Due to the complexity of dependent truncation models, the
traditional goodness-of-fit procedures, such as Kolmogorov–Smirnov type tests based on
the Bootstrap approximation to null distribution, may not be computationally feasible.
In this paper, we develop a computationally attractive and reliable algorithm for the
goodness-of-fit test based on the asymptotic linear expression. By applying the multiplier
central limit theorem to the asymptotic linear expression, we obtain an asymptotically
valid goodness-of-fit test. Monte Carlo simulations show that the proposed test has
correct type I error rates and desirable empirical power. It is also shown that the
method significantly reduces the computational time compared with the commonly used
parametric Bootstrap method. Analysis on law school data is provided for illustration.
R codes for implementing the proposed procedure are available in the supplementary
material.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Truncated data are those fromwhich part of them are entirely excluded. For instance, in the study of aptitude test scores
in experimental education, only those individuals whose test scores are above (or below) a threshold may appear in the
sample (Schiel, 1998; Schiel and Harmston, 2000). Many different types of truncation are possible depending on how to
determine the truncation criteria. A classical parametric method for analyzing truncated data is based on a fixed truncation.
That is, a variable XO of interest can be included in the sample if it exceeds a fixed value l, where l is known. Parametric
estimation for the normal distribution of XO has been given by Cohen (1991). Other examples of the fixed truncation include
the zero-truncated Poisson model in which XO is a Poisson random variable and l = 1.

A more general truncation scheme is the so-called ‘‘left-truncation’’ in which the sample is observed when a variable
XO exceeds another random variable LO. The left-truncated data is commonly seen in studies of biomedicine, epidemiology
and astronomy (Klein and Moeschberger, 2003). Construction of nonparametric estimators for Pr(XO

≤ x) under the left-
truncation has been extensively studied (e.g., Woodroofe, 1985; Wang et al., 1986). It is well known that the nonparametric
methods rely on the independence assumption between LO and XO. Accordingly, Chen et al. (1996), Emura andWang (2010),
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Martin and Betensky (2005) and Tsai (1990) have presentedmethods for testing the independence assumption. For positive
random variables LO and XO, semiparametric approaches proposed by Emura et al. (2011) and Lakhal-Chaieb et al. (2006)
are alternatives in the absence of independence assumption, where the association structure between LO and XO is modeled
via an Archimedean copula.

Compared with the nonparametric and semiparametric inferences, there is not much in the literature on the analysis
of left-truncated data based on parametric modeling. Although parametric modeling easily incorporates the dependence
structure between LO and XO, it involves strong distributional assumptions, and the inference procedure may not be robust
to departures from these assumptions (Emura and Konno, 2012). Nevertheless, parametric modeling is still useful in many
applications where parameters in the model provide useful interpretation or a particular parametric form is supported by
the subject matter knowledge. For instance, in the study of aptitude test scores in educational research, researchers may be
interested in estimating the mean and standard deviation of the test score XO rather than Pr(XO

≤ x) (Schiel and Harmston,
2000; Emura and Konno, 2009). Hence, parameters of the normal distribution usually provide useful summary information
(see Section 5 for details). For another example, the study of count data in epidemiological research often encounters the
zero-modified Poisson model (Dietz and Böhning, 2000) for XO (see Example 3 in Appendix A for details). For count data,
the main focus is to estimate the intensity parameter of the Poisson distribution rather than Pr(XO

≤ x). In the preceding
two examples, one needs to specify the parametric forms of (LO, XO). If the goodness-of-fit tests are used appropriately, the
robustness concern about the parametric analysis can be circumvented.

In this paper, we develop a computationally attractive and reliable algorithm for the goodness-of-fit test by utilizing the
multiplier central limit theorem. The basic idea behind the proposed approach follows the goodness-of-fit procedure for
copula models (Kojadinovic and Yan, 2011; Kojadinovic et al., 2011), though the technical details and the computational
advantages in the present setting are different. The rest of the paper is organized as follows: Section 2 briefly reviews the
parametric formulation given in Emura and Konno (2012). Section 3 presents the theory and algorithm of the proposed
goodness-of-fit test based on themultiplier central limit theorem. Simulations and data analysis are presented in Sections 4
and 5, respectively. Section 6 concludes this paper.

2. Parametric inference for dependently truncated data

In this section, we introduce the parametric approach to dependent truncation data based on Emura and Konno (2012)
and derive the asymptotic results of the maximum likelihood estimator (MLE) that are the basis for the subsequent
developments.

Let fθ(l, x) be a density or probability function of a bivariate random variable (LO, XO), where θ ∈ Θ is a p-variate vector
of parameters and where Θ ⊂ Rp is a parameter space. In a truncated sample, a pair (LO, XO) is observed when LO ≤ XO

holds. For observed data {(Lj, Xj); j = 1, 2, . . . , n} subject to Lj ≤ Xj, the likelihood function has the form

L(θ) = c(θ)−n

j

fθ(Lj, Xj), (1)

where c(θ) = Pr(LO ≤ XO). Let l̇j(θ) be the column vector of partial derivatives (with respect to the component of θ) of
lj(θ) = log{c(θ)−1fθ(Lj, Xj)}, i.e., l̇j(θ) = ∂ lj(θ)/∂θ for j = 1, 2, . . . , n, and let θ̂ be the maximum likelihood estimator
(MLE) that maximizes (1) in Θ . Emura and Konno (2012) noted that for computing the MLE, it is crucial that the simple
formula of c(θ) is available. This also has a crucial role in the subsequent developments for the proposed goodness-of-fit
test procedure. For easy reference, Appendix A lists three examples of the parametric forms that permit a tractable form in
c(θ). The following Lemma is a basis for deriving the asymptotic expression for the goodness-of-fit statistics.

Lemma 1. Suppose that (R1) through (R7) listed in Appendix B hold. Then,

√
n(θ̂ − θ) =

1
√
n


j

I−1(θ)l̇j(θ) + oP(1), (2)

where I(θ) = E{l̇j(θ)l̇′j(θ)} is the Fisher information matrix and l̇′j(θ) is the transposed vector of l̇j(θ).

3. Goodness-of-fit procedure under truncation

3.1. Asymptotic linear expression of the goodness-of-fit process

Let ℑ = {fθ | θ ∈ Θ} be a given parametric family. Also, let f be the underlying (true) density or probability function of a
bivariate random variable (LO, XO). Given the observed data {(Lj, Xj); j = 1, 2, . . . , n}, we wish to test the null hypothesis

H0 : f ∈ ℑ against H1 : f ∉ ℑ.

One of the popular classes of goodness-of-fit tests consists of comparing the distance between F̂(l, x) =


j I(Lj ≤ l, Xj ≤

x)/n and F
θ̂
(l, x)/c(θ̂), where I(·) is the indicator function and
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Fθ(l, x) =




u≤l,u≤v≤x
fθ(u, v)dudv for a continuous distribution;

u≤l


u≤v≤x

fθ(u, v) for a discrete distribution.

The Kolmogorov–Smirnov type test is based on

K = sup
l≤x

|F̂(l, x) − F
θ̂
(l, x)/c(θ̂)|. (3)

The calculation of K requires the numerical integrations (or summations) for Fθ(l, x) at O(n2) different points in {(l, x); l ≤
x}. A computationally attractive alternative is the Cramér–von Mises type statistic

C =


l≤x

{F̂(l, x) − F
θ̂
(l, x)/c(θ̂)}2dF̂(l, x) =


j

{F̂(Lj, Xj) − F
θ̂
(Lj, Xj)/c(θ̂)}2. (4)

This requires exactly n evaluations of Fθ(l, x). The null distributions for K and C have not been derived and depend on the
true value of θ.

Empirical process techniques are useful for analyzing the goodness-of-fit process F̂ − F
θ̂
/c(θ̂) defined on (−∞, ∞)2. Let

ϕ : Θ → D{(−∞, ∞)2} be ϕ(θ̂) = F
θ̂
/c(θ̂), where D{(−∞, ∞)2} is a collection of bounded functions on (−∞, ∞)2 that

are continuous from above, equipped with the uniform norm ∥F∥∞ = sup−∞<l,x<∞ |F(l, x)|. Under the assumptions (R1),
(R3), (R4) and (R8) listed in Appendix B, the map ϕ is shown to be the Hadamard differentiable with the derivative given by

gθ = gθ(l, x) = c(θ)−2
{Ḟθ(l, x)c(θ) − Fθ(l, x)ċ(θ)},

where Ḟθ(l, x) = ∂Fθ(l, x)/∂θ and ċ(θ) = ∂c(θ)/∂θ, the column vectors of partial derivatives (with respect to the component
of θ) of Fθ(l, x) and c(θ), respectively. Applying the functional deltamethod under the regularity conditions for Theorem20.8
of van der Vaart (1998), we have

√
n{F

θ̂
(l, x)/c(θ̂) − Fθ(l, x)/c(θ)} =

1
√
n


j

g′
θ(l, x)I

−1(θ)l̇j(θ) + oP(1),

where oP(1) is uniform in (l, x). Making the above arguments rigorous, we obtain the following theorem whose proof is
given in Appendix C:

Theorem 1. Suppose that (R1) through (R8) listed in Appendix B hold. Under H0,

√
n{F̂(l, x) − F

θ̂
(l, x)/c(θ̂)} =

1
√
n


j

Vj(l, x; θ) + oP(1), (5)

where Vj(l, x; θ) = I(Lj ≤ l, Xj ≤ x) − Fθ(l, x)/c(θ) − g′
θ(l, x)I−1(θ)l̇j(θ).

3.2. Algorithm based on the multiplier central limit theorem

Eq. (5) is the basis for developing a resampling scheme based on the multiplier central limit theorem (van der Vaart and
Wellner, 1996). Let {Zj; j = 1, 2, . . . , n} be independent random variables with E(Zj) = 0 and Var(Zj) = 1. Consider

1
√
n


j

ZjVj(l, x; θ). (6)

Conditional on {(Lj, Xj); j = 1, 2, . . . , n}, the only random quantities in Eq. (6) are {Zj; j = 1, 2, . . . , n}, which will be
called the ‘‘multiplier’’. The conditional distribution of (6) can approximate the asymptotic distribution of

√
n{F̂(l, x) −

F
θ̂
(l, x)/c(θ̂)}.
The random variable Vj(l, x; θ) contains I(θ), whose analytical expression is usually impossible or very difficult to obtain

due to truncation. Define the observed Fisher informationmatrix in(θ̂). Replacing θ and I(θ)with θ̂ and in(θ̂)/n, respectively,
Eq. (6) is approximated by

1
√
n


j

ZjV̂j(l, x; θ̂),

where V̂j(l, x; θ) = I(Lj ≤ l, Xj ≤ x) − Fθ(l, x)/c(θ) − g′
θ(l, x){in(θ)/n}−1 l̇j(θ). The following lemma shows that the

substitution does not alter the asymptotic behavior; the proof is given in Appendix D.
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Lemma 2. Suppose that (R1) through (R8) listed in Appendix B hold. Under H0,

1
√
n


j

ZjV̂j(l, x; θ̂) =
1

√
n


j

ZjVj(l, x; θ) + oP(1).

Therefore, the distribution of K in (3) can be approximated by

1
n
sup
l≤x

 
j

ZjV̂j(l, x; θ̂)

 .
Also, the distribution of C in (4) can be approximated by

1
n2


i


j

ZjV̂j(Li, Xi; θ̂)

2

=

 Z′V̂(θ̂)

n


2

,

where V̂(θ̂) is a matrix whose (j, i) element is V̂j(Li, Xi; θ̂), Z = (Z1, . . . , Zn)′ and ∥a∥2
= a′a for a vector a. Once the matrix

V̂(θ̂) is calculated from observed data, one can easily generate an approximate version of C by multiplying V̂(θ̂)/n by Z and
then taking the norm. For finite sample accuracy, the standard normal multiplier Zj ∼ N(0, 1) typically does a better job
than other types, such as a two-point distributionwith Pr(Zj = 1) = Pr(Zj = −1) = 0.5 (see Section 1 of the supplementary
material).

The testing algorithm is as follows. Modifications of the algorithm for the statistic K in (3) are straightforward.
Algorithm based on the multiplier method:

Step 0 : Calculate the statistic C =


i{F̂(Li, Xi) − F
θ̂
(Li, Xi)/c(θ̂)}2 and matrix V̂(θ̂).

Step 1 : Generate Z (b)
j ∼ N(0, 1); b = 1, 2, . . . , B, j = 1, 2, . . . , n.

Step 2 : Calculate {C (b)
; b = 1, 2, . . . , B},

where C (b)
= ∥(Z(b))′V̂(θ̂)/n∥2 and Z(b)

= (Z (b)
1 , . . . , Z (b)

n )′.

Step 3 : Reject H0 at the 100α% significance level if
B

b=1 I(C
(b)

≥ C)/B < α.

The algorithm based on the parametric Bootstrap method (Efron and Tibshirani, 1993) is provided for comparison with
the multiplier method.
Algorithm based on the parametric Bootstrap method:

Step 0 : Calculate the statistic C =


i{F̂(Li, Xi) − F
θ̂
(Li, Xi)/c(θ̂)}2.

Step 1 : Generate (L(b)
j , X (b)

j ) which follows the density f
θ̂
(l, x), subject to L(b)

j ≤ X (b)
j , for b = 1, 2, . . . , B, j = 1, 2, . . . , n.

Step 2 : Calculate {C∗(b)
; b = 1, 2, . . . , B},

where C∗(b)
=


i{F̂
(b)(L(b)

i , X (b)
i ) − F

θ̂
(b)(L(b)

i , X (b)
i )/c(θ̂

(b)
)}2 and where F̂ (b)(l, x) and θ̂

(b)
are the empirical CDF and MLE

based on {(L(b)
j , X (b)

j ); j = 1, 2, . . . , n}.

Step 3 : Reject H0 at the 100α% significance level if
B

b=1 I(C
∗(b)

≥ C)/B < α.

In Step 1 of the multiplier method, it is fairly easy to generate Z (b)
j ∼ N(0, 1). On the other hand, Step 1 of the parametric

Bootstrap approach is more difficult since data are generated from a given bivariate density function subject to truncation.
Usually, the following accept–reject algorithm is used: (i) data (L, X) from the density f

θ̂
(l, x) is generated; (ii) if L ≤ X ,

we accept the sample and set (L(b)
j , X (b)

j ) = (L, X); otherwise we reject (L, X) and return to (i). This algorithm can be time-

consuming especially when the acceptance rate c(θ̂) is small.
In Step 2, the multiplier method only needs to multiply the standard normal vector to V̂(θ̂). On the other hand,

the parametric Bootstrap method needs to calculate θ̂
(b)

for b = 1, 2, . . . , B. This is very time consuming since each
maximization process requires repeated evaluations of the likelihood function.

Beside the computational time spent, the parametric Bootstrap method can produce erroneous results when some of
θ̂

(b)
, b = 1, 2, . . . , B, are local maxima. If θ̂

(b)
is a local maxima, it is usually not close to θ̂, and the Bootstrap version

of the Cramér–von Mises statistic C∗(b) tends to be very large. Although this error is subject to the ability of computer
programs for numerical maximizations, it is not always easy to locate global maxima for a large number of resampling
steps (usually B ≥ 1000 times). The multiplier method is free from this error and more reliably implemented than the
parametric Bootstrap.
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Finally, we give the validity of the method along the lines of Kojadinovic et al. (2011). Let Gn(l, x) =
√
n{F̂(l, x) −

F
θ̂
(l, x)/c(θ̂)} and G(b)

n (l, x) = n−1/2
j Z

(b)
j V̂j(l, x; θ̂) for b = 1, 2, . . . , B. The proof of the following theorem is given in

Appendix E.

Theorem 2. Suppose that (R1) through (R8) listed in Appendix B hold. Under H0, as n → ∞,

(Gn,G(1)
n , . . . ,G(B)

n ) → (Gθ,G
(1)
θ , . . . ,G(B)

θ )

in D{(−∞, ∞)2}⊗(B+1), where Gθ is the mean zero Gaussian process whose covariance for (l, x), (l∗, x∗) ∈ (−∞, ∞)2 is given
as

Cov{Gθ(l, x),Gθ(l∗, x∗)} = E{Vj(l, x; θ)Vj(l∗, x∗
; θ)}

= Fθ(l ∧ l∗, x ∧ x∗)/c(θ) − Fθ(l, x)Fθ(l∗, x∗)/c(θ)2 − g′

θ(l, x)I
−1(θ)gθ(l∗, x∗),

where a ∧ b ≡ min(a, b), and G(1)
θ , . . . ,G(B)

θ are independent copies of Gθ.

Under H1, (G
(1)
n , . . . ,G(B)

n ) are no longer approximate independent copies of Gn. In particular, the goodness-of-fit process
Gn(l, x) usually converges in probability to ∞ at some (l, x) while the multiplier realization G(b)

n converges weakly to a tight
Gaussian process. This produces consistency of the goodness-of-fit test.

3.3. Computational aspects

To compute the proposed goodness-of-fit statistic based on the multiplier method, one needs to calculate Fθ(l, x), ċ(θ),
Ḟθ(l, x), and l̇j(θ). Although these can be calculated for each specific parametric model, the formulas are not always easy. In
what follows, we describe how to calculate these quantities for the bivariate normal, bivariate Poisson, and zero-modified
Poisson models discussed in Examples 1–3 of Appendix A.

For the bivariate normal, bivariate Poisson, and zero-modified Poisson models, their formulas are written respectively
as:

Fθ(l, x) =

 (l−µL)/σL

−∞

Φ

x − µX − σLX s/σL
σ 2
X − σ 2

LX/σ
2
L

− Φ

µL + σLs − µX − σLX s/σL
σ 2
X − σ 2

LX/σ
2
L


 φ(s)ds,

Fθ(l, x) = e−λL−λX−α
l

u=0

x
v=u

u
w=0

λu−w
L λv−w

X αw

(u − w)!(v − w)!w!
,

Fθ(l, x) =


(1 − p)e−λX

x
u=0

(λu
X/u!) if l = 0;

e−λX


x

u=0

λu
X/u! − p


if l = 1,

where Φ(·) is the cumulative distribution for N(0, 1), and φ(x) = dΦ(x)/dx. Since it is not very easy to obtain analytical
expressions for ċ(θ) and Ḟθ(l, x), we propose to use {c(θ + h1) − c(θ)}/h and {Fθ+h1(l, x) − Fθ(l, x)}/h, where h is a small
value and 1′

= (1, . . . , 1). Computer programs, such as the ‘‘numDeriv’’ package (Gilberet, 2010) in R, are also useful. We
conducted a simulation to examine the correctness of the proposed numerical derivative (simulation results are given in the
supplementary material). The results show that the proposed numerical derivative with h = 10−8 is virtually identical to
both the analytical derivative and the numerical derivative from the numDeriv package. The proposed numerical derivative
has less programming effort than the analytical one.

The formula of l̇j(θ) under the bivariate normal model is given in Emura and Konno (2012). Under the bivariate Poisson
model, one has l̇j(θ) = (l̇1j (θ), l̇

2
j (θ), l̇

3
j (θ))

′ where

l̇1j (θ) = −
∂c(θ)/∂λL

c(θ)
− 1 +

I(Lj ≥ 1)
Bj(θ)

Lj−1
w=0

λ
Lj−1−w

L λ
Xj−w

X αw

(Lj − 1 − w)!(Xj − w)!w!
,

l̇2j (θ) = −
∂c(θ)/∂λX

c(θ)
− 1 +

I(Xj ≥ 1)
Bj(θ)

min{Lj,Xj−1}
w=0

λ
Lj−w

L λ
Xj−1−w

X αw

(Lj − w)!(Xj − 1 − w)!w!
,

l̇3j (θ) = −1 +
I(Lj ≥ 1)
Bj(θ)

Lj
w=1

λ
Lj−w

L λ
Xj−w

X αw−1

(Lj − w)!(Xj − w)!(w − 1)!
,
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where Bj(θ) =
Lj

w=0
λ
Lj−w

L λ
Xj−w

X αw

(Lj−w)!(Xj−w)!w!
. Under the zero-modified Poisson model, one has l̇j(θ) = (l̇1j (θ), l̇

2
j (θ))

′, where

l̇1j (θ) =
Lj

p(1 − p)
−

1
1 − p

+
e−λX

1 − pe−λX
,

l̇2j (θ) = −
pe−λX

1 − pe−λX
+

Xj

λX
− 1.

3.4. Generalization to other estimators for θ

Although the proposed goodness-of-fit procedure is developed in the case where θ is estimated by the MLE, it is not
difficult tomodify it formore general estimators. The fundamental requirement is that the estimator is asymptotically linear
as in (2). A particularly interesting example in the dependently truncated data is the shrinkage ‘‘testimator’’ (Waiker et al.,
1984). Suppose that the parameter can be written as θ′

= (θ∗, ρ), where ρ is the correlation between LO and XO, and θ̂
∗

is
the MLE under the assumption of ρ = 0. Let l(θ) = log L(θ), and

θ̂
TEST

=


θ̂

∗

0


+


θ̂ −


θ̂

∗

0


I(2[l(θ̂) − l{(θ̂

∗

, 0)}] > qn),

where q1 ≥ q2 ≥ · · · is a sequence of positive constants. If qn is the cutoff value for the chi-square distribution with one
degree of freedom, θ̂

TEST
= θ̂ if H0 : ρ = 0 is rejected or θ̂

TEST
= (θ̂

∗

, 0) if H0 is accepted by the likelihood ratio test. By
definition, θ̂

TEST
is shrunk to (θ̂

∗

, 0), borrowing strength from the smaller variance of (θ̂
∗

, 0) than that of θ̂. Emura and Konno
(2012) show by simulations that under the bivariate normal model, there is substantial efficiency gain near ρ = 0. This is
closely related to a superefficient phenomenon due to Hodges (see Lehmann and Casella, 1993). The proof of the following
Lemma is given in Appendix F.

Lemma 3. Suppose that θ = (θ∗, 0) is inside the parameter space and that (R1) through (R7) in Appendix B hold. Also, suppose
that either one of the following conditions holds: (i) qn → 0; (ii) qn = q > 0 for all n and ρ ≠ 0. Then,

√
n(θ̂

TEST
− θ) =

1
√
n


j

I−1(θ)l̇j(θ) + oP(1).

Remark 1. According to condition (R1) in Appendix B, the parameter space for θ = (θ∗, ρ) should be an open set. This
condition ensures that ‘‘the true parameter’’ is located inside the parameter space. When the correlation on (LO, XO) is
introduced by the random effect, as mentioned in Example 2 of Appendix A, we have ρ ∈ (0, 1) and the case of ρ = 0
is defined as the limit ρ ↓ 0 which is outside the parameter space. Under such circumstances, the likelihood ratio test for
H0 : ρ = 0 becomes one-sided and the statistic does not have the asymptotic chi-squared distribution with one degree of
freedom. As a result, the statement in Lemma 3 does not hold.

Theorem 3. Suppose that (R1) through (R8) listed in Appendix B hold. Further suppose that either one of the following conditions
holds: (i) qn → 0; (ii) qn = q > 0 for all n and ρ ≠ 0. Then, Eq. (5) holds when θ̂ is replaced by θ̂

TEST
.

The proof of Theorem3 is similar to that of Theorem1 based on the result of Lemma3. Therefore, the algorithmdeveloped
in Section 3.2 is applicable by replacing θ̂ with θ̂

TEST
.

4. Simulation results

To investigate the performance of the proposed goodness-of-fit test, we conducted extensive simulations using R. All
results reported in this section are based on the standard normal multiplier Zj ∼ N(0, 1) and the results based on the
two-point multiplier are given in Section 2 of the supplementary material.

4.1. Simulations under the null distribution

In the first part, we have chosen the same design as Emura and Konno (2012) in which (LO, XO) follows the bivariate
normal distribution with the mean vector and covariance matrix given respectively by

µ =


µL
µX


=


120 − 62.63

60.82


, 6 =


σ 2
L σLX

σLX σ 2
X


=


19.642 19.64 × 16.81ρLX

19.64 × 16.81ρLX 16.812


,
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Table 1
Performances of the proposed goodness-of-fit test at the 100α% level based on 1000 replications under the bivariate normal model with n = 400.

ρXOYO

0.70 0.35 0.00 −0.35 −0.70

θ̂:MLE Rejection rate for α = 0.10 0.115 0.096 0.086 0.095 0.103
Rejection rate for α = 0.05 0.055 0.048 0.043 0.051 0.056
Rejection rate for α = 0.01 0.011 0.006 0.011 0.011 0.010
Mean of C 0.0606 0.0592 0.0568 0.0582 0.0578
Mean of Edata(C (b)) 0.0590 0.0590 0.0585 0.0592 0.0646
SD of C 0.0290 0.0244 0.0219 0.0217 0.0217
Mean of SDdata(C (b)) 0.0282 0.0251 0.0228 0.0229 0.0314

θ̂
TEST

:Shrinkage Rejection rate for α = 0.10 0.108 0.099 0.111 0.100 0.086
Rejection rate for α = 0.05 0.052 0.060 0.052 0.057 0.046
Rejection rate for α = 0.01 0.010 0.012 0.009 0.012 0.010
Mean of C 0.0602 0.0607 0.0615 0.0587 0.0565
Mean of Edata(C (b)) 0.0592 0.0595 0.0617 0.0592 0.0612
SD of C 0.0286 0.0260 0.0238 0.0224 0.0210
Mean of SDdata(C (b)) 0.0284 0.0253 0.0247 0.0228 0.0268

Note: The mean and SD of the Cramér–von Mises test statistics C are calculated. Edata(C (b)) and SDdata(C (b)) are the mean and SD of {C (b)
; b =

1, 2, . . . , 1000}, respectively, based on 1000 multiplier realizations.

where ρLX = 0.70, 0.35, 0, −0.35, or −0.70. In this design, the population parameters of Japanese test scores (mean =

60.82, SD = 16.81) and English test scores (mean = 62.63, SD = 19.64) are determined by the records of the National
Center Test for University for 2008 in Japan. We set the null hypothesis H0 : f ∈ ℑ, where ℑ = {fθ | θ ∈ Θ} is a family of
bivariate normal distributions with θ′

= (µL, µX , σ
2
L , σ 2

X , σLX ).
The R mvrnorm routine in MASS package (Ripley et al., 2011) is used to generate random samples from the bivariate

normal distribution. Truncated data {(Lj, Xj); j = 1, 2, . . . , n} subject to Lj ≤ Xj represent those sample whose sum
of Japanese and English scores is above 120. We set n = 400 as the common number of prospective students in any
one department in Japanese universities (Emura and Konno, 2012). For the truncated data, we calculate the MLE θ̂ (and
θ̂
TEST

) and the Cramér–von Mises type statistic C given by (4). Here, θ̂ is obtained by minimizing − log L(θ) using the non-
linear minimization routine nlm in R. For each data realization, we compute {C (b)

; b = 1, 2, . . . , 1000} under H0. Then we
record the rejection/acceptance status of the goodness-of-fit test at the 100α% level. We also record the sample mean and
standard deviation (SD) of {C (b)

; b = 1, 2, . . . , 1000} to be compared with the sampling distribution of C . The results for
1000 repetitions are shown in Table 1. In all configurations, the rejection rates are in good agreement with the selected
nominal sizes (α = 0.01, 0.05, and 0.10). Also, the sample mean and SD of C are close to their resampling versions based on
{C (b)

; b = 1, 2, . . . , 1000}. The results provide empirical evidence that the multiplier methods for approximating the null
distribution works well under the bivariate normal model.

In the second part, we carried out simulations under the bivariate Poisson model and zero-modified Poisson model.
Hence, the null hypothesis is H0 : f ∈ ℑ, where ℑ = {fθ | θ ∈ Θ} is either a family of bivariate Poisson model or zero-
modified Poisson model where the form of fθ is given in Examples 2 and 3 of Appendix A. For the bivariate Poisson model,
we set (λL, λX ) = (1, 1) or (1, 2), and set α so that the correlation ρXOYO = {α/(λLλX )}

−1/2 becomes 0.35 or 0.7. Unlike the
bivariate normal model, the bivariate Poisson model only permits positive association on (LO, XO). For the zero-modified
Poisson model, we set λX = 1 or λX = 2 and p = 0.3 or p = 0.7. Simulation results for n = 400 are summarized in Table 2.
The rejection rates essentially have the correct values (α = 0.01, 0.05, and 0.10) and the samplemean and SD of the statistic
C are correctly approximated by themultiplier method under both the bivariate Poisson and zero-modified Poissonmodels.
Unlike the bivariate normal model, one cannot apply θ̂

TEST
under the bivariate Poisson model since the independence is

defined as a limit α ↓ 0 (see Remark 1).
In the final part, we compare the computational time between the proposed and the parametric Bootstrapmethods under

the bivariate normal and bivariate Poisson models. For a fixed dataset, we calculate the required computational time (in
seconds) of the two competing methods using the routine proc.time() in R. As shown in Table 3, the required computational
time for the multiplier method is much smaller than that for the parametric Bootstrap method for all entries. In particular,
the use of the multiplier method under the bivariate Poisson distribution reduces the computational time by 1000 times.

4.2. Power property

To investigate the power of the proposed test, we generated data from the bivariate t-distribution (Lang et al., 1989)
while we performed the goodness-of-fit test under the null hypothesis of the bivariate normal distribution. The mean and
scale matrix of the bivariate t-distribution are chosen to be the same as the mean and covariance matrix of the bivariate
normal model in Section 4.1. As the degree of freedom parameter ν is related to the discrepancy from the null hypothesis,
we draw empirical power curves based on 1000 repetitions for selected values of ν. Fig. 1 shows the empirical power curves
under ρXOYO = −0.35 with n = 400 and 800. The empirical power increases as 1/ν gets larger and it gets close to the
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Table 2
Performances of the proposed goodness-of-fit test at the 100α% level based on 1000 replications under the bivariate
Poisson model and zero-modified Poisson model with n = 400.

Bivariate Poisson λL = 1, λX = 1 λL = 1, λX = 2
ρXOYO = 0.70 ρXOYO = 0.35 ρXOYO = 0.70 ρXOYO = 0.35

Rejection rate for α = 0.10 0.105 0.086 0.092 0.103
Rejection rate for α = 0.05 0.046 0.049 0.046 0.059
Rejection rate for α = 0.01 0.007 0.012 0.008 0.012
Mean of C 0.0606 0.0546 0.0718 0.0684
Mean of Edata(C (b)) 0.0613 0.0636 0.0712 0.0695
SD of C 0.0422 0.0392 0.0411 0.0450
Mean of SDdata(C (b)) 0.0421 0.0517 0.0404 0.0431

Zero-modified Poisson λX = 1 λX = 2
p = 0.3 p = 0.7 p = 0.3 p = 0.7

Rejection rate for α = 0.10 0.103 0.104 0.090 0.069
Rejection rate for α = 0.05 0.053 0.056 0.046 0.034
Rejection rate for α = 0.01 0.010 0.010 0.006 0.008
Mean of C 0.0620 0.0524 0.0686 0.0616
Mean of Edata(C (b)) 0.0614 0.0522 0.0691 0.0704
SD of C 0.0563 0.0463 0.0496 0.0484
Mean of SDdata(C (b)) 0.0551 0.0452 0.0503 0.0501

Note: The mean and SD of the Cramér–von Mises test statistics C are calculated. Edata(C (b)) and SDdata(C (b)) are the
mean and SD of {C (b)

; b = 1, 2, . . . , 1000}, respectively, based on 1000 multiplier realizations.

Table 3
A comparison of the multiplier method and parametric Bootstrap with n = 400.

Elapsed time (in seconds) Resampling mean and SD (in parenthesis)
Multiplier Parametric Bootstrap Multiplier Parametric Bootstrap

Bivariate normal
ρXOYO = 0.70 23.17 1402.31 0.0621 (0.0314) 0.0603 (0.0304)
ρXOYO = 0.35 22.84 1463.01 0.0606 (0.0269) 0.0581 (0.0252)
ρXOYO = 0.00 23.04 1539.29 0.0597 (0.0219) 0.0586 (0.0225)
ρXOYO = −0.35 23.37 1380.09 0.0598 (0.0234) 0.0577 (0.0209)
ρXOYO = −0.70 26.77 1296.32 0.0591 (0.0225) 0.0569 (0.0217)

Bivariate Poisson
λL = 1, λX = 1 ρXOYO = 0.70 12.48 10563.95 0.0608 (0.0413) 0.0614 (0.0426)

ρXOYO = 0.35 12.40 12265.27 0.0505 (0.0353) 0.0543 (0.0404)
λL = 1, λX = 2 ρXOYO = 0.70 12.41 10632.34 0.0703 (0.0381) 0.0703 (0.0380)

ρXOYO = 0.35 12.62 13138.48 0.0676 (0.0395) 0.0692 (0.0413)

Note: Elapsed time is calculated by proc.time() routine in R. The number of resamplings is 1000 for both multiplier and parametric Bootstrap methods.

nominal sizes (α = 0.10 or 0.05) as 1/ν → 0. The curves for n = 800 dominate those for n = 400. The empirical power
curves for ρXOYO = 0.35 and 0.00, not shown here, are very similar to those in Fig. 1. In general, the value of ρXOYO does not
have much influence on the power properties.

5. Data analysis

The proposed method is illustrated using the law school data available in Efron and Tibshirani (1993). The data consist
of the average score of the LSAT (the national law test) and average GPA (grade point average) for N = 82 American law
schools. We denote a pair of LSAT and GPA by (LSATj,GPAj) for j = 1, 2, . . . ,N . The average scores of the LSAT and GPA for
the 82 schools are 597.55 and 3.13, respectively. The correlation coefficient between the LSAT and GPA is 0.76.

We consider a situation that one can only observe a vector (LSATj,GPAj) whose sum of LSAT and 100× GPA are above a
threshold 600+100×3.0 = 900. The number of such samples is n = 49, and the inclusion rate is therefore n/N = 0.598. In
this sampling design, we observe {(Lj, Xj); j = 1, 2, . . . , 49}, subject to Lj ≤ Xj, where Lj = 900−100×GPAj and Xj = LSATj.
Under the (working) independence assumptionbetween LSAT andGPA, the Lynden-Bell’s nonparametric estimator (Lynden-
Bell, 1971) for the mean LSAT score is defined by

µ̂NP
X =


∞

−∞

xdF̂X (x),

where

F̂X (x) = 1 −


u≤x

1 −


j
I(Lj ≤ u, Xj = u)
j
I(Lj ≤ u ≤ Xj)

 .
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Fig. 1. Empirical power curves for the goodness-of-fit test under the null hypothesis of bivariate normal distribution when data are generated from the
bivariate t-distribution with degree of freedom ν (denoted as df). Two sizes (α = 0.10 and 0.05) are chosen.

The resulting estimate is µ̂NP
X = 618.63, which seems somewhat larger than the average LSAT score 597.55. This bias may

result from the wrong independence assumption between LSAT and GPA.
We fit the bivariate normal distribution models for the truncated data. The p-values of the goodness-of-fit test for the

bivariate normality are 0.884 for the multiplier method (required computational time = 1.25 seconds) and 0.645 for the
parametric Bootstrap method (required computational time = 222.46 seconds). Both methods reach the same conclusion
that there is no evidence to reject the bivariate normality assumption.

We proceed to the parametric analysis under bivariate normality. The estimated population mean of LSAT is µ̂X =

591.32. This ismuch closer to the average LSAT score 597.55 than the estimate based on Lynden-Bell’smethod. The estimated
inclusion probability ĉ(θ) = 0.545 is also close to the inclusion rate n/N = 0.598. Our study shows that the parametric
analysis of the dependently truncated data produces reliable results when the goodness-of-fit test favors the fitted model.
Note that all the analysis results are easily reproduced by the R codes in the supplementary material.

A reviewer has pointed out the difference of the p-values between the two methods. This is explained by the right
skewness of the resampling distribution for the multiplier method compared to that for the parametric Bootstrap (Fig. 2).
The difference of the two resampling distributions may be attributed to a slight departure of the data generating system
for the LSAT and GPA values from the bivariate normal model. In particular, a few ties in the LSAT and GPA values indicate
that the data do not exactly follow the bivariate normal model. This implies that the two resampling procedures can yield
different powers in real applications.

6. Conclusion and discussion

The main objective of the present paper is to develop a new goodness-of-fit procedure for parametric models based on
dependently truncated data. The method utilizes the multiplier central limit theorem and has the advantage of being less
computationally demanding than the parametric Bootstrap procedure by avoiding the complicated resampling scheme of
the parametric Bootstrap under dependent truncation. Note that the method is easily implemented by the R codes available
in the supplementary material.

Although many studies have already applied the multiplier method in many different contexts (Spiekerman and Lin,
1998; Jin et al., 2003; Bücher and Dette, 2010; Kojadinovic and Yan, 2011), the computational advantage for dependent
truncationmodels is remarkable. The idea can be applied to a variety of problems inwhich the Bootstrap resampling involves
truncation. In particular, generalizations of the proposed method to even more complicated truncation schemes, such as
double truncation and multivariate truncation, deserves further investigation.
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Fig. 2. Two histograms for the resampling distributions based on themultiplier and parametric Bootstrapmethods based on 1000 resamplings. The dotted
line signifies the value of the Cramér–von Mises type statistic in ‘‘log’’ scale.

Appendix A. Examples of parametric models

Example 1. Bivariate t- and normal distributions.
Let ν be a positive number and

µ =


µL
µX


, 6 =


σ 2
L σLX

σLX σ 2
X


,

where the positive definite matrix 6 is called scale matrix. The density of the bivariate t-distribution is given by

fθ(l, x) =
(σ 2

L σ 2
X − σ 2

LX )
−1/2Γ {(ν + 2)/2}

π Γ (ν/2)ν


1 +

Q 2(l, x | µ, 6)

ν

−(ν+2)/2

,

where Γ is the gamma function,

Q 2(l, x | µ, 6) =
σ 2
L σ 2

X

σ 2
L σ 2

X − σ 2
LX


l − µL

σL

2

− 2σLX
(l − µL)(x − µX )

σ 2
L σ 2

X
+


x − µX

σX

2


,

and θ′
= (µ′, σ 2

L , σ 2
X , σLX , ν) are unknown parameters. Using the fact that LO −XO is also a t-distribution (Fang et al., 1990),

one can derive

c(θ) = Pr(LO ≤ XO) = Ψ

 µX − µL
σ 2
X + σ 2

L − 2σLX

; ν

 ,

where Ψ ( · ; ν) is the cumulative distribution function for the standard t-distribution with ν degree of freedom. In the

special case of ν → ∞, LO − XO is a normal distribution, and the inclusion probability is c(θ) = Φ


µX−µL√

σ 2
X +σ 2

L −2σLX


. Tables

for Ψ ( · ; ν) and Φ(·) are available in well-known software packages, such as pt and pnorm routines in R. �

Example 2. Random effect model
Suppose that LO = U + W and XO

= V + W , where U , V and W are independent random variables. In this model,
the correlation between LO and XO can be explained by the common latent variable W , called random effect. The model is
particularly convenient in the present context since c(θ) has a simple form

c(θ) =


∞

−∞

SV (u)dFU(u),
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where FU(u) = Pr(U ≤ u) and SV (v) = Pr(V ≥ v). Hence c(θ) is free from the distribution of W . For bivariate discrete
distributions, the above integration is replaced by summation. Since the integrant function SV (v) can be easily calculated by
software packages, computation of c(θ) only requires one dimensional numerical integration or summation. For instance,
if U , V and W are independent Poisson random variables, whose means are θ = (λL, λX , α)′, it leads to a classical bivariate
Poisson model (Holgate, 1964). The density function and inclusion probability are given respectively by

fθ(l, x) = e−λL−λX−α
l

w=0

λl−w
L λx−w

X αw

(l − w)!(x − w)!w!
,

c(θ) = Pr(LO ≤ XO) = e−λL−λX
∞
l=0

λl
L

l!
SV (l).

SV (l) =


∞

x=l λ
x
X/x! is calculated from packages, for example, using ‘‘ppois’’ in R. �

Example 3. Zero-modified Poisson model
Suppose that LO is a binary variable taking LO = 1 with probability p and LO = 0 with probability 1 − p. Also suppose

that XO is a Poisson distribution with parameter λX , which is independent of LO. The joint density function is

fθ(l, x) = pl(1 − p)1−l (λX )
xe−λX

x!
, l = 0, 1; x = 0, 1, 2, . . . ,

where θ = (p, λX )
′, and the inclusion probability is

c(θ) = Pr(LO ≤ XO) = 1 − pe−λX .

The observed distribution of XO is,

Pr(XO
= x|LO ≤ XO) =


c(θ)−1λx

Xe
−λX /x! x = 1, 2, . . . ;

c(θ)−1(1 − p)e−λX x = 0.

Re-parameterizing by p∗
= (1 − pe−λX )−1

≥ 1, the above distribution is the zero-modified Poisson distribution with the
zero-modification parameter p∗ (Dietz andBöhning, 2000). A special case of p = 1 corresponds to the zero-truncated Poisson
distribution.

Appendix B. Regularity conditions

Bymodifying the regularity conditions (e.g., p. 257 of Knight, 2000) with the truncated data, the following conditions are
sufficient for verifying the asymptotic results:

(R1) The parameter space Θ is an open subset of Rp.
(R2) The set A = {(l, x); fθ(l, x) > 0, l ≤ x} does not depend on θ.
(R3) For some ε > 0 and for every θ ∈ Θ , it holds that c(θ) = Pr(LO ≤ XO) ≥ ε.
(R4) θ → fθ(l, x) is three times continuously differentiable (all of the third partial derivatives exist and they are continuous)

for every l ≤ x. Also, c(θ) is three times continuously differentiable.

(R5) E


∂
∂θ

log fθ(LO,XO)

c(θ)


θ=θ0

 LO ≤ XO


= 0.

(R6) I(θ) = −E


∂2

∂θ∂θ′ log
fθ(LO,XO)

c(θ)

 LO ≤ XO

exists and is positive definite.

(R7) For someMijk,θ(l, x) satisfying E[Mijk,θ(LO, XO) | LO ≤ XO
] < ∞,

|∂3fθ(l, x)/∂θi∂θj∂θk| ≤ Mijk,θ(l, x).

(R8) A map Fθ : Θ → D{(−∞, ∞)2} is Fréchet differentiable. That is,

∥Fθ+h − Fθ − h′Ḟθ∥∞ = o(∥h∥) as h → 0.

Remarks on condition (R8): The Fréchet differentiability of Fθ requires that Ḟθ is uniformly bounded on (−∞, ∞)2. Under the
bivariate normal model, partial derivatives Ḟθ have explicit bounds (given in Section 4 of the supplementary material).



2248 T. Emura, Y. Konno / Computational Statistics and Data Analysis 56 (2012) 2237–2250

Appendix C. Proof of Theorem 1

Under conditions (R3) and (R4), all the partial derivatives of 1/c(θ) exist and they are continuous. This implies that 1/c(θ)
is differentiable in the sense that for h ∈ Rp, 1

c(θ + h)
−

1
c(θ)

+ h′
ċ(θ)
c(θ)2

 = o(∥h∥) as h → 0. (C.1)

By straightforward calculations,

∥ϕ(θ + h) − ϕ(θ) − h′gθ∥∞

=

Fθ+h − Fθ − h′Ḟθ

c(θ)
+ Fθ


1

c(θ + h)
−

1
c(θ)

+ h′
ċ(θ)
c(θ)2


+ (Fθ+h − Fθ)


1

c(θ + h)
−

1
c(θ)


∞

≤
1
ε

Fθ+h − Fθ − h′Ḟ


∞
+

 1
c(θ + h)

−
1

c(θ)
+ h′

ċ(θ)
c(θ)2

+ {h′Ḟθ + o(∥h∥)}


−h′

ċ(θ)
c(θ)2

+ o(∥h∥)


∞

.

Under (R8) and by (C.1), the last three terms have the order o(∥h∥). Therefore,

∥ϕ(θ + h) − ϕ(θ) − h′gθ∥∞ = o(∥h∥) as h → 0,

which leads to the Fréchet differentiability of ϕ. The Hadamard differentiability of ϕ immediately follows since it is a weaker
condition than the Fréchet differentiability. In fact, the Fréchet differentiability and Hadamard differentiability are the same
condition since the domain of ϕ (i.e., Θ ⊂ Rp) is finite dimensional (see Example 3.9.2 of van der Vaart and Wellner, 1996).
Applying the functional delta method (p. 297 of van der Vaart, 1998) to the result of Lemma 1, we have

√
n{F

θ̂
(l, x)/c(θ̂) − Fθ(l, x)/c(θ)} =

1
√
n


j

g′
θ(l, x)I

−1(θ)l̇j(θ) + oP(1),

where oP(1) is uniform in (l, x). Therefore,
√
n{F̂(l, x) − F

θ̂
(l, x)/c(θ̂)} =

√
n{F̂(l, x) − Fθ(l, x)/c(θ)} −

√
n{F

θ̂
(l, x)/c(θ̂) − Fθ(l, x)/c(θ)}

=
1

√
n


j

{I(Lj ≤ l, Xj ≤ x) − Fθ(l, x)/c(θ)} −
1

√
n


j

g′
θ(l, x)I

−1(θ)l̇j(θ) + oP(1)

=
1

√
n


j

Vj(l, x; θ) + oP(1). �

Appendix D. Proof of Lemma 2

Let Ŵj(l, x; θ) = ∂ V̂j(l, x; θ)/∂θ. By a Taylor expansion,

V̂j(l, x; θ̂) − V̂j(l, x; θ) = Ŵ′

j(l, x; θ) (θ̂ − θ) + OP(∥θ̂ − θ∥2).

Also, by the weak law of large numbers,

V̂j(l, x; θ) − Vj(l, x; θ) = −g′
θ(l, x)[ {in(θ)/n}−1

− I(θ) ]l̇j(θ) = oP(1),

where oP(1) is uniform in (l, x). The preceding two equations lead to 1
√
n


j

Zj{V̂j(l, x; θ̂) − Vj(l, x; θ)}


∞

=

 1
√
n


j

Zj{Ŵ′

j(l, x; θ) (θ̂ − θ) + oP(∥θ̂ − θ∥) + oP(1)}


∞

=

(θ̂ − θ)′
1

√
n


j

ZjŴj(l, x; θ)


∞

+ oP(1) =

(θ̂ − θ)′OP(1)


∞

+ oP(1) = oP(1). �

Appendix E. Proof of Theorem 2

By Lemmas 1 and 2, Gn,G
(1)
n , . . . ,G(B)

n are asymptotically uncorrelated. Therefore, to show the joint convergence
(Gn,G

(1)
n , . . . ,G(B)

n ) → (Gθ,G
(1)
θ , . . . ,G(B)

θ ) in D{(−∞, ∞)2}⊗(B+1), we only need to show Gn → Gθ and G(b)
n → G(b)

θ in
D{(−∞, ∞)2} for each b ∈ {1, . . . , B}.
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To show Gn → Gθ, we first check the marginal convergence. By Cramér–Wold’s device, this can be proven by, for
a1, . . . , am ∈ R and (l1, x1), . . . , (lm, xm),

m
k=1

akGn(lk, xk) →

m
k=1

akGθ(lk, xk) (E.1)

in distribution. By Theorem 1 and the central limit theorem,
m

k=1

akGn(lk, xk) =
1

√
n


j

m
k=1

akVj(lk, xk; θ) + oP(1) → N(0, Ω(θ))

in distribution, where

Ω(θ) = Var


m

k=1

akVj(lk, xk; θ)


=

m
k=1

m
k′=1

akak′E{V1(lk, xk; θ)V1(lk′ , xk′; θ)}

=

m
k=1

m
k′=1

akak′Cov{Gθ(lk, xk),Gθ(lk′ , xk′)}.

By the definition of Gθ,


k akGθ(lk, xk) is a zero mean normal distribution with variance Ω(θ). Hence, (E.1) is proven. Next,
the tightness of Gn =

√
n{F̂ − F

θ̂
/c(θ̂)} is verified by showing the tightness of

√
n{F̂ − Fθ/c(θ)} and

√
n{F

θ̂
/c(θ̂) − Fθ/c(θ)},

respectively. The tightness of the former is deduced from the empirical process theory for themulti-dimensional distribution
function (Example 2.5.4 of van der Vaart and Wellner, 1996). The tightness of the latter follows from the functional delta
method applied for the Hadamard differentiable map ϕ(θ) = Fθ/c(θ) (Appendix C). Therefore, Gn → Gθ in D{(−∞, ∞)2}
is proven.

Similarly, to show G(b)
n → Gθ in D{(−∞, ∞)2}, we first check

m
k=1

akG(b)
n (lk, xk) →

m
k=1

akG
(b)
θ (lk, xk) (E.2)

in distribution. By Lemma 2,
m

k=1

akG(b)
n (lk, xk) =

1
√
n


j

Z (b)
j

m
k=1

akVj(lk, xk; θ) + oP(1) → N(0, Ω(θ)),

where

Ω(θ) = Var


Z (b)
1


m

k=1

akVj(lk, xk; θ)


= E


m

k=1

akVj(lk, xk; θ)

2

=

m
k=1

m
k′=1

akak′E{V1(lk, xk; θ)V1(lk′ , xk′; θ)} =

m
k=1

m
k′=1

akak′Cov{Gθ(lk, xk),Gθ(lk′ , xk′)}.

Hence, (E.2) holds. The tightness of G(b)
n is proven by the same approach as the tightness proof for Gn → Gθ. �

Appendix F. Proof of Lemma 3

It is enough to show that
√
n(θ̂

TEST
− θ̂) = oP(1). (F.1)

By definition,
√
n(θ̂

TEST
− θ̂) =

√
n{(θ̂

∗

, 0) − θ̂}I(2[l(θ̂) − l{(θ̂
∗

, 0)}] ≤ qn).

Under (R1) through (R7), the likelihood ratio test is consistent under H1 : ρ ≠ 0. Hence,

lim
n→∞

Pr(2[l(θ̂) − l{(θ̂
∗

, 0)}] ≤ q) ≤ Gχ1(q), (F.2)

whereGχ1(·) is the percentile of the chi-squared distributionwith one degree of freedom. First, we prove (F.1) when qn → 0.
For any ε > 0, (F.2) and qn → 0 together imply

Pr
√n(θ̂

TEST
− θ̂)

 > ε


≤ Pr(2[l(θ̂) − l{(θ̂
∗

, 0)}] ≤ qn) → 0 (n → ∞),
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which proves (F.1). Next, we prove (F.1) when qn = q > 0 for all n and ρ ≠ 0. Under (R1) through (R7), the likelihood ratio
test is consistent under H1 : ρ ≠ 0 so that

Pr
√n(θ̂

TEST
− θ̂)

 > ε


≤ Pr(2[l(θ̂) − l{(θ̂
∗

, 0)}] ≤ q) → 0 (n → ∞).

which proves (F.1).

Appendix G. Supplementary data

Supplementary material related to this article can be found online at doi:10.1016/j.csda.2011.12.022.
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