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Abstract Biased sampling affects the inference for population parameters of interest
if the sampling mechanism is not appropriately handled. This paper considers doubly-
truncated data arising in lifetime data analysis in which samples are subject to both
left- and right-truncations. To correct for the sampling biaswith doubly-truncated data,
maximum likelihood estimator (MLE) has been proposed under a parametric family
called the special exponential family (Efron and Petrosian, in J AmStat Assoc 94:824–
834, 1999). However, there is still a lack of justifying the fundamental properties for
the MLE, including consistency and asymptotic normality. In this paper, we point out
that the classical asymptotic theory for the independent and identically distributed
data is not suitable for studying the MLE under double-truncation due to the non-
identical truncation intervals. Alternatively, we formalize the asymptotic results under
independent but not identically distributed data that suitably takes into account for the
between-sample heterogeneity of truncation intervals. We establish the consistency
and asymptotic normality of the MLE under a reasonably simple set of regularity
conditions. Then, we give asymptotically valid techniques to estimate standard errors
and to construct confidence intervals. Simulations are conducted toverify the suggested
techniques, and childhood cancer data are used for illustration.
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1 Introduction

Biased sampling commonly occurs in astronomy, epidemiology and population ageing
studies in which samples are collected under certain constraints. Among the various
sampling schemes, recent studies identify the so-called double truncation phenom-
enon; one can collect a sample only if the variable of interest falls within a certain
interval. Since the variable of the observed sample is truncated by the lower and upper
truncation limits, the sampled data is said to be “doubly truncated” (Efron andPetrosian
1999). For instance, Moreira and de Uña-Álvarez (2010) considered doubly truncated
data arising from the epidemiological study of the childhood cancer in North Portugal.
Here, the truncation limits correspond to the 5-year recruitment period during which
the samples are ascertained. Other examples of double-truncation are found in similar
settings, including Stovring and Wang (2007) and Moreira et al. (2014).

For i = 1, 2, . . ., let y∗
i be a random sample from a density f , let u∗

i be a left-
truncation limit and let v∗

i be a right-truncation limit. Suppose that a sample becomes
available only if u∗

i ≤ y∗
i ≤ v∗

i holds. Then, for a fixed sample size n, the available
subsamples y1, y2, . . . , yn , subject to the constraints ui ≤ yi ≤ vi , i = 1, 2, . . . , n,
are doubly-truncated data. Concretely, naïve statistics for the doubly-truncated data,
such as sample mean and standard deviation, yield biased information about f due
to the data loss in the upper- and lower-tails of f . Bias adjustment for the observable
part is required to recover the population density f .

Although double truncation is one type of biased sampling, it accommodates both
left- and right-truncation as special cases. Under left-truncation only, one obtains
the sample when y∗

i is large enough compared to the left-truncation limit u∗
i . Left-

truncation is also called ‘delayed entry’ when the lifetime y∗
i becomes available only

if it exceeds the entry time u∗
i , as commonly encountered in biostatistics (Andersen

and Keiding 2002; Klein and Moeschberger 2003) , educational research (Emura and
Konno 2012), and industrial life testing (e.g., Sect. 2.4 of Lawless 2003). Under right-
truncation only, one obtains the sample when y∗

i is smaller than the right-truncation
limit v∗

i . Right-truncated data is especially relevant to the incubation time data of
AIDS (e.g., Lagakos et al. 1988; Strzalkowska-Kominiak and Stute 2013) and the
survival data for centenarians (e.g., Emura and Murotani 2015) in which the samples
are ascertained before a fixed time limit. In most cases, statistical methodologies
established for doubly-truncated data can be directly applicable to the left- or right-
truncated data by setting vi = ∞ or ui = −∞, respectively. Hence, methodological
research on doubly-truncated data accommodates a broad class of data structures in a
unified framework.

Recent years, nonparametric procedures for doubly truncated data have been
actively studied in the literature. Important contributions include Shen (2010, 2011),
Moreira and de Uña-Álvarez (2010, 2012), Emura and Konno (2012), Moreira and
Van Keilegom (2013), Austin et al. (2014) and Emura et al. (2015).

Compared to the nonparametric analyses, research is much scarcer on parametric
analyses under double-truncation. Efron and Petrosian (1999) proposed the maximum
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Asymptotic inference for MLEs under double-truncation 879

likelihood estimator (MLE) under a parametric family, called the special exponen-
tial family (SEF). Following them, Hu and Emura (2015) developed the randomized
Newton–Raphson algorithms to obtain the MLE. However, there is still a lack of jus-
tifying the fundamental properties for the MLE, such as consistency and asymptotic
normality. We aim to fill this gap of the previous two papers.

In this paper, we point out that the classical asymptotic theory for the indepen-
dent and identically distributed (i.i.d.) data is not suitable for studying the MLE
under double-truncation. Alternatively, we formalize the asymptotic results under
the independent but not identically distributed (i.n.i.d.) data that take into account
for the between-sample heterogeneity of truncation variables. Our mathematical tools
include, among others, the Lindeberg–Feller multivariate central limit theorem (CLT)
which settles the i.n.i.d. data. We derive a set of the regularity conditions such that the
MLE is consistent and asymptotic normal under the SEF. In addition, we give the suffi-
cient conditions that are reasonably interpreted and verified by the user. Then, we give
asymptotically verified techniques to obtain standard errors and to construct confidence
intervals. The developed techniques are examined by simulations and demonstrated
by the childhood cancer data.

The rest of the paper is organized as follows. Section 2 reviews the model. Section 3
introduces the likelihood function. Section 4 gives the asymptotic analysis which is
the main proposal of this paper. Section 5 conducts simulations. Section 6 analyzes
real data. Section 7 concludes the paper.

2 Special exponential family (SEF)

We review the SEF considered by Efron and Petrosian (1999) for fitting doubly-
truncated data. Let 1{·} be the indicator function. We assume that a random variable
Y ∗ follows the k-dimensional SEF, which is a continuous distribution with a density

fη(y) = exp{ηT · t(y) − φ(η)}1{y ∈ y},

where η = (η1, η2, . . . , ηk)
T ∈ �, t(y) = (y, y2, . . . , yk)T, y ⊂ � is the support

of Y ∗, and � ⊂ �k is a parameter space. Here, φ(η) is a normalizing factor chosen
to satisfy

∫
y fη(y)dy = 1. The SEF is a special case of a k-dimensional exponential

family (p. 23 of Lehmann and Casella 1998).
The parameter space � is called “natural” if

∫
y exp{ηT · t(y)}dy < ∞ for any

η ∈ �. If � is natural, one can interchange the integration and differentiation as
follows:

∂

∂η

∫

y

g(y) exp{ηT · t(y)}dy =
∫

y

t(y)g(y) exp{ηT · t(y)}dy, η ∈ �, (1)

for any function g (Theorem 2.7.1 of Lehmann and Romano 2005). The above identity
is fundamental in the subsequent developments.

The cubic SEF (the SEF with k = 3) is particularly introduced by Efron and
Petrosian (1999), which is obtained by setting t(y) = (y, y2, y3)T, η = (η1, η2, η3)

T

and η4 = · · · = ηk = 0. The density of Y ∗ can be expressed as
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fη(y) = exp{η1y + η2y
2 + η3y

3 − φ(η)}1{y ∈ y},

where φ(η) = log{∫y exp(η1y + η2y2 + η3y3)dy}. For the parameter space � ⊂ �3

to be natural, it is necessary that
∫
y exp(η1y + η2y2 + η3y3)dy < ∞ for any η ∈ �.

Hu and Emura (2015) study the following natural parameter spaces:
First, if we consider the parameter space �+ = {(η1, η2, η3) : η1 ∈ �, η2 ∈

�, η3 > 0}, then we need to set the support of Y ∗ as y+ = (−∞, τ2], where τ2 < ∞
is the upper bound of Y ∗. The corresponding survival function is

Sη(y) =
τ2∫

y

exp{η1t + η2t
2 + η3t

3 − φ(η)}dt, y ≤ τ2.

Second, if we consider the parameter space �− = {(η1, η2, η3): η1 ∈ �, η2 ∈
�, η3 < 0}, then we need to set the support of Y ∗ as y− = [τ1,∞), where τ1 > −∞
is the lower bound of Y ∗. The corresponding survival function is

Sη(y) =
∞∫

y

exp{η1t + η2t
2 + η3t

3 − φ(η)}dt, y ≥ τ1.

In the above two cases, we do not include the boundary η3 = 0 in the parameter
spaces for two reasons. First, we make the parameter space open to satisfy a regularity
condition, which prevents some potential problem when the MLE reaches the bound-
ary. Second, if η3 = 0, then there is no need to set lower or upper bound. In fact, if
η3 = 0, then it is more natural to consider the normal distribution with μ = −η1/2η2
and σ 2 = −1/2η2 with a parameter space �−

η3=0 = {(η1, η2): η1 ∈ �, η2 < 0}
(Castillo 1994; Hu and Emura 2015).

Remark I One can regard the cubic SEF as a skewed normal density, where η3
represents a skewing parameter with respect to the symmetric kernel function
exp(η1y + η2y2). For η3 > 0 the density is skewed to the right while, for η3 < 0
the density is skewed to the left. If one chooses the parameter space �+ for η3 > 0,
then the density is a skewed to the right and truncated by the upper boundary τ2. The
skewed and truncated density often provides a good fit to biomedical studies; see for
instance, Mandrekar and Nandrekar (2003) for liver cirrhosis data and Robertson and
Allison (2012) for the US life table data.

3 Likelihood function

Efron and Petrosian (1999) introduced the likelihood function, which corrects for the
sampling bias with double-truncation. For i = 1, 2, . . . , n, let Ri = [ui , vi ] be a
truncation interval, where ui is a left-truncation limit and vi is a right-truncation limit.
They consider the maximum likelihood estimator (MLE) under the SEF when the
random samples y1, y2, . . . , yn are subject to the constraints yi ∈ Ri , i = 1, 2, . . . , n.
The truncated density of Y ∗, subject to Y ∗ ∈ Ri , is
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Asymptotic inference for MLEs under double-truncation 881

fi (y|η) ≡ fη(y)

Fi (η)
1{y ∈ Ri },

where Fi (η)=∫Ri fη(y)dy.Hence, the log-likelihood function for data (y1, y2, . . . , yn)
is

�n(η) = log

{
n∏

i=1

fi (yi |η)

}

=
n∑

i=1

{log fη(yi ) − log Fi (η)}.

Under the cubic SEF, Hu and Emura (2015) consider two cases: η3 > 0 and η3 < 0.
We briefly review their results. First, consider the case η3 > 0. As discussed before,
the parameter space is �+ = {(η1, η2, η3) : η1 ∈ �, η2 ∈ �, η3 > 0}, and the upper
bound of Y ∗ is τ2. Define δi = 1{vi < τ2}. Then, the log-likelihood function is given
by

�n(η) =
n∑

i=1

(η1yi + η2y
2
i + η3y

3
i )

−
n∑

i=1

δi log

⎧
⎨

⎩

vi∫

ui

exp(η1y + η2y
2 + η3y

3)dy

⎫
⎬

⎭
(2)

−
n∑

i=1

(1 − δi ) log

⎧
⎨

⎩

τ2∫

ui

exp(η1y + η2y
2 + η3y

3)dy

⎫
⎬

⎭
.

Next, in the case η3 < 0, the parameter space is �− = {(η1, η2, η3) : η1 ∈ �, η2 ∈
�, η3 < 0}, and the lower bound of Y ∗ is τ1. Define δi = 1{ui ≥ τ1}. Then, the
log-likelihood function is

�n(η) =
n∑

i=1

(η1yi + η2y
2
i + η3y

3
i )

−
n∑

i=1

δi log

⎧
⎨

⎩

vi∫

ui

exp(η1y + η2y
2 + η3y

3)dy

⎫
⎬

⎭
(3)

−
n∑

i=1

(1 − δi ) log

⎧
⎨

⎩

vi∫

τ1

exp(η1y + η2y
2 + η3y

3)dy

⎫
⎬

⎭
.

In their real data analyses, both Efron and Petrosian (1999) and Hu and Emura
(2015) show that the cubic SEF (the SEF with k = 3) gives the best fit among a
pool of models, including the SEF with k = 1 and k = 2. This implies the great
practical value of the cubic SEF for real data analysis (see also Remark I). However,
one potential concern for the cubic SEF is the unstability of the MLE due to the rich
parameter space. In fact, the mean square error for estimating η1 and η2 is remarkably
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larger under the cubic SEF than the mean square error for estimating η1 and η2 under
the SEF with k = 2 and given η3 = 0 [compare Tables 3, 5 and 6 of Hu and Emura
(2015)]. This motivates us to study the formal justification of the consistency as well
as the convergence rate of theMLE under the k-dimensional SEF, especially for k ≥ 3.

4 Asymptotic inference

This section develops the asymptotic theory for theMLE and then gives asymptotically
valid standard error and confidence interval under the k-dimensional SEF. If we regard
the samples y1, y2, . . . , yn as random variables, we write them as Y1,Y2, . . . ,Yn ,
where Yi follows the truncated density fi (y|η) for i = 1, 2, . . . , n.

4.1 Asymptotic theory

This subsection develops asymptotic properties of the MLE under the k-dimensional
SEF

fη(y) = exp{ηT · t(y) − φ(η)} · 1{y ∈ y}, η ∈ �,

where y ⊂ � is the support of Y ∗, η = (η1, η2, . . . , ηk)
T, t(y) = (y, y2, . . . , yk)T

and φ(η) is chosen to make
∫
y fη(y)dy = 1, that is, φ(η) = log[∫y exp{ηT · t(y)}dy].

In Sect. 2, we have mentioned that the choice of (�, y) is important for the density
to be well-behaved. To keep the generality of our theory, we do not explicitly specify
the form of (�, y). Instead, we will impose the following general assumption:

Assumption (A) The parameter space� is open and contains the true parameter point
η0 = (η01, η

0
2, . . . , η

0
k )

T. In addition, the parameter space � is natural, i.e.,

∫

y
exp{ηT · t(y)}dy < ∞ for any η ∈ �.

The three natural cases (�−, y−), (�+, y+), and (�−
η3=0,�) satisfy Assumption A.

However, the parameter space �η3=0 = {(η1, η2) : η1 ∈ �, η2 ∈ �} becomes natural
only when the support y is bounded from below and above.

Given samples y1, y2, . . . , yn , the log-likelihood is given by

�n(η) =
n∑

i=1

ηT · t(yi ) −
n∑

i=1

log

⎡

⎢
⎣

∫

Ri∩y
exp{ηT · t(y)}dy

⎤

⎥
⎦.

Define η̂n = (η̂1n, η̂2n, . . . , η̂kn)
T to be a solution to the score equations

∂

∂η j
�n(η) = 0, j = 1, 2, . . . , k, (4)

where η = (η1, η2, . . . , ηk)
T ∈ �.
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Asymptotic inference for MLEs under double-truncation 883

Lemma 1 Under Assumption (A), if the solution η̂n = (η̂1n, η̂2n, . . . , η̂kn)
T to Eq.

(4) exists, then it is the MLE, that is, �n(η̂n) ≥ �n(η) for any η ∈ �.

The proof of Lemma 1 is given in “Proof of Lemma 1” in Appendix 1 that utilizes the
concavity of �n(η). Although Lemma 1 does not assure the existence of the solution,
it will be established under more assumptions.

Define the Fisher information of the i th sample as

Ii, js(η) = Eη

{
∂

∂η j
log fi (Yi |η) · ∂

∂ηs
log fi (Yi |η)

}

, i = 1, 2, . . . , n, j, s = 1, 2, . . . , k.

Under Assumption (A), it follows that

Eη

{
∂

∂η j
log fi (Yi |η)

}

= 0, j = 1, 2, . . . , k, i = 1, 2, . . . , n.

They are the consequence of Eq. (1) with g(y) = 1{y ∈ Ri }. Similarly,

Ii, js(η) = Eη

{
∂

∂η j
log fi (Yi |η) · ∂

∂ηs
log fi (Yi |η)

}

= Eη

{

− ∂2

∂η j∂ηs
log fi (Yi |η)

}

, j, s = 1, 2, . . . , k, i = 1, 2, . . . , n.

All the expectations are taken with respect to the distribution of Yi following the
truncated density fi (y|η) for i = 1, 2, . . . , n.

It is well-known that MLEs with independent and identically distributed (i.i.d.)
models have consistency and asymptotic normality under some regularity conditions.
However, the doubly-truncated random samples y1, y2, . . . , yn are independent but
not identically distributed (i.n.i.d.) due to the heterogeneity of intervals [ui , vi ], i =
1, 2, . . . , n. Hence, we need specific justifications for the asymptotic analysis under
the i.n.i.d. models.

Asymptotic theory under i.n.i.d. data has been applied to a linear regression model
with fixed regressors (p. 21 of Van der Vaart 1998; p. 104 of Lehmann and Romano
2005), lifetime model with fixed censored points (Hoadley 1971), and many others.
Nowadays, asymptotic analyses under i.n.i.d. data is less discussed in the literature
as they are simply referred to either the Lindeberg–Feller CLT or the Liapounov CLT
governing the case of i.n.i.d. data.

The classical theorems of Bradley and Gart (1962), Hoadley (1971) and Philippou
and Roussas (1975) cover the asymptotic properties of the MLE under some i.n.i.d.
models. In spite of the significant contribution of their papers, it prevents us to directly
apply their theorems to the present setting. Firstly, the consistency and asymptotic nor-
mality proofs of Bradley and Gart (1962) are largely omitted, which make it difficult
to follow how their regularity conditions are utilized in the proofs. This problem is
partly due to their paper’s dependence on the classical literature in 1940s during which
the probability theory was not established. In particular, the Lindeberg–Feller CLT,
which should be a standard tool, was not referred in their papers. Second, the regularity
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conditions given by Hoadley (1971) are fairly technical and less intuitive, though they
are weaker than those given by Bradley and Gart (1962). Third, the asymptotic nor-
mality theorems of Philippou and Roussas (1975) are stated under the assumption that
the MLE is consistent. Rather, we wish to establish both the consistency and asymp-
totic normality under more intuitive regularity conditions and under the established
probability theory. Finally, modern empirical processes techniques for studying the
asymptotic properties of the MLE are almost exclusively focuses on the i.i.d. settings
(Van der Vaart 1998). In our conclusion, the asymptotic behaviors of the MLE under
double-truncation are not straightforwardly derived by referring to existing theorems.

We develop the asymptotic theory by following a general strategy similar to Bradley
andGart (1962) with suitablemodifications of their regularity conditions to the present
setting. Then, our proofs modify the proofs of consistency and asymptotic normality
described by the book of Lehmann and Casella (1998) under i.i.d. cases. Although
there are many textbooks describing the asymptotic theory of the MLE, their proofs
are not always rigorous or are often limited to the simplistic setting of one-dimensional
parameter.We believe that themathematical treatment of Lehmann and Casella (1998)
is a right way to handle our multi-parameter (k-parameter) setting and to clarify how
the regularity conditions are utilized in the proof.

Our main mathematical tools for establishing the consistency and asymptotic nor-
mality of theMLEare theweak lawof large number (WLLN) and theLindeberg–Feller

CLT for i.n.i.d. random variables. Let “
P−→” denote “convergence in probability”. The

following lemma is available in p. 65 of Shao (2003):

Lemma 2 (The WLLN for i.n.i.d. random variables) Let Y1,Y2, . . . be independent
random variables with E[|Yi |] < ∞ for i = 1, 2, . . .. If there is a constant p ∈ [1, 2]
such that

lim
n→∞

1

n p

n∑

i=1

E[|Yi |p] = 0,

then

1

n

n∑

i=1

(Yi − E[Yi ]) P−→ 0.

Let “
d−→” denote “convergence in distribution”. The so-called Lindeberg–Feller

CLT is a version of the CLT for the sum of i.n.i.d. random variables. The following
is the multivariate extension of the Lindeberg–Feller CLT available in Van der Vaart
(1998).

Lemma 3 (The Lindeberg–Feller multivariate central limit theorem) Let Dn,1, . . . ,

Dn,n be independent k-dimensional random vectors with finite second moments such
that

n∑

i=1

E[||Dn,i − E[Dn,i ]||21{||Dn,i − E[Dn,i ]|| > ε}] → 0, n → ∞ (5)

123



Asymptotic inference for MLEs under double-truncation 885

for every ε > 0, and

n∑

i=1

Cov(Dn,i ) → �, n → ∞.

Then,
∑n

i=1 (Dn,i − EDn,i )
d−→ Nk(0, �) as n → ∞.

Equation (5) is known as the Lindeberg condition.
We impose the following conditions motivated by Bradley and Gart (1962):

Assumption (B) There exists a k×k positive definitematrix I (η)={I js(η)} j,s=1,2,...,k
such that, as n → ∞,

n∑

i=1

Ii, js(η)/n → I js(η), j, s ∈ {1, 2, . . . , k}, η ∈ �.

Assumption (C) For j, s, l ∈ {1, 2, . . . , k}, there is a measurable function Mjsl(·)
such that

∣
∣
∣
∣

∂3

∂η j∂ηs∂ηl
log fi (y|η)

∣
∣
∣
∣ ≤ Mjsl(y), y ∈ y, η ∈ �, i = 1, 2, . . . , n

with mi, jsl ≡ Eη0{Mjsl(Yi )} < ∞ and m2
i, jsl ≡ Eη0{Mjsl(Yi )2} < ∞. For some

m jsl and m2
jsl , it holds that

∑n
i=1 mi, jsl/n → m jsl and

∑n
i=1 m

2
i, jsl/n → m2

jsl as
n → ∞.

Assumption (D) For j, s ∈ {1, 2, . . . , k}, there is a measurable functionWjs(·) such
that

∣
∣
∣
∣

∂2

∂η j∂ηs
log fi (y|η)

∣
∣
∣
∣ ≤ Wjs(y), y ∈ y, η ∈ �, i = 1, 2, . . . , n

with wi, js ≡ Eη0{Wjs(Yi )} < ∞ and w2
i, js ≡ Eη0{Wjs(Yi )2} < ∞. For some w js

and w2
js , it holds that

∑n
i=1 wi, js/n → w js and

∑n
i=1 w2

i, js/n → w2
js as n → ∞.

Assumption (E) For j ∈ {1, 2, . . . , k}, there is a measurable function A j (·) such
that

∣
∣
∣
∣

∂

∂η j
log fi (y|η)

∣
∣
∣
∣ ≤ A j (y), y ∈ y, η ∈ �, i = 1, 2, . . . , n

with supy A
2
j (y) < ∞.

Assumption (B) is an essential requirement that the Fisher information matrix for
large sample is stabilized. Here, the large sample Fisher information matrix is rea-
sonably defined as the limit of the average Fisher information matrices for individual
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samples. Assumption (C) is required for the remainder terms of the Taylor expansion
of �n(η) to be negligible. It plays a fundamental role in proving both consistency and
asymptotic normality, analogous to i.i.d. cases. Assumption (D) is also required for
the Taylor expansion to work. The bounding functions in Assumption (B)–(D) are
necessary to check the condition of the WLLN in Lemma 2. Assumption (E) gives
the bounds of score functions which are similar to those of Bradley and Gart (1962)
under i.n.i.d. cases. This sort of assumption does not appear under i.i.d. data since it
is claimed to be too strong under i.i.d. cases and without truncation (Hoadley 1971).
However, such assumptions can be reasonably satisfied under double-truncation since
the density is truncated from below and above. Assumption (E) is required to verify
the Lindeberg condition in Lemma 3.

Theorem 1 If Assumptions (A)–(E) hold, then

(a) Existence and consistency: There exists a solution η̂n to Eq. (4) with probability

tending to one, such that η̂n
P−→ η0as n → ∞.

(b) Asymptotic normality:
√
n(η̂n − η0)

d−→ Nk(0, I (η0)−1) as n → ∞.

The proof of Theorem 1 is given in Appendix 1.

4.2 Standard error and confidence interval

We use Theorem 1 (b) to obtain the standard error SE(η̂ jn) and to construct the
confidence interval for η j . By Assumptions (A) and (B), when n is large, we have the
following approximations:

I js(η
0) ≈ 1

n

n∑

i=1

Ii, js(η
0)

= 1

n

n∑

i=1

Eη0

{
∂

∂η j
log fi (Yi |η0) · ∂

∂ηs
log fi (Yi |η0)

}

= 1

n

n∑

i=1

Eη0

{

− ∂2

∂η j∂ηs
log fi (Yi |η0)

}

≈ −1

n

n∑

i=1

∂2

∂η j∂ηs
log fi (Yi |η)

∣
∣
∣
∣
η=η̂n

= −1

n

∂2

∂η j∂ηs
�n(η)

∣
∣
∣
∣
η=η̂n

≡ Î j s(η̂n).

The last term constitutes the observed Fisher information matrix Î (η̂n) =
{ Î j s(η̂n)} j,s=1,2,...,k , which is obtained through the final step of the Newton–Raphson
algorithm of Hu and Emura (2015). Hence,

I (η0) ≈ Î (η̂n) = −1

n

∂2

∂η2
�n(η̂n),
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and the standard error is

SE(η̂ jn) =
√

{ Î (η̂n)−1} j j
n

=
√√
√
√
{

− ∂2

∂η2
�n(η)

}−1

j j

∣
∣
∣
∣
∣
η=η̂n

, j ∈ {1, 2, . . . , k},

where { Î (η̂n)−1} j j is the j th diagonal element in the inverse of the observed Fisher
information matrix Î (η̂n). By the normal approximation of η̂n = (η̂1n, η̂2n, . . . , η̂kn)

T

due to Theorem 1 (b), we construct the (1 − α)100 % confidence intervals for η j :

[η̂ jn − Zα/2 · SE(η̂ jn), η̂ jn + Zα/2 · SE(η̂ jn)], j ∈ {1, 2, . . . , k},

where Z p is the pth upper quantile for N (0, 1).
By the delta method, the standard error of the density estimator is

SE{ fη̂n (y)} =
√√
√
√
{

∂

∂η
fη(y)

}T
·
{

− ∂2

∂η2
�n(η)

}−1

· ∂

∂η
fη(y)

∣
∣
∣
∣
∣
η=η̂n

,

where

∂

∂η
fη(y) =

⎡

⎢
⎣

y − e1(η)/e0(η)
...

yk − ek(η)/e0(η)

⎤

⎥
⎦ · fη(y),

and where

e j (η) =
∫

y
y j exp{ηT · t(y)}dy, j ∈ {0, 1, 2, . . . , k}.

The (1 − α)100 % confidence interval for the density fη(y) is,

[ fη̂n (y) − Zα/2 · SE{ fη̂n (y)}, fη̂n (y) + Zα/2 · SE{ fη̂n (y)}].

Similarly, the standard error of estimating the survival function is

SE{Sη̂n
(y)} =

√√
√
√
{

∂

∂η
Sη(y)

}T
·
{

− ∂2

∂η2
�n(η)

}−1

· ∂

∂η
Sη(y)

∣
∣
∣
∣
∣
η=η̂n

,

where

∂

∂η
Sη(y) =

∫

y∈y, t>y

⎡

⎢
⎣

t − e1(η)/e0(η)
...

tk − ek(η)/e0(η)

⎤

⎥
⎦ · fη(t)dt.
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The (1 − α)100 % confidence interval for the survival function Sη(y) is

[Sη̂n
(y) − Zα/2 · SE{Sη̂n

(y)}, Sη̂n
(y) + Zα/2 · SE{Sη̂n

(y)}].

4.3 Sufficient conditions

We show that there exist simple sufficient conditions to verify the assumptions in
Theorem 1.

Lemma 4 Assumptions (C)–(E) hold under the following two conditions:

Assumption (F) The parameter space � is bounded.

Assumption (G) The lower support of left-truncation uinf ≡ inf i (u∗
i ) and the upper

support of right-truncation vsup ≡ supi (v
∗
i ) are finite real numbers. In addition, there

exist constants u0 < v0 such that

[u0, v0] ⊂ [ui , vi ] ⊂ [uinf , vsup] ⊂ y, i = 1, 2, . . . .

The proof of Lemma 4 is given in “Proofs of Lemma 4” in Appendix 1.
Assumption (F) can be always satisfied since one can choose an arbitrary large

bound for each parameter. This sort of technical assumption is often employed in
mathematical statistics (e.g., see Example 4.19 of Shao 2003), but it poses no practical
restriction.

Assumption (G) is interpreted as the “stability” of truncation intervals among sam-
ples. The interval length cannot be too short (should be longer than v0−u0) and cannot
be too long (should be bounded by vsup −uinf). In addition, all the intervals must con-
tain the common region [u0, v0]. Intuitively, if the interval length is too short, then
the sample can have extremely high impact on the MLE since the sample inclusion
probability Fi (η) = ∫ vi

ui
fη(y)dy in the likelihood is too small. In particular, Assump-

tion (G) excludes the extreme case of ui = vi . Hence, Assumption (G) is a requirement
for bounding the effect of individual’s likelihood contribution. This sort of stabilizing
assumption is common in the context of the “inverse censoring/truncation probability
weighting” (Seaman and White 2011).

Example 1 (Fixed double-truncation) Truncation intervals are fixed for all subjects,
say u∗

i = ui = u0 and v∗
i = vi = v0 for i = 1, 2, . . .. Assumption (G) holds when

[u0, v0] ⊂ y. Statistical inference under the fixed double-truncation is extensively
studied in the classical literature and well summarized in the book of Cohen (1991).
See also some recent work of Sankaran and Sunoj (2004)

Example 2 (Fixed-length double-truncation) The length of truncation intervals is fixed
for all subjects, say [u∗

i , v
∗
i ] = [u∗

i , u
∗
i + d0], d0 > 0, for i = 1, 2, . . .. If u∗

i = u0
for i = 1, 2, . . ., then this reduces to the fixed double truncation (Example 1). We
relax the fixed double truncation by allowing u∗

i to vary on [a, b] where a < b are
known. If [a, b + d0] ⊂ y and b < a + d0, then Assumption (G) holds with uinf = a,
u0 = b, v0 = a + d0, and vsup = b + d0. The condition b < a + d0 guarantees the
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sufficient follow-up length (d0 > b − a). If d0 is too short, then the intervals [ui , vi ],
i = 1, 2, . . ., cannot share any common region.

Remark II Under Assumption (G), all the observations yi , i = 1, 2, . . ., fall in the
region [uinf , vsup] ⊂ y. Typical nonparametric estimators encounter the unidentifia-
bility about the population density f since no information is available in the region
y∩[uinf , vsup]c. For instance, if y+ = (−∞, τ2] is the support of f and vsup < τ2, then,
the density f is unidentifiable on the region y∩[uinf , vsup]c = (−∞, uinf)∪(vsup, τ2].
In this instance, Theorem 2 still verifies the consistency of the MLE under Assump-
tion (G). The key is the strong assumptions that the parametric form of the distribution
is known on the entire support y+ = (−∞, τ2], and the value of τ2 is known. If
no information about τ2 is available, Hu and Emura (2015) suggest using the value
τ2 = maxi yi . In some special applications, a reasonable value of τ2 is available, for
instance τ2 = 120 (years of age) for survival analysis of centenarians (those who live
beyond the age of 100 years) (see Emura and Murotani 2015).

5 Simulations

We conduct Monte Carlo simulations to examine the numerical validity of the asymp-
totic results. For each repetition, we generate random triplet (ui , yi , vi ), subject to
ui ≤ yi ≤ vi , for i = 1, 2, . . . , n. The data come from the independent random triplet
(U∗,Y ∗, V ∗) subject to the inclusion criterion U∗ ≤ Y ∗ ≤ V ∗. Here, Y ∗ follows the
cubic SEF (k = 3) with η1 = 5, η2 = −0.5, η3 = 0.005 or η3 = −0.005, and the
distribution of (U∗, V ∗) is chosen such that P(U∗ ≤ Y ∗ ≤ V ∗) = 0.5 or 0.25. The
details of the data generation schemes are given in Appendix 2.

To obtain the MLE η̂n = (η̂1n, η̂2n, η̂3n)
T, we maximize the log-likelihood in

Eqs. (2) or (3) by performing the randomized Newton–Raphson algorithm starting
with the initial values (η

(0)
1 , η

(0)
2 , η

(0)
3 ) = (ȳ/s2,−1/2s2, 0), where ȳ = ∑

i yi/n
and s2 = ∑

i (yi − ȳ)2/(n − 1). We randomize the initial values for the case of un-
convergence. In this way, the algorithm always converges. The details of the algorithm
follow Hu and Emura (2015). Based on 1000 repetitions, we evaluate the performance
of η̂n = (η̂1n, η̂2n, η̂3n)

T, fη̂(t) and Sη̂(t), where t is chosen as Sη(t) = 0.5. We also
evaluate the standard error and confidence interval for the estimators.

Table 1 displays the results for estimating η1, η2 and η3 under P(U∗ ≤ Y ∗ ≤
V ∗) = 0.5. The estimators are roughly unbiased for the true values, and their standard
deviation (SD) vanishes as the sample size increase from n = 100 to 300. The standard
errors give very good approximations to the SDs of the estimators for the cases of
η3 = 0.005while they slightly overestimate the SDs for the cases of η3 = −0.005. The
overestimation is due to a few standard errors occurring when the MLE is maximized
near the boundary η3 = 0. The empirical coverage rates of the confidence intervals
are reasonably close to the nominal 95 %.

Table 2 displays the results when the truncation effect is heavier (i.e., P(U∗ ≤
Y ∗ ≤ V ∗) = 0.25). Compared to Table 1 (the case of P(U∗ ≤ Y ∗ ≤ V ∗) = 0.5), the
SDs of the estimators inflate. The standard errors somewhat overestimate the SDs in
all cases. Consequently, the empirical coverage rates of the confidence intervals are
slightly larger than the nominal 95 %. The overestimation and over-coverage become
negligible when the sample size increases up to n = 300.
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Table 1 Simulation results for estimating parameters η1, η2 and η3 under the cubic SEF based on 1000
repetitions (under the inclusion probability P(U∗ ≤ Y ∗ ≤ V ∗) ≈ 0.50)

(η1, η2, η3) n E(η̂1) SD(η̂1) E[SE(η̂1)] 95 % Cov

(5, −0.5, 0.005) 100 5.856 7.282 7.436 0.936

200 5.484 5.146 5.165 0.944

300 5.378 4.125 4.207 0.951

(5, −0.5,−0.005) 100 4.928 7.550 8.160 0.957

200 4.981 5.346 5.675 0.947

300 4.955 4.292 4.608 0.958

(η1, η2, η3) n E(η̂2) SD(η̂2) E[SE(η̂2)] 95 % Cov

(5, −0.5, 0.005) 100 −0.622 1.397 1.437 0.940

200 −0.573 0.995 0.998 0.945

300 −0.561 0.797 0.813 0.946

(5, −0.5,−0.005) 100 −0.422 1.582 1.717 0.954

200 −0.465 1.121 1.194 0.949

300 −0.472 0.901 0.970 0.956

(η1, η2, η3) n E(η̂3) SD(η̂3) E[SE(η̂3)] 95 % Cov

(5, −0.5, 0.005) 100 0.0101 0.089 0.091 0.944

200 0.0084 0.063 0.063 0.950

300 0.0081 0.051 0.052 0.949

(5, −0.5,−0.005) 100 −0.0145 0.109 0.119 0.952

200 −0.0094 0.077 0.083 0.953

300 −0.0081 0.062 0.067 0.956

If η1 = 5, η2 = −0.5, and η3 = 0.005, then the upper support is τ2 = 8
If η1 = 5, η2 = −0.5, and η3 = −0.005, then the lower support is τ1 = 2
95 % Cov The empirical coverage rate of the 95 % confidence intervals

Table 3 displays the results for estimating survival function Sη(t) and density func-
tion fη(t) under P(U∗ ≤ Y ∗ ≤ V ∗) = 0.5. The estimators are virtually unbiased in
all the cases. The SDs decrease as the sample size n increases from 150 to 300, and
they are precisely estimated by the standard errors. Also, the empirical coverage rates
are in good agreement with the nominal 95 %. These results are similar even when
the truncation effect is heavier (i.e., P(U∗ ≤ Y ∗ ≤ V ∗) = 0.25), except some minor
over-coverage of the confidence intervals (Table 4).

6 Data analysis

6.1 The childhood cancer data (Moreira and de Uña-Álvarez 2010)

The childhood cancer dataset (Moreira and de Uña-Álvarez 2010) is analyzed for
illustration. The data contains the ages at onset of cancer at a young age (below 15
years) within a recruitment period of 5 years (between January 1, 1999 and December
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Table 2 Simulation results for estimating parameters η1, η2 and η3 under the cubic SEF based on 1000
repetitions (under the inclusion probability P(U∗ ≤ Y ∗ ≤ V ∗) ≈ 0.25)

(η1, η2, η3) n E(η̂1) SD(η̂1) E[SE(η̂1)] 95 % Cov

(5, −0.5, 0.005) 100 6.241 8.963 9.783 0.977

200 5.189 6.494 6.722 0.949

300 5.334 5.133 5.502 0.954

(5, −0.5,−0.005) 100 5.306 9.266 10.431 0.964

200 5.228 6.868 7.338 0.964

300 5.175 5.776 5.958 0.949

(η1, η2, η3) n E(η̂2) SD(η̂2) E[SE(η̂2)] 95 % Cov

(5, −0.5, 0.005) 100 −0.702 1.725 1.894 0.977

200 −0.517 1.256 1.304 0.950

300 −0.549 0.991 1.067 0.950

(5, −0.5,−0.005) 100 −0.504 1.935 2.178 0.962

200 −0.508 1.429 1.533 0.959

300 −0.508 1.206 1.245 0.953

(η1, η2, η3) n E(η̂3) SD(η̂3) E[SE(η̂3)] 95 % Cov

(5, −0.5, 0.005) 100 0.0157 0.110 0.121 0.971

200 0.0049 0.080 0.083 0.949

300 0.0072 0.063 0.068 0.954

(5, −0.5,−0.005) 100 −0.0087 0.134 0.150 0.966

200 −0.0069 0.098 0.105 0.954

300 −0.0062 0.083 0.086 0.956

If η1 = 5, η2 = −0.5, and η3 = 0.005, then the upper support is τ2 = 8
If η1 = 5, η2 = −0.5, and η3 = −0.005, then the lower support is τ1 = 2
95 % Cov The empirical coverage rate of the 95 % confidence intervals

31, 2003). The onset ages are considered as the ages at which children are diagnosed as
cancer within the period. However, they do not have any information on children who
developed cancer outside the period. Since the time constraint is purely by the design
problem, observed data are biased sampling from the target population in which the
constraint is completely ignored. The observed samples consist of 406 children with
{(ui , yi , vi ): i = 1, . . . , 406} subject to ui ≤ yi ≤ vi , where yi is the age at diagnosis,
ui is the age at the recruitment start (January 1, 1999), and vi = ui + 1825 is the
age at the recruitment end (December 31, 2003). We make inference for the survival
function S(t) of the age at diagnosis.

The data have been analyzed previously. Moreira and de Uña-Álvarez (2010) and
Emura et al. (2015) nonparametrically estimated the distribution function and survival
function, respectively, based on the NPMLE. Hu and Emura (2015) performed model
selection among the pool of parametric models, and concluded that the cubic SEF
gives the best fit. In addition, Hu and Emura (2015) demonstrated that the two survival
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Table 3 Simulation results for estimating survival function Sη(y) and density function fη(y) under the
cubic SEF based on 1000 repetitions (under the inclusion probability P(U∗ ≤ Y ∗ ≤ V ∗) ≈ 0.50)

(η1, η2, η3) n E{Sη̂(t)} SD{Sη̂(t)} E[SE{Sη̂(t)}] 95 % Cov

(5, −0.5, 0.005) 100 0.499 0.071 0.070 0.944

Sη(y) = 0.5 200 0.500 0.049 0.049 0.939

300 0.502 0.038 0.039 0.947

(5, −0.5,−0.005) 100 0.504 0.062 0.065 0.941

Sη(y) = 0.5 200 0.503 0.044 0.045 0.957

300 0.502 0.036 0.037 0.949

(η1, η2, η3) n E{ fη̂(t)} SD{ fη̂(t)} E[SE{ fη̂(t)}] 95 % Cov

(5, −0.5, 0.005) 100 0.367 0.054 0.057 0.969

fη(y) = 0.369 200 0.367 0.036 0.039 0.967

300 0.367 0.030 0.031 0.961

(5, −0.5,−0.005) 100 0.430 0.057 0.060 0.961

fη(y) = 0.427 200 0.428 0.040 0.041 0.947

300 0.427 0.032 0.033 0.958

If η1 = 5, η2 = −0.5, and η3 = 0.005, then the upper support is τ2 = 8
If η1 = 5, η2 = −0.5, and η3 = −0.005, then the lower support is τ1 = 2
95 % Cov The empirical coverage rate of the 95 % confidence intervals

Table 4 Simulation results for estimating survival function Sη(y) and density function fη(y) under the
cubic SEF based on 1000 repetitions (under the inclusion probability P(U∗ ≤ Y ∗ ≤ V ∗) ≈ 0.25)

(η1, η2, η3) n E{Sη̂(t)} SD{Sη̂(t)} E[SE{Sη̂(t)}] 95 % Cov

(5, −0.5, 0.005) 100 0.512 0.091 0.097 0.977

Sη(y) = 0.5 200 0.501 0.063 0.067 0.959

300 0.501 0.051 0.053 0.958

(5, −0.5,−0.005) 100 0.499 0.081 0.087 0.960

Sη(y) = 0.5 200 0.504 0.055 0.060 0.960

300 0.502 0.045 0.048 0.957

(η1, η2, η3) n E{ fη̂(t)} SD{ fη̂(t)} E[SE{ fη̂(t)}] 95 % Cov

(5, −0.5, 0.005) 100 0.357 0.076 0.076 0.954

fη(y) = 0.369 200 0.363 0.047 0.052 0.969

300 0.365 0.040 0.042 0.964

(5, −0.5,−0.005) 100 0.421 0.072 0.079 0.976

fη(y) = 0.427 200 0.425 0.050 0.054 0.968

300 0.426 0.040 0.043 0.963

If η1 = 5, η2 = −0.5, and η3 = 0.005, then the upper support is τ2 = 8
If η1 = 5, η2 = −0.5, and η3 = −0.005, then the lower support is τ1 = 2
95 % Cov The empirical coverage rate of the 95 % confidence intervals
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curves for the NPMLE and cubic SEF are quite similar. However, their analysis only
gives point estimates without precision (e.g., standard error and confidence interval).
Here in this paper, we supply the previous results.

6.2 Numerical results

To fit the cubic SEF with the lower boundary τ1 = y(1) = 6, we maximize the log-
likelihood in Eq. (3), and obtain theMLE η̂n = (η̂1n, η̂2n, η̂3n)

T = (−0.00079, 3.38×
10−7,−4.87 × 10−11) by the Newton–Raphson algorithm as proposed in Hu and
Emura (2015). We estimate the survival function by Sη̂(y) for y ≥ τ1 = 6, which is
depicted in Fig. 1. Figure 1 also draws the 95 % confidence intervals for the survival
function based on the method of Sect. 4.2.

Figure 1 compares the estimated survival function Sη̂(y) with the NPMLE. As
previously observed by Hu and Emura (2015), the two estimated survival curves are
close to one another. Here in our analysis, this observation can be further confirmed
since the lower and upper confidence intervals completely bracket the NPMLE. Still,
this is not a formal statistical test since we do not consider the variability of the
NPMLE.

An important advantage of the cubic SEF over the NPMLE is to provide a density
estimator. The NPMLE gives a discrete distribution which cannot offer a continuous
density function unless some non-trivial smoothing techniques are applied.

Figure 2 shows the estimated density along with the 95 % confidence intervals. The
density has a heavy tail near the lower bound τ1 = mini (yi ) = 6. Biologically, this
implies that there is higher risk of developing cancer in early ages, especially before
2-years old. This observation agrees with Emura et al. (2015) who tested the null
hypothesis “childhood cancer occurs uniformly over all ages” against the alternative
hypothesis “occurrence of childhood cancer decreases as their age increases”. Statisti-
cally, the heavy tail is due to the effect of having a negative value η̂3 = −4.87×10−11.

Fig. 1 Estimated survival functions for the childhood cancer data based on the cubic SEF and the NPMLE.
Dotted lines are the 95 % confidence interval based on the cubic SEF. The vertical line signifies the lower
boundary mini (yi ) = y(1) = 6
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Fig. 2 The estimated density function (with 95 % confidence intervals) under the cubic SEF for the
childhood cancer data. The vertical line is the lower bound τ1 = mini (yi ) = y(1) = 6

Since the tail of the density is sensitive to the value of η̂3, the confidence intervals are
wider there.

6.3 Checking regularity conditions

We examine how the regularity conditions for the asymptotic analysis are checked in
terms of Assumption (G). The truncation mechanism corresponds to the fixed-length
double-truncation (Example 2 of Sect. 4.3), where the follow-up length is fixed at 5
years, d0 = 1825 (days). Assumption (G) requires that the follow-up is sufficiently
long, i.e., d0 > b − a, where [a, b] is the support for the distribution of u∗

i ’s (ages at
the start of recruitment). Since the distribution of v∗

i ’s is previously approximated by a
uniform distribution on [0, 7300] (Moreira and de Uña-Álvarez 2010), we assume that
u∗
i ’s are uniformly distributed on [−1825, 5475]. Accordingly, a = −1825 and b =

5475. Unfortunately, Assumption (G) does not hold since d0 < b − a = 7300. If the
study could increase the follow-up length by d0 > 7300, Assumption (G) would hold.
This example demonstrates howAssumption (G) is checked and interpreted by the user.

7 Conclusion and discussion

When samples are subject to double-truncation, the asymptotic properties ofMLEmay
not be derived through the classical theories for i.i.d. samples. The problem about how
one should treat the non-identical truncation intervals among samples poses a unique
problem for double-truncation, which has been missed in the literature. The goal of
this paper is to point out the problem and to give a possible solution by deriving
the formal asymptotic results under the theories on independent but not identically
distributed (i.n.i.d.) random variables. The consistency and asymptotic normality of
the MLE under the SEF are established assuming a reasonably simple set of regularity
conditions. The simulations show that the standard error and confidence intervals based
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on our asymptotic theories exhibit desirable performance in finite samples. Utilizing
the proposed confidence intervals, our analysis of the childhood cancer data confirms
the previously reported findings on the risk of the cancer (e.g., higher risk of developing
cancer in early ages).

We derive the set of regularity conditions (Assumptions A–E) such that the MLE
is consistent and asymptotic normal under the k-dimensional SEF. Note that the SEF,
as a member of the k-dimensional exponential family, satisfies many mathematically
convenient properties, such as interchangeability of integration and differentiation
(Sect. 2) and the concave property of the log-likelihood (Sect. 4). Consequently, our
regularity conditions do not need to impose distributional assumptions, and hence
they are more simplified than those required to regulate general parametric models.
Importantly, this simplification makes some of our regularity conditions easily ver-
ifiable by users. Indeed, we show that part of the regularity conditions are satisfied
under a very simple stability condition about the truncation intervals (Sect. 4.3). How-
ever, to extend the conditions to general parametric models, one needs to add extra
conditions guaranteeing the desired distributional properties, with risk of increasing
complexity.

Itwouldbeof great interest to examine the efficiencyof theMLE.For our asymptotic
analysis of the MLE, we have adopted the approach of Efron and Petrosian (1999)
who constructed likelihood conditional on the truncation limits. This “conditional”
approach has the advantage of being free from the distributional assumptions for
the truncation limits. On the other hand, it is often natural to utilize distributional
assumptions of the truncation limits into estimation. In particular, the assumptions
that the left-truncation limit u∗

i is a realization from a uniform distribution, and the
right-truncation limit is v∗

i = u∗
i +d0, where d0 > 0 is a constant, are often plausible in

doubly-truncated data (Stovring and Wang 2007; Moreira and de Uña-Álvarez 2010).
A related paper is De Uña-álvarez (2004) who constructed a moment-based estimator
which is more efficient than the NPMLE when u∗

i follows a uniform distribution, and
v∗
i = u∗

i +d0 is a right-censoring limit (instead of right-truncation limit). An attempt to
derive more efficient estimators than theMLE has not been made under the parametric
models, which is an interesting topic for further investigation.
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Appendix 1: Proofs

Proof of Lemma 1

It suffices to check that the k× k matrix ∂2�n(η)/∂η2 is negative semi-definite for any
η ∈ �. Define

E j
i (η) =

∫

Ri∩y
y j exp{ηT · t(y)}dy, j = 0, 1, . . . , 3k.
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With these notations, the log-likelihood is written as

�n(η) =
n∑

i=1

ηT · t(yi ) −
n∑

i=1

log E0
i (η).

As in Hu and Emura (2015), the score functions are

∂

∂η j
�n(η) =

n∑

i=1

{y j
i − E j

i (η)/E0
i (η)}, j = 1, 2, . . . , k,

and the second-order derivatives of the log-likelihood are

∂2

∂η j∂ηs
�n(η) = −

n∑

i=1

[E j+s
i (η)/E0

i (η)

−{E j
i (η)/E0

i (η)}{Es
i (η)/E0

i (η)}]

= −
n∑

i=1

Covi (Y
j ,Y s |η), j, s = 1, 2, . . . , k.

Let Covi {t(Y )|η} be the covariance matrix whose ( j, s) element is Covi (Y j ,Y s |η),
j, s = 1, 2, . . . , k. Then,

∂2�n(η)

∂η2
= −

n∑

i=1

Covi {t(Y )|η}.

Since the covariancematricesCovi {t(Y )|η}, i = 1, 2, . . . , n are positive semi-definite
(see p. 287, Theorem B.2 of Sen and Srivastava 1990), their sum is also positive semi-
definite. Hence, ∂2�n(η)/∂η2 is negative semi-definite. ��

Proof of Theorem 1 (a): Existence and consistency

Under Assumption (A), one can define a subset of �,

Qa = {η = (η1, η2, . . . , ηk):||η − η0||2 ≤ a2},

where ||η||2 = ηTη and a > 0 is a small number, which produces a sphere with center
η0 and radius a.The surface of Qa is defined as

∂Qa = {η = (η1, η2, . . . , ηk):||η − η0||2 = a2}.

Now, we will show that for any sufficiently small a and for any η ∈ ∂Qa ,

lim
n→∞ P{�n(η) < �n(η

0)} = lim
n→∞ P

{
1

n
�n(η) − 1

n
�n(η

0) < 0

}

= 1.
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Asymptotic inference for MLEs under double-truncation 897

This implies that, with probability tending to one, there exists a local maxima in Qa ,
which solves Eq. (4).

By a Taylor expansion, we expand the log-likelihood about the true value η0 as

�n(η) = �n(η
0) +

k∑

j=1

{
∂

∂η j
�n(η)

∣
∣
∣
∣η=η0

}

(η j − η0j )

+ 1

2!
k∑

j=1

k∑

s=1

{
∂2

∂η j∂ηs
�n(η

∣
∣
∣
∣η=η0

}

(η j − η0j )(ηs − η0s )

+ 1

3!
k∑

j=1

k∑

s=1

k∑

l=1

{
∂3

∂η j∂ηs∂ηl
�n(η)

∣
∣
∣
∣
η=η∗

}

× (η j − η0j )(ηs − η0s )(ηl − η0l ),

(6)

where η∗ is on the line between η and η0. By Assumption (C), there is a measurable
function Mjsl such that

−Mjsl(y) ≤ ∂3

∂η j∂ηs∂ηl
log fi (y|η∗) ≤ Mjsl(y), i = 1, 2, . . . , n.

This implies that

∂3

∂η j∂ηs∂ηl
log fi (y|η∗) = γ jsl(y|η∗) · Mjsl(y),

for some γ jsl(y|η∗) ∈ [−1, 1]. Thus

∂3

∂η j∂ηs∂ηl
�n(η)|η=η∗ =

n∑

i=1

γ jsl(yi |η∗) · Mjsl(yi ).

Then, we rewrite Eq. (6) to yield

1

n
�n(η) − 1

n
�n(η

0) = 1

n

k∑

j=1

{
∂

∂η j
�n(η)

∣
∣
∣
∣η=η0

}

(η j − η0j )

+ 1

2n

k∑

j=1

k∑

s=1

{
∂2

∂η j∂ηs
�n(η)

∣
∣
∣
∣η=η0

}

(η j − η0j )(ηs − η0s )

+ 1

6n

k∑

j=1

k∑

s=1

k∑

l=1

(η j − η0j )(ηs − η0s )(ηl − η0l )

n∑

i=1

γ jsl(yi |η∗) · Mjsl(yi )

≡ Sn,1(η) + Sn,2(η) + Sn,3(η).

123



898 T. Emura et al.

Here, we define

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn,1(η) ≡ 1
n

k∑

j=1

{
∂

∂η j
�n(η)

∣
∣
∣
∣η=η0

}

(η j − η0j ),

Sn,2(η) ≡ 1
2n

k∑

j=1

k∑

s=1

{
∂2

∂η j ∂ηs
�n(η)

∣
∣
∣
∣η=η0

}

(η j − η0j )(ηs − η0s ),

Sn,3(η) ≡ 1
6n

k∑

j=1

k∑

s=1

k∑

l=1
(η j − η0j )(ηs − η0s )(ηl − η0l )

n∑

i=1
γ jsl(yi |η∗) · Mjsl(yi ).

Our target is to prove that, for a sufficiently small a and for any η ∈ ∂Qa ,

lim
n→∞ P

{
1

n
�n(η) − 1

n
�n(η

0) < 0

}

= lim
n→∞ P{Sn,1(η) + Sn,2(η) + Sn,3(η) < 0} = 1.

By Lemma 2 (WLLN) and Assumption (B), one can obtain

1

n

∂

∂η j
�n(η)

∣
∣
∣
∣η=η0 = 1

n

n∑

i=1

∂

∂η j
log fi (Yi |η)

∣
∣
∣
∣η=η0

p−→ 0, (7)

where we have verified the condition of Lemma 2 with p = 2 by

lim
n→∞

1

n2

n∑

i=1

E

{
∂

∂η j
log fi (Yi |η0)

}2

= lim
n→∞

1

n
· 1
n

n∑

i=1

E

{
∂

∂η j
log fi (Yi |η0)

}2
= lim

n→∞
1

n
I j j (η

0) = 0.

Note that

1

n

∂2

∂η j∂ηs
�n(η)

∣
∣
∣
∣η=η0 = 1

n

n∑

i=1

∂2

∂η j∂ηs
log fi (yi |η)

∣
∣
∣
∣η=η0

= 1

n

n∑

i=1

[{
∂2

∂η j∂ηs
log fi (yi |η)

∣
∣
∣
∣η=η0

}

− {−Ii, js(η
0)}
]

(8)

−1

n

n∑

i=1

Ii, js(η
0).

By Lemma 2 and Assumptions (B) and (D), Eq. (8) converges in probability to
−I js(η0), where we have verified the condition of Lemma 2 with p = 2 by

lim
n→∞

1

n2

n∑

i=1

E

{
∂2

∂η j∂ηs
log fi (Yi |η)

∣
∣
∣
∣
η=η0

}2

≤ lim
n→∞

1

n
· 1
n

n∑

i=1

w2
i, js
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Asymptotic inference for MLEs under double-truncation 899

= lim
n→∞

1

n
· w2

js = 0.

Step 1 lim
n→∞ P{|Sn,1(η)| < ka3} = 1 for any η ∈ ∂Qa :

Since |η j − η0j | ≤ a for any η ∈ ∂Qa , we have

|Sn,1(η)| ≤ a
k∑

j=1

∣
∣
∣
∣
1

n

∂

∂η j
�n(η)|η=η0

∣
∣
∣
∣.

This implies

{|Sn,1(η)| < ka3} ⊃
⎧
⎨

⎩
a

k∑

j=1

∣
∣
∣
∣
1

n

∂

∂η j
�n(η)

∣
∣
∣
∣η=η0

∣
∣
∣
∣ < ka3

⎫
⎬

⎭
.

Thus, we have

lim
n→∞ P{|Sn,1(η)| < ka3} ≥ lim

n→∞ P

⎧
⎨

⎩
a

k∑

j=1

∣
∣
∣
∣
1

n

∂

∂η j
�n(η)

∣
∣
∣
∣η=η0

∣
∣
∣
∣ < ka3

⎫
⎬

⎭
= 1,

where the last equation follows from Eq. (7).
Step 2 lim

n→∞ P{Sn,2(η) < −ca2} = 1 for some c > 0 and for any η ∈ ∂Qa :

2Sn,2(η) =1

n

k∑

j=1

k∑

s=1

{
∂2

∂η j∂ηs
�n(η)

∣
∣
∣
∣η=η0

}

(η j − η0j )(ηs − η0s )

=
k∑

j=1

k∑

s=1

[
1

n

∂2

∂η j∂ηs
�n(η)

∣
∣
∣
∣η=η0 − {−I js(η

0)}
]

(η j − η0j )(ηs − η0s )

−
k∑

j=1

k∑

s=1

I js(η
0)(η j − η0j )(ηs − η0s )

≡Bn(η) + B(η),

(9)

where we define

Bn(η) ≡
k∑

j=1

k∑

s=1

[
1

n

∂2

∂η j∂ηs
�n(η)

∣
∣
∣
∣η=η0 − {−I js(η

0)}
]

(η j − η0j )(ηs − η0s ),

B(η) ≡
k∑

j=1

k∑

s=1

{−I js(η
0)}(η j − η0j )(ηs − η0s ).
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900 T. Emura et al.

For η ∈ ∂Qa , we know that |η j − η0j | ≤ a and |ηs − η0s | ≤ a. Thus

|Bn(η)| ≤ a2
k∑

k=1

k∑

s=1

∣
∣
∣
∣
1

n

∂2

∂η j∂ηs
�n(η)

∣
∣
∣
∣η=η0 − {−I js(η

0)}
∣
∣
∣
∣.

By arguments following Eq. (8),

lim
n→∞ P

(∣∣
∣
∣
1

n

∂2

∂η j∂ηs
�n(η)

∣
∣
∣
∣η=η0 − {−I js(η

0)}
∣
∣
∣
∣ < ε

)

= 1,

for ε > 0. Letting ε = a,

lim
n→∞ P

⎛

⎝
k∑

j=1

k∑

s=1

a2
∣
∣
∣
∣
1

n

∂2

∂η j∂ηs
�n(η)

∣
∣
∣
∣η=η0 − {−I js(η

0)}
∣
∣
∣
∣ < k2a3

⎞

⎠ = 1. (10)

Note that

B(η) =
k∑

j=1

k∑

s=1

{−I js(η
0)}(η j − η0j )(ηs − η0s ) = (η − η0)T{−I (η0)}(η − η0)

= (η − η0)T{���T}(η − η0) = {�T(η − η0)}T · � · �T(η − η0),

where � = diag(λ1, λ2, . . . , λk) is a diagonal matrix of the eigenvalues of −I (η0)
and� is a orthogonalmatrix (��T = I)whose column i corresponds to the eigenvector
of λi . We order the eigenvalues such that λk ≤ · · · ≤ λ2 ≤ λ1 and arrange �

accordingly. By Assumption (B), we know that λ1 < 0. Letting ξ = �T(η − η0),

B(η) =
∑k

i=1
λiξ

2
i ≤

∑k

i=1
λ1ξ

2
i = λ1ξ

Tξ = λ1(η − η0)T(η − η0) = λ1a
2.

(11)

Form Eq. (10), we have

lim
n→∞ P(|Bn(η)| < k2a3) = lim

n→∞ P(Bn(η) < k2a3) = 1,

and from Eq. (11), we know B(η) ≤ λ1a2. Thus,

lim
n→∞ P

{

Sn,2(η) <
k2

2
a3 + λ1

2
a2
}

= 1.

There always exist constants c0 > 0 and a0 > 0 such that, for a < a0 and 0 < c < c0,

lim
n→∞ P{Sn,2(η) < −ca2} = 1.
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Asymptotic inference for MLEs under double-truncation 901

Fig. 3 The sketch of f (a) = 9a3/2 + λ1a
2/2 and g(a) = −ca2

The idea of choosing c0 and a0 is conveniently explained under k = 3 as follows:
We wish to find a range of a such that 9a3/2 + λ1a2/2 ≤ −ca2. This is explained in
Fig. 3. Concretely,

f (a) = 9

2
a3 + λ1

2
a2 ⇒ f ′(a) = 27

2
a2 + λ1a = 0 ⇒ a = −2λ1

27
⇒ f ′′(a) = 27a + λ1|a=−2λ1/27 = −λ1 > 0.

Then, f (a) has the local minimum at a0 = −2λ1/27 > 0, and c0 can be obtained by
solving

9a3

2
+ λ1a2

2
= −ca2 ⇒ c = −λ1

2
− 9a

2
.

Hence, c0 = −λ1/2 − 9a0/2 = −λ1/6 > 0 as seen in Fig. 3.
The values a0 and c are chosen such that f (a) ≤ g(a) for all a < a0.

Step 3 lim
n→∞ P{|Sn,3(η)| < ba3} = 1 for some b > 0 and for any η ∈ ∂Qa :

By Lemma 2 and Assumption (C), we obtain

1

n

n∑

i=1

Mjsl(Yi ) = 1

n

n∑

i=1

[Mjsl(Yi ) − E{Mjsl(Yi )}]

+1

n

n∑

i=1

E{Mjsl(Yi )} p−→ m jsl ,

where we have verified the condition p = 2 of Lemma 2 by

lim
n→∞

1

n2

n∑

i=1

E[Mjsl(Yi )
2] = lim

n→∞
1

n

1

n

n∑

i=1

E[Mjsl(Yi )
2] = lim

n→∞
1

n

1

n

n∑

i=1

m2
i, jsl = 0.

123



902 T. Emura et al.

Then, we obtain

lim
n→∞ P

{∣∣
∣
∣
∣
1

n

n∑

i=1

Mjsl(Yi ) − m jsl

∣
∣
∣
∣
∣
< ε

}

= 1.

Letting ε = m jsl and by Mjsl(Yi ) > 0,

lim
n→∞ P

{∣∣
∣
∣
∣
1

n

n∑

i=1

Mjsl(Yi ) − m jsl

∣
∣
∣
∣
∣
< m jsl

}

= lim
n→∞ P

{
1

n

n∑

i=1

Mjsl(Yi ) < 2m jsl

}

= 1.

(12)

When η ∈ ∂Qa , we have |η j − η0j |, |ηs − η0s |, |ηl − η0l | ≤ a. Thus,

|Sn,3(η)| ≤ a3

6

k∑

j=1

k∑

s=1

k∑

l=1

∣
∣
∣
∣
∣
1

n

n∑

i=1

γ jsl(yi |η∗)Mjsl(yi )

∣
∣
∣
∣
∣

≤ a3

6

k∑

j=1

k∑

s=1

k∑

l=1

1

n

n∑

i=1

Mjsl(yi ).

For any given a > 0, it follows from (12) that

1 = lim
n→∞ P

⎧
⎨

⎩
a3

6

k∑

j=1

k∑

s=1

k∑

l=1

1

n

n∑

i=1

Mjsl(Yi ) <
a3

6

k∑

j=1

k∑

s=1

k∑

l=1

2m jsl

⎫
⎬

⎭

= lim
n→∞ P

⎧
⎨

⎩
a3

6

k∑

j=1

k∑

s=1

k∑

l=1

1

n

n∑

i=1

Mjsl(Yi ) <
a3

3

k∑

j=1

k∑

s=1

k∑

l=1

m jsl

⎫
⎬

⎭
.

This implies the desired result

lim
n→∞ P{|Sn,3(η)| < ba3} = 1, b = 1

3

k∑

j=1

k∑

s=1

k∑

l=1

m jsl .

Combining the results of Steps 1–3, we know that

lim
n→∞ P

{
Sn,1(η) + Sn,2(η) + Sn,3(η) < ka3 − ca2 + ba3

}
= 1,

and that

lim
n→∞ P

{
1

n
�n(η) − 1

n
�n(η

0) < ka3 − ca2 + ba3
}

= 1.
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Asymptotic inference for MLEs under double-truncation 903

Fig. 4 The occurrence {�n(η)− �n(η0) < 0} ⊂ {||η̂n −η0|| ≤ a}, where η0 = (η01, η
0
2, η

0
3) and η ∈ ∂Qa

for a small a > 0

To complete the proof, we choose a such that ka3 − ca2 + ba3 < 0, equivalently
a < c/(b + k). This is possible by taking a as small as possible. With this choice,
there always exists η̂n such that {�n(η) − �n(η

0) < 0} ⊂ {||η̂n − η0|| ≤ a} with
probability tending to one. Please see Fig. 4 for our numerical example of k = 3 in
which the preceding relationship occurs. Therefore, letting ε = a, we have shown the
existence of η̂n (with probability tending to one) and consistency simultaneously as

lim
n→∞ P(||η̂n − η|| ≤ ε) ≥ lim

n→∞ P(�n(η) − �n(η
0) < 0) = 1.

Proofs of Theorem 1 (b)

By a Taylor expansion, we expand the first order derivative of log-likelihood function
between the MLE η̂n and the true value η0 as

0 = ∂

∂η j
�n(η)

∣
∣
∣
∣η=η0 +

k∑

s=1

{
∂2

∂η j∂ηs
�n(η)

∣
∣
∣
∣η=η0

}

(η̂sn − η0s )

+1

2

k∑

s=1

k∑

l=1

{
∂3

∂η j∂ηs∂ηl
�n(η)

∣
∣
∣
∣η=η̃n

}

(η̂sn − η0s )(η̂ln − η0l ),

where η̃n is on the line between η̂n and η0. It follows that

∂

∂η j
�n(η

0)

∣
∣
∣
η=η0

= −
k∑

s=1

{
∂2

∂η j∂ηs
�n(η)

∣
∣
∣
∣η=η0

}

(η̂sn − η0s )

−1

2

k∑

s=1

k∑

l=1

{
∂3

∂η j∂ηs∂ηl
�n(η)

∣
∣
∣
∣η=η̃n

}

(η̂sn − η0s )(η̂ln − η0l ).

Multiplying 1/
√
n both sides,

1√
n

∂

∂η j
�n(η)

∣
∣
∣
∣η=η0 =

k∑

s=1

[

−1

n

∂2

∂η j∂ηs
�n(η)

∣
∣
∣
∣η=η0
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− 1

2n

k∑

l=1

{
∂3

∂η j∂ηs∂ηl
�n(η)

∣
∣
∣
∣η=η̃n

}

(η̂ln − η0l )

]

×√
n(η̂sn − η0s ).

This is written as

Tn, j (η
0) =

k∑

s=1

Rn, js(η
0) · Cn,s(η

0), j = 1, 2, . . . , k,

where

Tn, j (η
0) ≡ 1√

n

∂

∂η j
�n(η)

∣
∣
∣
∣η=η0

= 1√
n

n∑

i=1

∂

∂η j
log fi (yi |η)

∣
∣
∣
∣η=η0 ,

Rn, js(η
0) ≡ −1

n

∂2

∂η j∂ηs
�n(η)

∣
∣
∣
∣η=η0

− 1

2n

k∑

l=1

{
∂3

∂η j∂ηs∂ηl
�n(η)

∣
∣
∣
∣η=η̃n

}

(η̂ln − η0l ),

Cn,s(η
0) ≡ √

n(η̂sn − η0s ).

Our target is to prove the convergence of Cn = (Cn,1,Cn,2, . . . ,Cn,k)
T.

Step 1 Tn(η
0) = (Tn,1(η

0), Tn,2(η
0), . . . , Tn,k(η

0))T
d−→ Nk(0, I (η0)).

Let Tn(η
0) = ∑n

i=1 Dn,i , where

Dn,i =
[

1√
n

∂
∂η1

log fi (yi |η), 1√
n

∂
∂η2

log fi (yi |η), . . . , 1√
n

∂
∂ηk

log fi (yi |η)
]T
∣
∣
∣
∣η=η0 .

For the Lindeberg–Feller multivariate CLT to be applied, we check the Lindeberg
condition in Eq. (5). For any ε > 0,

n∑

i=1

Eη0(||Dn,i − E[Dn,i ]||21{||Dn,i − E[Dn,i ]|| > ε})

=
n∑

i=1

Eη0

⎡

⎣1

n

k∑

j=1

{
∂

∂η j
log fi (Yi |η)

}2

×1

⎧
⎨

⎩
1

n

k∑

j=1

{
∂

∂η j
log fi (Yi |η)

}2
> ε2

⎫
⎬

⎭

⎤

⎦

∣
∣
∣
∣
∣
∣
η=η0 .
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By Assumption (E),

1

n

k∑

j=1

{
∂

∂η j
log fi (Yi |η0)

}2
≤ 1

n

k∑

j=1

A2
j (Yi ) ≤ 1

n

k∑

j=1

sup
y

A2
j (y).

Hence,

1

⎧
⎨

⎩
1

n

k∑

j=1

{
∂

∂η j
log fi (Yi |η)

}2
> ε2

⎫
⎬

⎭
≤ 1

⎧
⎨

⎩
1

n

k∑

j=1

sup
y

A2
j (y) > ε2

⎫
⎬

⎭
, i = 1, 2, . . . , n.

It follows that

n∑

i=1

Eη0(||Dn,i − EDn,i ||21{||Dn,i − EDn,i || > ε})

≤
n∑

i=1

Eη0

⎡

⎢
⎣
1

n

k∑

j=1

{
∂

∂η j
log fi (Yi |η)

}2
1

⎧
⎨

⎩
1

n

k∑

j=1

sup
y

A2
j (y) > ε2

⎫
⎬

⎭

2
⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣
η=η0

= 1

⎧
⎨

⎩
1

n

k∑

j=1

sup
y

A2
j (y) > ε2

⎫
⎬

⎭

n∑

i=1

Eη0

⎡

⎣1

n

k∑

j=1

{
∂

∂η j
log fi (Yi |η)

}2
⎤

⎦

∣
∣
∣
∣
∣
∣
η=η0

= 1

⎧
⎨

⎩
1

n

k∑

j=1

sup
y

A2
j (y) > ε2

⎫
⎬

⎭

k∑

j=1

n∑

i=1

1

n
Ii, j j (η

0) → 1{0 > ε2}
k∑

j=1

I j j (η
0) = 0,

where the last convergence follows from Assumptions (B) and (E). Hence, the Linde-
berg condition in Lemma 3 holds. In addition, by Assumption (B),

n∑

i=1

{Covη0(Dn,i )} js = 1

n

n∑

i=1

Ii, js(η
0) → I js(η

0).

By Lemma 3 (the Lindeberg–Feller CLT),

Tn(η
0) =

∑n

i=1
Dn,i

d−→ T(η0) ∼ Nk(0, I (η0)).

Step 2 Rn, js(η
0)

p−→ I js(η0)
Recall that

Rn, js(η
0) ≡ −1

n

∂2

∂η j∂ηs
�n(η)

∣
∣
∣
∣η=η0

− 1

2n

k∑

l=1

{
∂3

∂η j∂ηs∂ηl
�n(η)

∣
∣
∣
∣η=η̃n

}

(η̂ln − η0l ).
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By the arguments following Eq. (8),

−1

n

∂2

∂η j∂ηs
�n(η)

∣
∣
∣
∣η=η0

p−→ I js(η
0).

Since η̂n
P−→ η0 and
∣
∣
∣
∣
1

n

∂3

∂η j∂ηs∂ηl
�n(η)

∣
∣
η=η̃n

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
1

n

n∑

i=1

γ jsl(Yi |η̃n) · Mjsl(Yi )

∣
∣
∣
∣
∣

≤ 1

n

n∑

i=1

Mjsl(Yi )
p−→ m jsl ,

by Slutsky’s theorem,

− 1

2n

k∑

l=1

{
∂3

∂η j∂ηs∂ηl
�n(η)

∣
∣
∣
∣η=η̃n

}

(η̂ln − η0l )
p−→ 0.

Hence, we have Rn, js(η
0)

p−→ I js(η0).

Lemma 5 (Lehmann and Casella 1998) Let Tn = (T1n, T2n, . . . , Tkn)
d−→ T =

(T1, T2, . . . , Tk). Suppose that for fixed j and s, let R jsn be a sequence of random

variables, where R jsn
p−→ r js (constants) for which the matrix R, with each element

r js , is nonsingular. LetB = R−1 with each element b js . LetCn = (C1n,C2n, . . . ,Ckn)

be a solution to

k∑

s=1

R jsnCsn = Tjn, j = 1, 2, . . . , k,

and let C = (C1,C2, . . . ,Ck) be a solution to

k∑

s=1

r jsCs = Tj , j = 1, 2, . . . , k,

given by C j = ∑k
s=1 b jsTs, j = 1, 2, . . . , k. Then, if the distribution of (T1, T2,

. . . , Tk) has a density,

Cn = (C1n,C2n, . . . ,Ckn)
d−→ C = (C1,C2, . . . ,Ck), n → ∞.

Combining Steps 1–2 with Lemma 5,Cn = √
n(η̂n −η0) converges in distribution

to C, a solution to

k∑

s=1

I js(η
0)Cs = Tj (η

0), j = 1, 2, . . . , k,
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where T(η0) = (T1(η0), T2(η0), . . . , Tk(η0)) ∼ Nk(0, I (η0)). Therefore, we have
the desired result C = [I (η0)]−1 · T(η0) ∼ Nk(0, [I (η0)]−1). ��
Proofs of Lemma 4

Using the notations of “Proof of Lemma 1” in Appendix 1,

∂

∂η j
log fi (y|η) = y j − E j

i (η)

E0
i (η)

, j = 1, 2, . . . , k.

Under Assumption (G), [u0, v0] ⊂ [ui , vi ] = Ri ⊂ y. Thus,

E0
i (η) =

∫

Ri∩y

exp{ηT · t(y)}dy ≥
v0∫

u0

exp{ηT · t(y)}dy.

It follows from Assumption (F) that

inf
η∈�

E0
i (η) ≥ inf

η∈�

v0∫

u0

exp{ηT · t(y)}dy ≡ E0
Inf > 0, i = 1, 2, . . . , n,

Similarly, since all the moments exist,

sup
η∈�

|E j
i (η)| ≤ sup

η∈�

∫

y

|y| j exp{ηT · t(y)}dy ≡ E j
Sup < ∞, j = 0, 1, . . . , 3k,

for i = 1, 2, . . . , n. Then, as in “Proof of Lemma 1” in Appendix 1,

∣
∣
∣
∣

∂2

∂η j∂ηs
log fi (y|η)

∣
∣
∣
∣ ≤

∣
∣
∣
∣
∣

E j+s
i (η)

E0
i (η)

− E j
i (η)

E0
i (η)

Es
i (η)

E0
i (η)

∣
∣
∣
∣
∣

≤ supη |E j+s
i (η)|

infη E0
i (η)

+ supη |E j
i (η)|

infη E0
i (η)

supη |Es
i (η)|

infη E0
i (η)

≤ E j+s
Sup

E0
Inf

+ E j
Sup

E0
Inf

Es
Sup

E0
Inf

≡ Wjs(y) < ∞.

In this way, one can find all the constant functionsWjs(·) that satisfy the requirements
of Assumption (D). In a similar fashion, Assumption (C) can be checked with

∣
∣
∣
∣

∂3

∂η j∂η∂
s ηl

log fi (y|η)

∣
∣
∣
∣ ≤ E j+s+l

Sup

E0
Inf

+ E j+s
Sup

E0
Inf

El
Sup

E0
Inf

+ E j
Sup

E0
Inf

El+s
Sup

E0
Inf

+ El
Sup

E0
Inf

E j+s
Sup

E0
Inf

+2
E j
Sup

E0
Inf

Es
Sup

E0
Inf

El
Sup

E0
Inf

≡ Mjsl(y) < ∞.
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To check Assumption (E), we use |y j | ≤ max{|u j
i |, |v j

i |} ≤ max{|u∗
0| j , |v∗

0 | j } < ∞
for ui ≤ y ≤ vi . Then,

∣
∣
∣
∣

∂

∂η j
log fi (y|η)

∣
∣
∣
∣ ≤ |y j |1{ui ≤ y ≤ vi } + supη E j

i (η)

infη E0
i (η)

≤ max{|u∗
0| j , |v∗

0 | j } + E j
Sup

E0
Inf

≡ A j (y).

Hence, Assumption (E) holds for the constant function A j (·).

Appendix 2: Data generations

For the cubic SEFwith η3 > 0,we considerU∗ ∼ N (μu, 1), V ∗ ∼ min{N (μv, 1), τ2}
and

Y ∗ ∼ fη(y) = exp[η1y + η2y
2 + η3y

3 − φ(η)], y ∈ y = (−∞, τ2],

where φ(η) = log{∫y exp(η1y + η2y2 + η3y3)dy}. The value Y ∗ is generated by
solving

W ∗ = Fη(Y
∗) =

Y ∗∫

−∞
exp[η1y + η2y2 + η3y3]dy

τ2∫

−∞
exp[η1y + η2y2 + η3y3]dy

,

where W ∗ ∼ U (0, 1). Under these models, we know uinf = inf i (u∗
i ) = inf i (ui ) =

−∞ and vsup = supi (v
∗
i ) = supi (vi ) = τ2. Under this setting, Assumption (G) does

not hold as uinf = −∞ is not a finite number. In addition, there is a chance that the
length vi − ui is quite small. The case of η3 < 0 is similar. It would be of our interest
to study the numerical properties of the MLE under this delicate setting.

We set the sample inclusion probability to be P(U∗ ≤ Y ∗ ≤ V ∗) ≈ 0.5 or 0.25
by letting μu = η1 − � and μv = η1 + �. First, under η1 = 5, η2 = −0.5,
η3 = 0.005 and τ2 = 8, the value is � = 1.01 (Hu and Emura 2015) to meet
P(U∗ ≤ Y ∗ ≤ V ∗) ≈ 0.50. If we set � = 0.33 then P(U∗ ≤ Y ∗ ≤ V ∗) ≈ 0.25.
Second, under η1 = 5, η2 = −0.5, η3 = −0.005, and τ1 = 2, we set � = 0.91
(Hu and Emura 2015) to meet P(U∗ ≤ Y ∗ ≤ V ∗) ≈ 0.50. If we set � = 0.26, then
P(U∗ ≤ Y ∗ ≤ V ∗) ≈ 0.25.
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