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ABSTRACT

Detecting when the process has changed is a classical problem in
sequential analysis and is an important practical issue in statistical
process control. This article is concerned about the binomial cumulative
sum (CUSUM) control chart, which is extensively applied to industrial
process control, health care, public health surveillance, and other �elds.
For the binomial CUSUM, a maximum likelihood estimator has been
proposed to estimate the change point. In our article, following a
decision theoretic approach, we develop a new estimator that aims
to improve the existing methods. For interval estimation, we propose a
parametric bootstrap procedure to construct the con�dence set of the
change point. We compare our proposed method with the maximum
likelihood estimator and Page’s last zero estimator in terms of mean
squared error by simulations. We �nd that the proposed method gives
more unbiased and robust results than the existing procedures under
various parameter designs. We analyze jewelry manufacturing data for
illustration.
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1. Introduction

Statistical process control (SPC) is a branch of quality control that performs a sequential

monitoring of manufactured products using control charts (Montgomery, 2009; Wetherill

and Brown, 1991). SPC is applied in order to monitor and control manufacturing, service,

and clinical processes, ensuring that they operate under a desired condition. With SPC, the

process can safely produce asmuch conforming product as possible with aminimumofwaste.

One of the major goals of SPC is to detect the occurrence of irregular operating conditions

that make nonconforming products at an unusually high rate.

In SPC, the np-chart (or p-chart) is one of the most widely used charts applied to monitor

the number of nonconforming items for industrial manufactures. As explained by textbooks

on SPC (e.g., Montgomery, 2009; Wetherill and Brown, 1991), the np-chart sequentially

plots the number of nonconforming items over time. The np-chart even arises as a binary

categorization of any continuous outcome (Yang et al., 2011). If the number of nonconforming

items exceeds the control limits (typically 3-sigma limits), the np-chart issues a signal that

some change occurs in the nonconforming rate. Despite its popularity, some conditions are

necessary for the np-chart to work properly.
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First, the np-chart works well only if the sample size n is large enough and nonconforming

rate p is not too small (Duran and Albin, 2009; Emura and Lin, 2015; Montgomery, 2009).

However, small n is common in biostatistical contexts (e.g., Assareh et al., 2015), and small

p is common in industrial practices (e.g., Wang, 2009). Second, the np-chart fails to detect

a small change in p. The np-chart can only e�ectively detect the out-of-control signals if the

magnitude of the change is large.

The binomial cumulative sum (CUSUM) control chart is a good alternative when small

but consistent changes in p are expected. This well-known fact will be further explained by

our real data analysis. In addition, there appears no requirement for sample size n because it

does not rely on the normal approximation. The binomial CUSUM chart plots the cumulative

sums of the number of nonconforming items over time.

Nowadays, the binomial CUSUM is extensively applied to a variety of �elds, including not

only industrial process control but also health care and public health surveillance. Recently,

the binomial CUSUM has become increasingly popular in biostatistics. Rossi et al. (2014)

and Assareh et al. (2015) used the binomial CUSUM chart in the evaluations of clinical

programs. Their charts are called risk-adjusted CUSUM (RACUSUM) and adjust the risk

of nonconforming defective rates over time using patients’ pro�les (Grigg et al., 2003). Some

other applications of the binomial CUSUM include detecting the change in sensor networks

(Fuh and Mei, 2008).

The CUSUM chart gives a way to estimate the change point of the process as �rst suggested

by Page (1954) for continuous observations. If the CUSUM chart gives an out-of-control

signal, then we suspect that there is a change point somewhere before the signal. In the

binomial CUSUM chart, Page’s change point estimator is de�ned as the last zero of the

chart (Perry and Pignatiello, 2005). Alternatively, Pignatiello and Samuel (2001) and Perry

and Pignatiello (2005) proposed a maximum likelihood estimator (MLE) for estimating

the change point, which uses data more e�ectively. Perry and Pignatiello (2005) claimed

that the MLE is usually more precise than Page’s estimator. However, as we read their

simulation results, Page’s estimator can still be a better estimator if the design value in the

CUSUM is correctly chosen. Perry et al. (2007) extended the MLE approach to more general

monotonic change types. Perry and Pignatiello (2008) also developed the MLE under a

general exponential family and constructed a con�dence set for the change point. Overall,

the MLEmethod to infer the change point is workable in various di�erent models for change

types. To the best of our knowledge, no other estimator has been considered beyond theMLE

and Page’s estimator.

In this article, we propose a new change point estimator that combines the MLE of

Pignatiello and Samuel (2001) and Page’s estimator. Our estimator is derived as a weighted

sum of the two estimators, which is a common approach in statistical decision theory. The

resultant estimator aims to utilize the information adaptively from both estimators and to be

more unbiased and accurate for the true change point.

The article is organized as follows. Section 2 reviews the background. Section 3 introduces

the proposed methods. Section 4 presents the simulation results, and Section 5 provides the

real data analysis. Section 6 concludes the article.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
en

tr
al

 U
ni

ve
rs

ity
] 

at
 2

0:
28

 2
7 

Ju
ne

 2
01

6 



240 T. EMURA AND Y.-T. HO

2. Background

2.1. Binomial CUSUM control chart

In this article, we assume that the process is in control when independent observations

X1,X2, . . . come from a binomial distribution with parameters n and p0, namely, Bin(n, p0).

The value p0 is called “in-control fraction nonconforming,” which is known a priori. We

let X1,X2, . . . ,Xτ ∼ Bin(n, p0) for subgroups i = 1, 2, . . . , τ , where τ represents the

last subgroup taken from the in-control process. Following an unknown subgroup τ , i =
τ + 1, τ +2, . . . ,T, whereT is themost recent subgroup, the in-control fraction nonconform-

ing p0 changes to the out-of-control fraction nonconforming pTruea 6= p0, which is unknown.

Accordingly, we let Xτ+1,Xτ+2, . . . ,XT ∼ Bin(n, pTruea ). Therefore,

P(Xi = x) =















(

n

x

)

px0(1 − p0)
n−x, if i = 1, 2, . . . , τ ,

(

n

x

)

(pTruea )x(1 − pTruea )n−x, if i = τ + 1, τ + 2, . . . ,T.

We focus only on the increasing change pTruea > p0. Hence, the parameter space is

2 = {(τ , pTruea ) | τ ∈ {1, 2, . . . ,T}, p0 ≤ pTruea ≤ 1}
for a known value T ∈ {1, 2, . . .}. Typically, T is the subgroup at which a control chart

produces an out-of-control signal. The unknown value τ is called change point, which needs

to be estimated from observations.

A CUSUM procedure involves a cumulative sum of the deviations of Xis with respect to

some reference value (Hawkins and Olwell, 1998). De�ne the binomial CUSUM recursively

by

S0 = 0, Si = max{0,Xi − nk + Si−1}, i = 1, 2, . . . ,

where

k = − log

(

1 − pasa
1 − p0

) /

log

{

pasa (1 − p0)

p0(1 − pasa )

}

,

and where pasa > p0 is a design value, which is prespeci�ed by engineers. Here, “as” stands

for “assumed value.” The formula of k is derived by usingWald’s (1947) sequential probability

ratio test for testing

H0 : p = p0 v.s. H1 : p = pasa .

When Si exceeds a decision interval h > 0, the CUSUM detects a change in the fraction

nonconforming. The CUSUM for the decreasing change pTruea < p0 can be considered

similarly as in Perry and Pignatiello (2005).

With this CUSUM scheme, one can de�ne T as the �rst subgroup that yields the out-

of-control signal. Formally, T = inf{i; Si > h} is called the run length. The average run

length (ARL) is the expected value of T, de�ned as ARL = E[T]. The decision interval h is

usually de�ned such that ARL equals a speci�ed value (e.g., 150 or 370). This is done either

by simulations or by utilizing some theoretical analyses on the ARL as previously developed

by Khan and Khan (2004) and Khan (2008).
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2.2. Maximum likelihood estimator of change point

We introduce theMLE considered by Pignatiello and Samuel (2001) and Perry and Pignatiello

(2005) under the binomial CUSUM.

Under the CUSUM scheme of Section 2.1, the likelihood function is given by

L(τ , pa|p0) =
τ

∏

i=1

(

n

xi

)

p
xi
0 (1 − p0)

n−xi

T
∏

i=τ+1

(

n

xi

)

pxia (1 − pa)
n−xi ,

where (τ , pa) ∈ 2. The log-likelihood is

log L(τ , pa|p0) = C + log(p0)

τ
∑

i=1

xi + log(1 − p0)

τ
∑

i=1

(n − xi)

+ log(pa)

T
∑

i=τ+1

xi + log(1 − pa)

T
∑

i=τ+1

(n − xi),

where C is a constant. As in Perry and Pignatiello (2005), we rewrite

log L(τ , pa|p0) = C∗ + log

(

pa

p0

) T
∑

i=τ+1

xi + log

(

1 − pa

1 − p0

) T
∑

i=τ+1

(n − xi),

where C∗ = C + log(p0)
∑T

i=1 xi + log(1 − p0)
∑T

i=1(n − xi) is a constant. If τ is given, the

log-likelihood equation of pa becomes

∂

∂pa
log L(τ , pa|p0, X) =

T
∑

i=τ+1

xi

/

pa −
T

∑

i=τ+1

(n − xi)

/

(1 − pa).

Setting the above equation to 0, one can easily estimate the value of pa by

p̂a(τ ) =
T

∑

i=τ+1

xi

/ T
∑

i=τ+1

n.

This is indeed the maximum of the log-likelihood because

∂2

∂(pa)2
log L(τ , pa|p0, X) = −

T
∑

i=τ+1

xi

/

p2a −
T

∑

i=τ+1

(n − xi)

/

(1 − pa)
2 < 0, 0 < pa < 1.

Putting p̂a(τ ) into log L(τ , pa|p0), one has a pro�le log-likelihood for τ as

log L(τ , p̂a(τ )|p0) = C∗ + log

{

p̂a(τ )

p0

} T
∑

i=τ+1

xi + log

{

1 − p̂a(τ )

1 − p0

} T
∑

i=τ+1

(n − xi).

Therefore, the MLE for the change point becomes

τ̂MLE = argmax
τ∈{1,2,...,T}

[

log

{

p̂a(τ )

p0

} T
∑

i=τ+1

xi + log

{

1 − p̂a(τ )

1 − p0

} T
∑

i=τ+1

(n − xi)

]

.

The numerical value of τ̂MLE is obtained by plotting the pro�le log-likelihood for all

τ ∈ {1, 2, . . . ,T} and then �nding the maximizing point.
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242 T. EMURA AND Y.-T. HO

2.3. Page’s last zero estimator

The CUSUM control chart has an automatic change point estimator, as suggested by Page

(1954). A�er an out-of-control signal of the binomial CUSUM control chart is found, one

can use Page’s last zero estimator to estimate the true change point. If the CUSUM control

chart signals that an increase in the process fraction nonconforming has occurred, then an

estimate of the change point is given by the last zero τ̂CUSUM = max{i : Si = 0}. Note that
this estimator is biased unless the design value pasa is correctly speci�ed. Because pasa 6= pTruea

in general, τ̂CUSUM is a biased estimator.

3. Proposedmethod

3.1. Idea of statistical decision theory

The idea of combing two estimators to reduce the risk or the mean squared error (MSE) is

popular in statistical decision theory (Casella and Berger, 2002; Emura et al., 2014; James and

Stein, 1961; Khan, 1968; Laheetharan and Wijekoon, 2010; Wencheko and Wijekoon, 2005).

The resultant estimator has a weighted sum of two estimators, where the weight is chosen to

minimize the MSE. In the Bayesian framework, a frequentist estimator and a prior value are

combined to form a Bayes estimator with the weight chosen to minimize the Bayes risk. The

idea is also useful to reduce some de�ciency of the MLE under high-dimensional regression

parameters (Emura et al., 2012).

We demonstrate the idea of statistical decision theory by a well-known example of Khan

(1968), which also appears in the textbook of Casella and Berger (2002). LetX1,X2, . . . ,Xn ∼
N(θ , aθ2), where θ > 0 is unknown and a > 0 is known. In this setting, two estimators of θ

are available, which are given by

d1 = X̄n = 1

n

n
∑

i=1

Xi,

and

d2 = cn

{

n
∑

i=1

(Xi − X̄n)
2

}
1
2

= cn
√
n − 1Sn,

where S2n = 1
n−1

∑n
i=1(Xi − X̄n)

2 and cn = 1√
2a

Ŵ
(

n−1
2

)

/Ŵ
(

n
2

)

. The two estimators are

unbiased for θ so that Eθ (d1) = Eθ (d2) = θ . In addition, Varθ (d1) = aθ2/n, Varθ (d2) =
{c2na(n − 1) − 1}θ2, and Covθ (d1, d2) = 0.

Khan (1968) considered a class of unbiased estimators of θ as

d(α) = αd2 + (1 − α)d1, 0 ≤ α ≤ 1,

where α is a weight. The optimal weight that minimizes the MSE is shown to be

α∗ = Varθ (d1)

Varθ (d1) + Varθ (d2)
= a

a + n{c2na(n − 1) − 1} .

In the change point estimation, both τ̂CUSUM and τ̂MLE are biased for τ . Combination of the

two estimators with aweight also leads to a biased estimator of the change point. Nevertheless,

if the signs of the biases are di�erent between τ̂CUSUM and τ̂MLE, their combinationmay reduce
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SEQUENTIAL ANALYSIS 243

the bias. To reduce the bias (and hence theMSE aswell) of the change point estimator, a special

weight is needed. Herea�er, we will present a new estimator with a special weight.

3.2. Proposed estimator for change point

Wepropose a new change point estimator that combines τ̂MLE (Section 2.2) and τ̂CUSUM (Sec-

tion 2.3) in a decision theoretic manner. Let pTruea ≥ p0 be the true fraction nonconforming,

which is unknown. Also, we let pasa ≥ p0 be a design value, which is known for or set by

engineers. We propose a change point estimator

τ̂NEW(w) = wτ̂CUSUM + (1 − w)τ̂MLE, 0 ≤ w ≤ 1,

where w is a weight.

In order to reduce the MSE and the bias of the proposed estimator, we require that the

weight w satis�es certain conditions. If pTruea =pasa , then one should set w = 1, which implies

that τ̂NEW(w) = τ̂CUSUM. This is because τ̂CUSUM is much more accurate than τ̂MLE under

pTruea = pasa , which can be observed from Perry and Pignatiello (2005) and our simulation

results. If pTruea is far from pasa , then τ̂MLE is more precise than τ̂CUSUM because the latter is

highly biased.

With the above considerations, we propose the following weight function:

w ≡ w(pTrue
a

| pasa ) =



















(

pTruea −p0
pas
a

−p0

)

(

pTruea
p0

)

, if pTruea ≤ pasa ,

(

pas
a

−p0

pTruea −p0

)

(

pTruea
p0

)

, if pTruea > pas
a
.

The value of w decreases from 1 to 0 when pTruea deviates from pasa (Figure 1). In addition,

w = 1 if and only if pTruea = pasa . Hence, the weight satis�es our requirements.

Figure 1. Plot of the weight functionw(pTruea |pasa = 0.13) under p0 = 0.1.
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244 T. EMURA AND Y.-T. HO

The precedingweightw involves an unknownparameter pTruea , which needs to be estimated

in practical applications.Wepropose to use theMLEgiven by p̂a(τ̂MLE), where p̂a(τ ) is de�ned

in Section 2.2. Another choice is p̂a(τ̂CUSUM). Our numerical results reveal that p̂a(τ̂MLE) is

more accurate than p̂a(τ̂CUSUM) (The results are not shown but are available upon request.)

Hence, we propose the following estimator of the weight

ŵ ≡ w(p̂a(τ̂MLE)|pasa ) =















(

p̂a(τ̂MLE)−p0
pasa −p0

)

(

p̂a(τ̂MLE)

p0

)

, if p̂a(τ̂MLE) ≤ pasa ,

(

pasa −p0
p̂a(τ̂MLE)−p0

)

(

p̂a(τ̂MLE)

p0

)

, if p̂a(τ̂MLE) > pas
a
.

Accordingly, we de�ne τ̂NEW(ŵ), the proposed estimator with the weight being estimated.

Once w is estimated by ŵ in the preceding formula, ŵ < 0 occurs by chance. In particular,

if p̂a(τ̂MLE) < p0, the weight value will be negative. In this case, we set ŵ = 0. This is a natural

restriction to meet 0 ≤ w ≤ 1. However, the occurrence is very minor because it is found in

only a few cases during a large number of simulation repetitions.

3.3. Con�dence set for change point

A con�dence set for the change point is the random set of τ s that contains the true change

point with a speci�ed probability, say 1−α. Though theMLE τ̂MLE allows the use of the pro�le

likelihood to obtain the con�dence set (Perry and Pignatiello, 2008), this approach cannot be

used to the proposed estimator τ̂NEW(ŵ).

We propose the percentile con�dence set with the parametric bootstrap (Efron and

Tibshirani, 1993). Recall that the estimator τ̂NEW(ŵ) is calculated from in-control data

X1,X2, . . . ,Xτ ∼ Bin(n, p0) and out-of-control data Xτ+1,Xτ+2, . . . ,XT ∼ Bin(n, pTruea ),

where T = inf{i; Si > h} and Si is the CUSUM based on Xis. The bootstrap algorithm of

obtaining the con�dence set (interval) is stated as follows:

Con�dence set (interval) for τ with con�dence level (1 − α) × 100%:

Step 0: Estimate the population parameters (τ , pa) by (τ̂NEW(ŵ), p̂a(τ̂MLE)).

Step 1: Generate bootstrap in-control data X∗
1 ,X

∗
2 , . . . ,X

∗
τ̂NEW(ŵ)

∼ Bin(n, p0) and bootstrap

out-of-control data X∗
τ̂NEW(ŵ)+1

,X∗
τ̂NEW(ŵ)+2

, . . . ,X∗
T∗ ∼ Bin(n, p̂a(τ̂MLE)), where

T∗ = inf{ i; S∗
i > h } and S∗

i is the bootstrap CUSUM based on X∗
i s.

Step 2: Obtain the bootstrap estimate τ̂ ∗
NEW(ŵ∗) using the bootstrap data in Step 1.

Step 3: Repeat Steps 1–2 to obtain the bootstrap estimates τ̂ ∗
NEW(ŵ∗)(b), b = 1, 2, . . . ,B,

where B is the large number of bootstraps replications.

Step 4: The bootstrap con�dence interval consists of the lower percentile [B×α/2th value in

the ordered list of τ̂ ∗
NEW(ŵ∗)(b), b = 1, 2, . . . ,B] and the upper percentile [B × (1 −

α/2)th value in the ordered list of τ̂ ∗
NEW(ŵ∗)(b), b = 1, 2, . . . ,B].

In Step 1, the number of data in the bootstrap samples vary with the bootstrap replication

(b) and hence one can write T∗(b), b = 1, 2, . . . ,B. This is di�erent from the usual bootstrap

samples for independent and identically distributed data. The distinction is necessary because

each bootstrap data must issue the out-of-control signal at time T∗(b), b = 1, 2, . . . ,B, as in

the original data.

In Step 3, using B ≥ 1, 000 would usually be suggested by Efron and Tibshirani (1993).

We use B = 1, 000 for our data analysis, but in our simulations, we use B = 500 to save the

computation time.
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SEQUENTIAL ANALYSIS 245

In Step 4, we de�ne the con�dence set as the percentile interval. We have checked

in simulations that the usual properties of the bootstrap samples are met; the average of

τ̂ ∗
NEW(ŵ∗

NEW)(b), b = 1, 2, . . . ,B, is always very close to the original estimate τ̂NEW(ŵ); the

percentile interval always (i.e., with probability one) covers τ̂NEW(ŵ). By its de�nition, it is

required that the con�dence interval covers the true τ with probability 1−α. This requirement

is met only when the estimate τ̂NEW(ŵ) is a reasonably good estimate of the true τ . We will

demonstrate the performance of the coverage probability by simulations.

4. Simulations

We use Monte Carlo simulations to compare the change point estimators τ̂CUSUM, τ̂MLE,

τ̂NEW(w), and τ̂NEW(ŵ) in term of the unbiasedness and accuracy. To do a fair comparison,

we follow the published design of Perry and Pignatiello (2005).

4.1. Simulation designs

We set the true change point τ = 100 and in-control fraction nonconforming p0 = 0.1.

ObservationsX1,X2, . . . ,X100 follow a binomial distributionwith p0 = 0.1 and n = 50 for the

�rst τ = 100 subgroups. A�er subgroup 100, observations X101,X102, . . . follow a binomial

distribution with pTrue
a

∈ {0.11, 0.12, . . . , 0.25, 0.30} and n = 50 until the CUSUM chart

issues a signal. We design the CUSUM charts to detect a 30% increase in pTruea by setting

pasa = 1.3 × p0 = 0.13. Then, the reference value of Xi is nk, where

k = − ln

(

1 − 0.13

1 − 0.1

)/

ln

{

0.13(1 − 0.1)

0.1(1 − 0.13)

}

= 0.1144295.

If the chart yields a signal at i ≤ τ , we restart by setting Si ≡ 0. Then, T > τ is the subgroup

at which the chart issues a signal.We choose the decision interval h = 6.57 or 11.42 such that

the in-control ARL is 150 or 370, respectively. We do 1,000 simulations to run the CUSUM

charts and calculate estimators. Then, we evaluate the performance of the new estimator in

terms of the unbiasedness and the MSE de�ned as

MSE{τ̂NEW(ŵ)} = E{τ̂NEW(ŵ) − τ }2.

4.2. Simulation results

We �rst examine the unbiasedness of the new estimators. Table 1 compares E(τ̂MLE),

E(τ̂CUSUM), E{τ̂NEW(w)}, and E{τ̂NEW(ŵ)}, where w is known and ŵ is estimated. Table 1

shows that E(τ̂CUSUM) is clearly closer to the true τ = 100 than E(τ̂MLE) when pTruea =
pasa = 0.13 (i.e., the design value is correctly speci�ed). When pTruea > pasa = 0.13, we see

that E(τ̂CUSUM) underestimates and E(τ̂MLE) slightly overestimates the true τ = 100. The

proposed estimator τ̂NEW(w) is an intermediate between τ̂CUSUM and τ̂MLE, and produces

most unbiased results in majority of cases. Note that the performance of τ̂NEW(ŵ) depends

on how well w is estimated by ŵ. Table 1 reveals that the performance of τ̂NEW(ŵ) is fairly

competitive to that of τ̂NEW(w). This implies that the e�ect of estimating w is modest.

Table 2 gives the performances of p̂Truea for estimating pTruea . This is of interest because the

performance of τ̂NEW(ŵ) depends on the accuracy of p̂Truea . It is seen that p̂Truea is slightly
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246 T. EMURA AND Y.-T. HO

Table 1. Simulation results for estimating the change point τ = 100 under n = 50, p0 = 0.1, and pasa =
0.13 based on 1,000 simulation runsa.

h = 6.57 pTruea AR̂L E(τ̂MLE) E(τ̂CUSUM) E{τ̂NEW(w)} E{τ̂NEW(ŵ)}
0.11 121.75 118.90 115.98 118.03 117.61
0.12 111.50 108.50 105.51 106.66 107.32

0.13(= pasa ) 107.13 104.10 101.33 101.33 103.08
0.14 105.16 102.53 99.84 100.73 101.70
0.15 104.14 101.54 99.11 100.41 100.87
0.16 103.34 101.13 98.78 100.35 100.52
0.17 102.81 100.63 98.47 100.11 100.17
0.18 102.50 100.55 98.54 100.21 100.15
0.19 102.23 100.16 98.45 99.95 99.88
0.20 101.95 100.26 98.42 100.09 99.96
0.25 101.42 100.11 98.34 100.08 99.88
0.30 101.17 100.07 98.44 100.07 99.91

h = 11.42 pTruea AR̂L E(τ̂MLE) E(τ̂CUSUM) E{τ̂NEW(w)} E{τ̂NEW(ŵ)}
0.11 160.99 153.07 147.96 151.54 150.93
0.12 121.98 115.53 108.84 111.42 113.33

0.13(= pasa ) 112.65 107.14 100.97 100.97 105.20
0.14 108.48 103.79 98.63 100.34 102.25
0.15 106.47 102.63 97.93 100.45 101.38
0.16 105.03 101.77 97.75 100.44 100.81
0.17 104.28 101.50 97.23 100.49 100.64
0.18 103.76 101.13 97.26 100.46 100.44
0.19 103.33 100.88 97.19 100.42 100.22
0.20 102.94 100.62 97.02 100.30 100.11
0.25 102.05 100.30 97.24 100.25 100.03
0.30 101.63 100.14 97.30 100.13 99.98

a
AR̂L = Average run length based on 1000 runs. The decision interval h = 6.57 or 11.42 is chosen such that the in-control ARL
is 150 or 370, respectively.

Table 2. Simulation results for estimating pTruea under n = 50, p0 = 0.1, and pasa = 0.13 based on 1,000
simulation runs.a

h = 6.57 pTruea E(p̂Truea ) MSE(p̂Truea )

0.11 0.153 0.0022
0.12 0.155 0.0016

0.13(= pasa ) 0.156 0.0011
0.14 0.159 0.0008
0.15 0.163 0.0007
0.16 0.168 0.0007
0.17 0.170 0.0006
0.18 0.174 0.0007
0.19 0.177 0.0010
0.20 0.182 0.0011
0.25 0.198 0.0037
0.30 0.212 0.0090

h = 11.42 pTruea E(p̂Truea ) MSE(p̂Truea )

0.11 0.154 0.0023
0.12 0.155 0.0017

0.13(= pasa ) 0.159 0.0014
0.14 0.162 0.0010
0.15 0.167 0.0009
0.16 0.173 0.0008
0.17 0.179 0.0007
0.18 0.183 0.0007
0.19 0.187 0.0008
0.20 0.192 0.0008
0.25 0.216 0.0023
0.30 0.234 0.0056

a
The decision interval h = 6.57 or 11.42 is chosen such that the in-control ARL is 150 or 370, respectively.
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Table 3. Simulation results for the MSE of the change point τ = 100 under n = 50, p0 = 0.1, and pasa =
0.13 based on 1,000 simulation runs.a

h = 6.57 pTruea MSE(τ̂MLE) MSE(τ̂CUSUM) MSE{τ̂NEW(w)} MSE{τ̂NEW(ŵ)}
0.11 814.11 669.15 759.25 735.72
0.12 214.27 127.46 145.85 158.91

0.13(= pasa ) 96.686 30.862 30.862 50.698
0.14 48.880 16.757 16.976 22.809
0.15 43.172 10.166 15.404 16.536
0.16 26.780 9.2780 13.807 10.237
0.17 17.391 11.063 10.945 6.4579
0.18 10.060 9.7160 7.2139 3.8668
0.19 24.216 9.3510 18.894 7.1571
0.20 9.6440 9.4110 8.0442 2.8040
0.25 2.2600 8.2400 2.1866 1.0691
0.30 0.2660 8.1890 0.2642 0.3753

h = 11.42 pTruea MSE(τ̂MLE) MSE(τ̂CUSUM) MSE{τ̂NEW(w)} MSE{τ̂NEW(ŵ)}
0.11 6,119.14 5,743.80 5,835.6 5,758.0
0.12 639.60 374.17 423.99 495.05

0.13(= pasa ) 226.71 60.876 60.876 122.26
0.14 108.40 36.832 32.666 49.398
0.15 53.433 31.370 24.371 28.747
0.16 20.426 24.352 11.983 13.635
0.17 12.091 30.333 7.8838 8.5666
0.18 12.338 27.753 8.9755 6.8706
0.19 4.5920 30.488 3.6264 4.4526
0.20 5.6930 29.692 4.9255 4.3549
0.25 0.9280 26.806 0.8860 1.5221
0.30 0.4600 27.475 0.4562 0.6258

a
The decision interval h = 6.57 or 11.42 is chosen such that the in-control ARL is 150 or 370, respectively.

biased for estimating pTruea . However, the MSE of p̂Truea is still close to zero and p̂Truea captures

the magnitude of pTruea well.

Table 3 compares the precision of the new estimators in terms ofMSE. Table 3 indicates that

τ̂CUSUM provides themost precise estimator when the true value of the out-of-control process

fraction nonconforming is near the speci�ed value for which the CUSUM was designed (i.e.,

pTruea ≈ pasa = 0.13). However, we observe poor performance of all the estimators when

pTruea < pasa = 0.13. This is because the CUSUM chart cannot immediately detect the process

change because pTruea is close to p0. Although some of the MSEs of τ̂NEW(ŵ) are not the

smallest, τ̂NEW(ŵ) provides very precise estimator of the change point under various di�erent

values of pTruea .

Table 4 shows the performance of the 95% bootstrap con�dence interval. The results show

some undercoverage with the settings of pasa ≤ 0.14 as there is systematic bias of τ̂NEW(ŵ)

for the true τ = 100. In the worst case of pasa = 0.11, the average lower con�dence interval

exceeds the true τ = 100, which leads to gross undercoverage. This problem is due to the lack

of information to estimate the true change point (as mentioned in the previous paragraph)

but is not due to the performance of the bootstrap. On the other hand, with the settings of

pasa ≥ 0.17, the coverage probabilities generally agree with the nominal 95% level, or slight

overcoverage. In these settings, the lower and upper con�dence limits successfully bracket the

true change point τ = 100.
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Table 4. Simulation results for the 95% con�dence interval of the change point τ = 100 under n = 50,
p0 = 0.1, and pasa = 0.13 based on 1,000 simulation runs.a

95% 95%
Lower con�dence Upper con�dence Coverage

h = 6.57 pTruea limit limit probability E{τ̂NEW(ŵ)}
0.11 111.77 125.18 0.34 117.61
0.12 100.87 115.21 0.55 107.32

0.13(= pasa ) 97.62 111.08 0.72 103.08
0.14 96.04 108.48 0.88 101.70
0.15 95.63 107.36 0.91 100.87
0.16 95.17 106.14 0.96 100.52
0.17 95.23 105.28 0.98 100.17
0.18 95.15 104.86 0.99 100.15
0.19 95.31 104.37 0.98 99.88
0.20 95.22 104.19 0.99 99.96
0.25 95.70 102.59 0.97 99.88
0.30 96.05 101.97 0.91 99.91

95% 95%
Lower con�dence Upper con�dence Coverage

h = 11.42 pTruea limit limit probability E{τ̂NEW(ŵ)}
0.11 141.99 163.84 0.18 150.93
0.12 106.49 126.72 0.45 113.33

0.13(= pasa ) 98.06 116.79 0.63 105.20
0.14 96.21 112.19 0.77 102.25
0.15 94.87 110.03 0.84 101.38
0.16 94.54 108.25 0.88 100.81
0.17 94.42 106.70 0.94 100.64
0.18 94.37 105.88 0.97 100.44
0.19 94.26 104.90 0.98 100.22
0.20 94.61 104.59 0.98 100.11
0.25 95.52 102.77 0.99 100.03
0.30 96.06 102.08 0.98 99.98

a
The decision interval h = 6.57 or 11.42 is chosen such that the in-control ARL is 150 or 370, respectively.

5. Data analysis

We analyze the jewelry manufacturing data obtained from Burr (1979). This data set counts

the number of defective pieces in the jewelry manufacturing process. Each subgroup contains

n = 50 beads, so we let

Xi = the number of defective pieces in 50 beads, for i = 1, 2, . . . ,T,

where the number of subgroups T = 54 is chosen as the �rst subgroup that yields an out-

of-control signal under the setting of Burr (1979). By counting the observed number of

defectives, we set the in-control fraction nonconforming p0 = 229/2, 700 = 0.085.

First, we use the np-chart that plots the number of defective pieces in each subgruop

(Figure 2). We see that the np-chart shows a consistently increasing trend a�er the subgroup

40. However, all subgroups are still within the 3σ -control limits, so the process is declared

to be in control. This is a typical example where the CUSUM is more appropriate than the

np-chart to detect the small signals.

We compute the binomal CUSUM designed to detect a 30% increase in pTruea by setting

pasa = 1.3 × p0 = 1.3 × 0.085 = 0.11, and

k = − ln

(

1 − 0.11

1 − 0.085

)/

ln

{

0.11(1 − 0.085)

0.085(1 − 0.11)

}

= 0.097.
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Figure 2. np-Chart for 54 subgroups of n = 50 pieces with 3σ limits. Here, Center = 4.25, lower control
limit (LCL)= 0, and upper control limit (UCL)= 10.165.

Table 5. CUSUM calculated on the 54 subgroups for the jewelry manufacturing data from Burr (1979).a

Subgroup Defectives Fraction Subgroup Defectives Fraction
number Xi defective Si number Xi defective Si

1 1 0.02 0 28 2 0.04 0
2 3 0.06 0 29 4 0.08 0
3 2 0.04 0 30 4 0.08 0
4 3 0.06 0 31 5 0.10 0.1489
5 3 0.06 0 32 5 0.10 0.2978
6 3 0.06 0 33 5 0.10 0.4468
7 2 0.04 0 34 4 0.08 0
8 3 0.06 0 35 3 0.06 0
9 3 0.06 0 36 7 0.14 2.1489
10 4 0.08 0 37 7 0.14 4.2978
11 3 0.06 0 38 3 0.06 2.4468
12 5 0.10 0.1489 39 3 0.06 0.5957
13 3 0.06 0 40 4 0.08 0
14 4 0.08 0 41 5 0.10 0.1489
15 4 0.08 0 42 7 0.14 2.2978
16 2 0.04 0 43 2 0.04 0
17 3 0.06 0 44 6 0.12 1.1489
18 6 0.12 1.1489 45 5 0.10 1.2978
19 3 0.06 0 46 7 0.14 3.4468
20 7 0.14 2.1489 47 4 0.08 2.5957
21 2 0.04 0 48 5 0.10 2.7447
22 3 0.06 0 49 6 0.12 3.8936
23 3 0.06 0 50 7 0.14 6.0426
24 3 0.06 0 51 8 0.16 9.1915
25 3 0.06 0 52 6 0.12 10.340
26 3 0.06 0 53 8 0.16 13.489
27 4 0.08 0 54 9 0.18 17.638

a
The fraction nonconforming is p0 = 229/2700 = 0.085. Each subgroup contains n = 50 beads.
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250 T. EMURA AND Y.-T. HO

Figure 3. Binomial CUSUM chart from the jewelry manufacturing data for p0 = 0.085, h = 12.043, and
pasa = 0.11.

Figure 4. Results of maximum likelihood estimation from the jewelry manufacturing data for p0 = 0.085,
h = 12.043, and pasa = 0.11.

Then, the reference value become nk = 50 × 0.097 = 4.85. The CUSUM is computed

recursively. For instance,

S1 = max{0,X1 − nk + S0} = max{0, 1 − 4.85 + 0} = max{0,−3.85} = 0,

S49 = max{0,X49 − nk + S48} = max{0, 6 − 4.85 + 2.74} = max{0, 3.89} = 3.89.

All values of Si are given in Table 5. We choose h = 12.043 such that the in-control ARL is

close to 370. Then, the CUSUM is comparable to the np-chart.
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Figure 3 shows that the out-of-control in the CUSUM is found as S53 = 13.4894 > h.

Thus, the fraction nonconforming is changed. Figure 3 displays Page’s change point estimator

at τ̂CUSUM = 43. Figure 4 shows that the MLE of the change point is τ̂MLE = 50.

To obtain the proposed estimator τ̂NEW(ŵ), we �rst need to estimate the weight ŵ =
w(p̂a(τ̂MLE)|pasa ). Because τ̂MLE = 50,

p̂a(τ̂MLE) = x51 + x52 + x53 + x54

50 + 50 + 50 + 50
= 8 + 6 + 8 + 9

200
= 0.155.

Because p̂a(τ̂MLE) > pasa ,

ŵ =
(

0.11 − 0.085

0.155 − 0.085

)

(

0.155
0.085

)

= 0.1529.

Therefore, the proposed change point estimator is

τ̂NEW(w) = wτ̂CUSUM + (1 − w)τ̂MLE

= 0.1529 × 43 + 0.8470 × 50

= 48.9292.

We know from the simulations that τ̂CUSUM typically underestimates whereas τ̂MLE slightly

overestimates the true change point. This tendency is also suspected in the data analysis

because τ̂CUSUM = 43 < τ̂MLE = 50. The results indicate that our proposed estimator may

provide a more unbiased estimator by taking an intermediate between τ̂CUSUM and τ̂MLE.

The change point estimate τ̂NEW(w) = 48.9292 is better supplemented by interval esti-

mates. We perform the parametric bootstrap (Section 3.3) and obtained the 95% con�dence

interval as [41.0113, 53.7573]. This suggests that, with 95% con�dence, the true change point

is one of {41, 42, 43, …, 51, 52, 53}.

6. Conclusion

This article proposes a new change point estimator τ̂NEW(ŵ) under the binomial CUSUM

control chart. Our estimator is not totally new but is a sensible combination of Page’s estimator

τ̂CUSUM (Page, 1954) and the maximum likelihood estimator τ̂MLE (Perry and Pignatiello,

2005; Pignatiello and Samuel, 2001).We derive our estimator such that the following principle

holds: If the binomial CUSUM chart is correctly designed (i.e., pTruea = pasa ), one should use

τ̂NEW(ŵ) = τ̂CUSUM. In this case, the chart can immediately detect the change and hence the

last zero estimator τ̂CUSUM is very close to the true value. In the usual case (i.e., pTruea 6= pasa ),

the proposed estimator is a weighed sum of τ̂MLE and τ̂CUSUM. This scheme is done by using

the proposed weight function w ≡ w(pTrue
a

| pasa ) in Section 3.2. Summing up two existing

estimators to improve accuracy is a well-known technique in the statistical decision theory

(Section 3.1).

Our simulations suggest that the performance of the proposed estimator τ̂NEW(ŵ) is less

biased compared to τ̂CUSUM and τ̂MLE under various parameter settings and under various

design values pasa . In terms of the mean squared error, the proposed method is not always

the best but never becomes the worst among all competing estimators. This implies that

our proposed estimator is more robust than the existing ones and reliably applied to many

di�erent parameter settings.
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