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ABSTRACT
We consider ridge regression with an intercept term under mixture
experiments. We propose a new estimator which is shown to be amodi-
fiedversionof the Liu-typeestimator. The so-called compoundcovariate
estimator is applied to modify the Liu-type estimator. We then derive a
formula of the total mean squared error (TMSE) of the proposed estima-
tor. It is shown that the new estimator improves upon existing estima-
tors in terms of the TMSE, and the performance of the new estimator is
invariant under the change of the intercept term. We demonstrate the
new estimator using a real dataset on mixture experiments.

1. Introduction

In a linear regression model, high correlation between regressors is called multicollinear-
ity. When multicollinearity exists, the ordinary least squares (OLS) estimator is less accurate
due to large sampling variance. Ridge regression is an alternative estimator derived by Hoerl
and Kennard (1970), which becomes one of the most common methods to deal with multi-
collinearity. Ridge regression aims to reduce the large variance by shrinking theOLS estimator
toward the zero vector. It has been theoretically justified that the mean squared error of the
ridge estimator is smaller than that of the OLS estimator with appropriate amount of shrink-
age (Hoerl and Kennard, 1970; Theobald, 1973).

Multicollinearity arises inmixture experiments, where regressors are proportions of amix-
ture. Ridge regression has been successfully applied for the Scheffe-type model to overcome
the multicollinearity among the proportions (Jang and Anderson-Cook, 2010, 2014). How-
ever, the absence of an intercept term in the Scheffe-type model makes it different from the
routine practice of linear regression that typically has an intercept term. In the Scheffe-type
model, the intercept term is removed and absorbed into the regression coefficients for pro-
portions (Section 2.3). For this removal to be valid, the sum of observed proportions must
be 1 (or 100%) for all individuals. Unfortunately, this requirement is not always met, which is
indeed the case for our motivating real data example.

In our paper, we consider ridge regression with an intercept term as in the routine practice
of linear regression.We particularly propose a new estimator, which is shown to be amodified
version of the Liu-type estimator. Here, the so-called compound covariate estimator is applied
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to modify the Liu-type estimator (Liu, 2003). We derive a simple formula of the total mean
squared error (TMSE) of the proposed estimator, which allows us to show (i) the TMSE of
the proposed method can be always smaller than the TMSE of the OLS estimator and (ii) the
optimal value of the shrinkage parameter can be derived and estimated. Simulations show that
the new estimator improves upon the OLS estimator and the ridge estimator in terms of the
TMSE, and the performance of the new estimator is invariant under the change of the intercept
term. We demonstrate the new estimator using a real dataset on mixture experiments.

Section 2 reviews the background. Section 3 introduces the proposed method. Section 4
provides theoretical results. Section 5 performs simulations, and Section 6 analyzes real data.
Section 7 concludes.

2. Background

This section reviews the background on linear regression, ridge regression, and mixture
experiments and also introduces some notations for subsequent discussions. Here, we will
emphasize that all ourmodel and notations are tailored for the interceptmodel (a linearmodel
with an intercept term). This setting is different from the usual literature on ridge regression
and mixture experiments in which the model does not have an intercept.

2.1. Linearmodel and ridge regression

A linear model with an intercept term is defined by

y = Xβ + ε (1)

where

yn×1 =

⎡
⎢⎣
y1
...
yn

⎤
⎥⎦ , Xn×(p+1) = [1n Xp ] =

⎡
⎢⎣
1
...
1

x11 · · · x1p
...

. . .
...

xn1 · · · xnp

⎤
⎥⎦ ,

β(p+1)×1 =

⎡
⎢⎢⎢⎣

β0

β1
...

βp

⎤
⎥⎥⎥⎦ , εn×1 =

⎡
⎢⎣

ε1
...
εn

⎤
⎥⎦

where X is the fixed design matrix with rank (X) = p+ 1, β ∈ Rp+1 is unknown regression
coefficients, and ε ∼ Nn(0,σ 2In), where σ 2 > 0 is unknown, and In is the n × n identity
matrix. The ordinary least squares (OLS) estimator of β is defined as follows:

β̂OLS = (β̂0, β̂1, . . . , β̂p)
T = (XTX)−1XTy

If X is standardized, then

1
n

n∑
i=1

xij = x̄ j = 0,
1

n − 1

n∑
i=1

(xij − x̄ j)
2 = 1 (2)

for j = 1, . . . , p. Inmost textbooks on regression analysis, ridge regression is introduced after
standardizing X to meet Equation (2) (e.g., Ashish and Srivastava, 1990; Draper and Smith,
1998; Hastie et al., 2009). This is because the ridge estimator aims to apply the same scale of
shrinkage on all regression coefficients. However, this is not the case for mixture experiments
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in which the scales of all regressors are already the same. Thus, if all columns of X represent
proportions of a mixture, then ridge regression is still meaningful.

It is important to emphasize that the model (1) includes an intercept, which is different
from the usual literature on (i) ridge regression and (ii) mixture experiments in the following
ways:

(i) Ridge regression: The intercept term is set to be zero (i.e., β0 = 0), and instead, the
responses are redefined as y − ȳ1n, where ȳ = yT1n/n (i.e., responses are centered).
This implies that β0 is pre-estimated by ȳ, and the ridge estimator is applied to p regres-
sion coefficients (Brown, 1977; Montgomery et al., 2012).

(ii) Mixture experiment: The intercept term is set to be zero (i.e., β0 = 0), and instead,
the regression coefficients are redefined as β∗

j = β0 + β j, j = 1, . . . , p, under the con-
straint

∑p
j=1 xij = 0. This yields the Scheffe’s first-order model (Section 2.3 for details).

We still include an intercept in the model (1) with the aim of maintaining the routine prac-
tice of linear regression. The ridge estimator introduced by Hoerl and Kennard (1970) takes
the form

β̂Ridge(k) = (XTX + kI(p+1))
−1XTy, k ≥ 0

where k is called shrinkage parameter. The equivalent form is as follows:

β̂Ridge(k) =
[
nȳ/(n + k)

β̂
Ridge
p (k)

]
≡

[ ∑n
i=1 yi/(n + k)(

XT
pXp + kIp

)−1XT
py

]
, k ≥ 0

As mentioned above, one usually uses ridge regression without an intercept by centering
the response. This is because the intercept term should not be shrunken (Brown, 1977).

The alternative versions of the ridge estimator under the intercept model are considered
by Brown (1977), Jimichi and Inagaki (1993), Jimichi (2005), and Jimichi (2008), where they
suggest a different shrinkage parameter (k0) for the intercept. The Jimichi estimator

β̂Jimichi(k0, k) =
[
nȳ/(n + k0)

β̂
Ridge
p (k)

]
≡

[ ∑n
i=1 yi/(n + k0)(

XT
pXp + kIp)

)−1XT
py

]
, k0, k ≥ 0

includes the ordinary ridge estimator as a special case, β̂Ridge(k) = β̂Jimichi(k, k). They also
discuss the optimal choice of k0. The Jimichi estimator includes the Brown estimator by setting
β̂Brown(k) ≡ β̂Jimichi(0, k).

Instead of β̂Brown(k) or β̂Jimichi(k0, k), several authors still have used β̂Ridge(k) and have
shown its superior performance over β̂OLS (e.g., Sakallıoğlu and Kaçıranlar, 2008; Li and Yang,
2012). This is because ridge regression does not have any restriction about the form of X.

In our paper, we continue to discuss the estimator β̂Ridge(k) under the intercept model
(1). The major goal of our paper is to propose a new estimator that improves upon β̂OLS and
β̂Ridge(k), especially under mixture experiments.

2.2. Canonical form under an intercept term

In order to study themean squared error properties of the ridge estimator, themodel is usually
rewritten in the canonical form.While the canonical formwithout an intercept is well known,
it seems less common to form the canonical form with an intercept. We will follow Jimichi
and Inagaki (1993), Jimichi (2005) and Jimichi (2008) to form the canonical form with an
intercept.
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Let λ1 ≥ . . . ≥ λp > 0 be the ordered eigenvalues of the matrix XT
pXp, where Xp is the

designmatrix without intercept as defined in Equation (1). Let γ1, . . . , γ p be the p× 1 eigen-
vectors for XT

pXp, corresponding to the ordered eigenvalues. It follows that

�T
pX

T
pXp�p = �p

where �p = [γ1, . . . , γ p] and �p = diag(λ1, . . . ,λp), where diag(λ) is the diagonal matrix
with λ being its diagonals. The model (1) is rewritten in the canonical form y = Aα + ε,
where A = X�, α = �Tβ, and �(p+1)×(p+1) are an orthogonal matrix defined as follows:

� =
[
1 0T

0 �p

]

It follows that

�TXTX� = ATA = � = diag(n, λ1, . . . , λp), ��T = I(p+1)

If we write αT = (α0, α1, . . . , αp)
T, then α0 = β0 and (α1, . . . , αp)

T = �T
p(β1, . . . , βp)

T.
Since β̂OLS is unbiased, the total mean squared error (TMSE) of β̂OLS is the same as the total

variance

TMSE(β̂OLS) = tr{var(β̂OLS)} = σ 2tr

⎡
⎣ 1
n

0T

0 (XT
pXp)

−1

⎤
⎦ = σ 2

⎛
⎝1
n

+
p∑

j=1

1
λ j

⎞
⎠

where “tr” is the trace of a matrix (sum of all the diagonal elements). The TMSE can be large if
there is a small eigenvalue ofXT

pXp, say λr ∼= 0, for some r ∈ {1, · · · , p}. If so, we haveXpγ r
∼=

0, evidence of multicollinearity as the r-th column is linearly dependent with others. This
mathematically explains why β̂OLS performs poorly under multicollinearity.

2.3. Mixture experiment

Mixture experiment is an experimental design formixing several ingredients together to form
a product (Cornell, 2011). For instance, consider the ingredients of flour, water, and egg to
make a cake. If the proportions of the three ingredients are xi, i = 1, 2, 3, we have a constraint

3∑
i=1

xi = 1, 0 ≤ xi ≤ 1, i = 1, 2, 3

In this case, the domain of the ingredients forms a three-component simplex region
(Figure 1). For instance, the point (0.5, 0, 0.5) in the simplex corresponds to a mixture with
50%flour, 0%water, and 50% egg. However, not every point on the simplex is allowed to occur
in the experiments. For example, if we take 5% flour, 90% water, and 5% egg, then wemay not
complete a cake due to toomuch water in themixture. Actually, the proportions are restricted
by either a lower bound (Li) or upper bound (Ui) so that 0 ≤ Li ≤ xi ≤ Ui ≤ 1, i = 1, 2, 3.

The Scheffe-type model has been used to perform OLS regression and interpret the results
within mixture experiments. The Scheffe’s first-order model is defined as follows:

y = β∗
1 x1 + · · · + β∗

pxp + ε (3)

which is simply a linear model without intercept. Under the constraint
∑p

j=1 x j = 1, the
intercept model (1) and the Scheffe-type model (3) are related through β∗

1 = β0 + β1, . . . ,
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Figure . The three-component simplex region satisfying the constraint
∑3

j=1 x j = 1.

β∗
p = β0 + βp (Cornell, 2011, p. 27). One cannot use the OLS estimator to the model (3) since

one component, say xq, is redundant. Now, we can write xq = 1 − ∑
j �=q x j. Then, the OLS

estimator can be calculated to the re-expressed model as follows:

y = β∗∗
0 +

∑
j; j �=q

β∗∗
j x j + ε

where the new parameter β∗∗
j is the difference β j − βq, j ∈ {1, . . . , p}\{q}, and the intercept

β∗∗
0 = βq + β0 involves the effect of xq(Cornell, 2011, p. 69).
Unfortunately, there are a few reasons that the interpretation of the new parameters is not

straightforward to users of regression analysis. Firstly, the interpretation of β∗∗
j depends on

the chosen coefficient βq, which is arbitrary. Second, one does not wish to remove a particular
term from amodel. Instead of removing xq, Jang and Anderson-Cook (2010, 2014) suggested
applying ridge regression directly to the Scheffe-type model (3). Third, both the Scheffe-type
model and the re-expressed model are valid only if the constraints

∑p
j=1 xij = 1 hold for all

individuals. In real-world examples ofmixture experiments, however, the constraintsmay not
hold exactly. For instance, data may fail to record the minor components in the mixture so
that the sum of the proportions is less than 1. This phenomenon will be explained below.

Our motivating example to illustrate mixture experiments is the Portland cement data
(Woods et al., 1932). It records the heat (cal/gram), as a response variable (y), evolved during
the hardening of Portland cements. The heat depends on the proportion of four compounds
in the clinkers, defined as follows:

1. Tricalcium aluminate: 3CaO · Al2O3(for x1).
2. Tricalcium silicate: 3CaO · SiO2(for x2).
3. Tetracalcium aluminoferrite: 4CaO · Al2O3 · Fe2O3(for x3).
4. β-dicalcium silicate: 2CaO · SiO2(for x4).
The compounds come from the four original sources (CaO, SiO2,Al2O3, Fe2O3), whose

amounts are fixed (Table 1; Figure 2). For example, in cement No.1 to No.5, the amount of
SiO2 is fixed around 25 (Table 1). Thus, the proportions of 3CaO · SiO2 (x2) and 2CaO · SiO2

(x4) may be complementary. Indeed, in the five cements, the sums of 2CaO · SiO2 (x4) and
3CaO · SiO2 (x2) are 86, 81, 76, 78 and 85%, which are all around 80%(x4 + x2 ≈ 80), because
the source SiO2 becomes these two compounds in chemical reaction. Therefore, the multi-
collinearity arises whenwe set these compounds as our explanatory variables. In this example,
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Table . Proportion (%) of the clinkers in the Portland cement data (Woods et al., ).

Cement No. SiO2 Al2O3 Fe2O3 CaO

 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
Cement No. 4CaO · Al2O3 · Fe2O3 3CaO · Al2O3 2CaO · SiO2 3CaO · SiO2

x3 x1 x4 x2
∑4

j=1 x j

     
     
     
     
     

NOTE: Five cements are extracted from data loaded from R AICcmodavg package.

Figure . Mixture and resources in the Portland cement data (Woods et al., ).

the constraints are only approximately satisfied (x1 + x2 + x3 + x4 ≈ 100),and in particular,
the sum of the proportions is less than 100% (Table 1).

2.4. Other ridge-type estimators

To improve the ridge estimator of Hoerl and Kennard (1970), Liu (1993) provided an estima-
tor, called “Liu estimator”:

β̂Liu(d) = (XTX + I)−1(XTy + dβ̂OLS), 0 ≤ d ≤ 1

Note that β̂Liu(0) = β̂Ridge(1) and β̂Liu(1) = β̂OLS.
Liu (2003) also introduced another estimator

β̂Liu
k,d = (XTX + kI)−1(XTy − dβ∗), k > 0, −∞ < d < ∞

where β∗ can be any estimator of β. Liu (2003) showed that β̂Liu
k,d is a better estimator over

the ridge estimator both on theoretic results and simulations. This estimator is called “Liu-
type estimator.” Notice the difference between terminologies “Liu estimator” and “Liu-type
estimator.” The Liu-type estimator has two parameters d and k, where d controls bias and k
corrects multicollinearity. Note that β̂Liu

k,0 = β̂Ridge(k) and β̂Liu
0,0 = β̂OLS. Liu (2003) suggested

β̂OLS or β̂Ridge(k) for β∗.



COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 6651

Sakallıoğlu and Kaçıranlar (2008) introduced a biased estimator

β̂SK(k, d) = (XTX + I)−1{XTy + dβ̂(k)Ridge}, k > 0, −∞ < d < ∞
This is a special case of the Liu estimator, which uses β̂Ridge(k) as a substitute of β̂OLS.

Sakallıoğlu and Kaçıranlar (2008) discussed some advantage of β̂SK(k, d) by theoretical MSE
calculations and simulations.

Li and Yang (2012) introduced the so-called modified Liu estimator, which incorporates
some prior knowledge on the Liu estimator. While they showed some remarkable improve-
ment in the MSE over many other ridge-type estimators, they did not discuss the estimation
of the shrinkage parameter.

A common feature of the aforementioned ridge-type estimators is that they involve one
or more tuning parameters. Selection or estimation of the tuning parameters is required, and
its variability needs to be accounted for the MSE evaluation. This is especially the case of the
Liu-type estimator in which β∗ and k are left unspecified.

3. Proposedmethod

This section proposes a new ridge-type estimator of β under the intercept model (1). We
follow the model and notations in Section 2.

A legitimate concern of β̂Ridge(k) under themodel (1) is that β̂Ridge(k) shrinks the intercept
toward zero as k → 0. If the intercept is far from zero, β̂Ridge(k) suffers large bias, especially
for large k. This concern may be removed by shrinking β̂ toward non zero values, say β∗ �= 0.
Consider a penalized residual sum, defined as follows:

(y − Xβ)T(y − Xβ) + k(β − β∗)T(β − β∗), k ≥ 0

where β∗can be any estimator of β. Then, a penalized least squares estimator is obtained as
follows:

β̂New(k, β∗) = (XTX + kI(p+1))
−1(XTy + kβ∗)

Note that, this estimator is a special case of the Liu-type estimator with the choice d = −k,
or β̂New(k, β∗) = β̂Liu

k,−k. Such a choice has not been particularly discussed in the literature.
For the new estimator to work well, finding a good estimator β∗ is important. We require:
(A) Estimate β∗ is a good guess of the true β and does not suffer multicollinearity.
(B) Estimate β∗ does not shrink toward 0.
(C) Estimate β∗ permits a simple formula for the TMSE of β̂New(k) as a function of k.
While Liu (2003) chose β̂OLS to estimate β∗, the use of β̂OLS is problematic as it suffers large

variance under multicollinearity or under mixture experiments. The choice β̂Ridge(k) is also
recommended by Liu (2003) for β∗. However, since β̂Ridge(k) shrinks toward 0, it does not fit
our purpose.

Our novel approach to find β∗ is inspired by the “compound covariate” method originally
advocated by John W. Tukey (Tukey, 1993). It is a method of prediction that aggregates the
univariate regression estimates when the scales of all regressors are the same. The method
intends to reduce the variance of the regression estimator in a large number of regressors. The
compound covariate method has been shown to be a valid prediction method (Radamacher
et al., 2002;Matsui, 2006; Emura et al., 2012, 2017; Emura andChen, 2016) inmedical applica-
tions, but it has rarely been used as an estimation method. Emura et al. (2012) considered the
compound covariate method to form an estimator under high-dimensional regressors in the
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Cox proportional hazards model. The resultant estimator is termed “the compound covariate
estimator.” Following their idea, we propose to find β∗ as follows:

Definition (Compound Covariate Estimator):
(i) Use the (reduced) univariate model yi = β∗

0 + ε∗
i to estimate β∗

0 by ȳ = ∑n
i=1 yi/n.

(ii) After estimating the intercept by β̂∗
0 = ȳ, use the univariate model for jthregressor: yi =

β̂∗
0 + β∗

j xij + ε∗
i to estimate β∗

j , j = 1, · · · , p by β̂∗
j = ∑n

i=1 xijyi/
∑n

i=1 xij
2.

The compound covariate estimator is formed by β̂∗ = (β̂∗
0 β̂

∗
1 · · · β̂∗

p )
T.

The compound covariate estimator is alternatively derived as the minimizer of

RSS∗(β) =
p∑

j=1

n∑
i=1

(yi − β0 − β jxij)2

This is the sum of univariate residual sum squares for j = 1, · · · , p. This parallels Emura
et al. (2012) who defined the compound covariate estimator as themaximizer of the combined
univariate partial likelihoods under the Cox model.

The compound covariate estimator can be expressed in a matrix form as follows:

β̂∗ =

⎡
⎢⎢⎢⎢⎣

ȳ∑n
i=1 xi1yi/

∑n
i=1 xi1

2

...∑n
i=1 xipyi/

∑n
i=1 xip

2

⎤
⎥⎥⎥⎥⎦ = {diag(XTX)}−1XTy

where diag(�) is the diagonal matrix with the same diagonal elements as �. If X is stan-
dardized to meet Equation (2), then one has a simple expression diag(XTX) = diag(n, n −
1, . . . , n − 1). IfX is not standardized, then the simple expression does apply. In general, our
proposed estimator takes the form

β̂New(k) = (XTX + kI(p+1))
−1(XTy + kβ̂∗)

= (XTX + kI(p+1))
−1[I(p+1) + k{diag(XTX)}−1]XTy

The expression is linear in y, which makes it easier to study the sampling distribution of
β̂New(k). It is straightforward to see that

lim
k→∞

E{β̂New(k)} = {diag(XTX)}−1XTXβ

Figure 3 explains the behavior of the proposed estimator with a shrinkage toward
{diag(XTX)}−1XTXβ . The proposed shrinkage scheme is different from that of the ridge esti-
mator that shrinks toward 0. If {diag(XTX)}−1XTXβ is between the true β and 0, then we
expect that our new estimator is superior to the ridge estimator (Figure 3).

4. Theory

In this section, we derive a simple formula of the total mean squared error (TMSE) of the
proposed estimator. We use this formula to show (I) there exists some k > 0 such that the
TMSE of the proposed method is smaller than the TMSE of the OLS estimator and (II) the
optimal value of k can be derived and estimated.
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Figure . The shrinkage scheme for the new estimator whenp = 2.

4.1. Mean squared error calculation

Consider a linear estimator of the form β̃ = Cy, whereC is a fixed (p+ 1) × nmatrix. Then,

TMSE(β̃) = E(β̃ − β)T(β̃ − β) = bias(β̃)Tbias(β̃) + v(β̃) (4)

where bias(β̃) ≡ E(β̃) − β = (CX − I(p+1))β and v(β̃) = σ 2tr{CCT}.

Lemma 1. Suppose that X is standardized to meet Equation (2). Then,

B(k) ≡ bias{β̂New(k)}Tbias{β̂New(k)} =
p∑

i=1

k2α2
i (λi − n + 1)2

(λi + k)2(n − 1)2

V(k) ≡ v{β̂New(k)} = σ 2

{
1
n

+
p∑

i=1

λi(k + n − 1)2

(λi + k)2(n − 1)2

}

Proof of Lemma 1: Recall that �TXTX� = � = diag(n, λ1, . . . , λp) in Section 2.2. Then,
the bias is as follows:

bias{β̂New(k)}
= {(XTX + kI)−1[I + k{diag(XTX)}−1]XTX − I}β
= �{(� + kI)−1[I + k�T{diag(XTX)}−1�]� − I}α

= �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
n + k

0 · · · 0

0
1

λ1 + k
0

...
. . .

...

0 0 · · · 1
λp + k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k + n
n

0 · · · 0

0
k + n − 1
n − 1

0

...
. . .

...

0 0 · · · k + n − 1
n − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n 0 · · · 0

0 λ1 0

...
. . .

...

0 0 · · · λp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

α
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= �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

0
k(λ1 − n + 1)

(λ1 + k)(n − 1)
0

...
. . .

...

0 0 · · · k(λp − n + 1)
(λp + k)(n − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

α

where we simply write I = I(p+1). Since ��T = I(p+1), the bias becomes

bias{β̂New(k)}Tbias{β̂New(k)}

= αT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

0
k(λ1 − n + 1)

(λ1 + k)(n − 1)
0

...
. . .

...

0 0 · · · k(λp − n + 1)
(λp + k)(n − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�T�

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

0
k(λ1 − n + 1)

(λ1 + k)(n − 1)
0

...
. . .

...

0 0 · · · k(λp − n + 1)
(λp + k)(n − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

α

=
p∑

i=1

k2α2
i (λi − n + 1)2

(λi + k)2(n − 1)2

Next, the total variance is calculated as follows:

v{β̂New(k)}
= σ 2tr{(XTX + kI)−1[I + k{diag(XTX)}−1]XTX[I + k{diag(XTX)}−1](XTX + kI)−1}

= σ 2tr{�(� + kI)−1[I + k�T{diag(XTX)}−1�]�[I + k�T{diag(XTX)}−1�](� + kI)−1�T}

= σ 2tr

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�T�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
n + k

0 · · · 0

0
1

λ1 + k
0

...
. . .

...

0 0 · · · 1
λp + k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k + n
n

0 · · · 0

0
k + n − 1
n − 1

0

...
. . .

...

0 0 · · · k + n − 1
n − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2
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×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n 0 · · · 0

0 λ1 0

...
. . .

...

0 0 · · · λp

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= σ 2

{
1
n

+
p∑

i=1

λi(k + n − 1)2

(λi + k)2(n − 1)2

}
�

Lemma 1 immediately yields the following theorem:

Theorem 1. Suppose that X is standardized to meet Equation (2). Then,

TMSE{β̂New(k)} =
p∑

i=1

k2α2
i (λi − n + 1)2

(λi + k)2(n − 1)2
+ σ 2

{
1
n

+
p∑

i=1

λi(k + n − 1)2

(λi + k)2(n − 1)2

}

Furthermore, the preceding formula does not depend on the intercept term β0 = α0.

4.2. Existence theorem

We give a similar result as the existence theorem of the ridge estimator by Hoerl and Kennard
(1970). In our proposed estimator, the statement of the existence theorem is the same asHoerl
and Kennard (1970), but the proof is more complicated.

Theorem 2. (Existence theorem of the new estimator) Suppose that X is standardized to meet
Equation (2). There always exist some small value of k > 0 such that the proposed estimator
strictly improves upon the OLS estimator in the sense of TMSE{β̂New(k)} < TMSE(β̂OLS).

Proof of Theorem 2.
From Theorem 1,

TMSE{β̂New(k)} =
p∑

i=1

k2α2
i (λi − n + 1)2

(λi + k)2(n − 1)2
+ σ 2

{
1
n

+
p∑

i=1

λi(k + n − 1)2

(λi + k)2(n − 1)2

}

≡ B(k) + V(k)

where B(k) and V(k) are available in Lemma 1. Accordingly,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d
dk

B(k) =
p∑

i=1

2kα2
i λi(λi − n + 1)2

(λi + k)3(n − 1)2
⇒ lim

k→0+
d
dk

B(k) = 0.

d
dk

V(k) = σ 2
p∑

i=1

2λi(λi − n + 1)(k + n − 1)
(λi + k)3(n − 1)2

⇒ lim
k→0+

d
dk

V(k) = 2σ 2
p∑

i=1

(λi − n + 1)
λi

2(n − 1)

This means that the sign of limk→0+ dV(k)/dk determines the slope of the TMSE function
at k = 0+. Recall that λ1 ≥ · · · ≥ λp > 0. Here, we consider three cases: Case (i) n > λ1 + 1,
Case (ii) λs + 1 ≥ n > λs+1 + 1, 1 ≤ s < p, and Case (iii) λp + 1 ≥ n (see Figure 4).

Case (i):We have (λi − n + 1) < 0 for all i = 1, . . . , p. Thus, limk→0+ dV(k)/dk < 0.
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Case (ii):We divide the summation into two parts.

lim
k→0+

d
dk

V(k) = 2σ 2
p∑

i=1

(λi − n + 1)
λi

2(n − 1)

= 2σ 2

{
s∑

i=1

(λi − n + 1)
λi

2(n − 1)

}
︸ ︷︷ ︸

nonnegative

+2σ 2

{ p∑
i=s+1

(λi − n + 1)
λi

2(n − 1)

}
︸ ︷︷ ︸

negative

Since λi ≥ λs for all i = 1, . . . , s, and λi ≤ λs for all i = s + 1, . . . , p,

lim
k→0+

d
dk

V(k) < 2σ 2

{
s∑

i=1

(λi − n + 1)
λs

2(n − 1)

}
+ 2σ 2

{ p∑
i=s+1

(λi − n + 1)
λs

2(n − 1)

}

= 2σ 2

λs
2(n − 1)

p∑
i=1

(λi − n + 1) = 2σ 2

λs
2(n − 1)

( p∑
i=1

λi − np+ p

)

= 2σ 2

λs
2(n − 1)

{
tr
(
XT

pXp

)
− np+ p

}
= 2σ 2

λs
2(n − 1)

{p(n − 1) − np+ p}

= 0

Thus, we obtain limk→0+ dV(k)/dk < 0.
Case (iii): The case of λp + 1 ≥ n corresponds to small n. This actually never happens in

our model; since pλp <
∑p

i=1 λi = tr(XT
pXp) = p(n − 1), we have λp < n − 1.

From the results of Cases (i)–(iii), it holds that limk→0+ dT MSE{β̂New(k)}/dt < 0. This
implies the conclusion of Theorem 2. �

4.3. Optimal value of k

There exist many different ways to estimate the shrinkage parameter k > 0 for the ridge
regression. See Wong and Chiu (2015) that give a comprehensive list of all the available esti-
mators in the literature. These available estimators cannot be directly applied to our new
estimator.

Since the estimator β̂New(k) is linear in y, the formula of TMSE{β̂New(k)} is easily computed
by Equation (4). The optimal value for k that minimizes TMSE{β̂New(k)} is as follows:

kNew = argmin
k≥0

[σ 2tr{(XTX + kI)−1[I + k{diag(XTX)}−1]XT

Figure . Three cases occurring in the proof of Theorem .
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×X[I + k{diag(XTX)}−1](XTX + kI)−1}

+ ‖{(XTX + kI)−1[I + k{diag(XTX)}−1]XTX − I}β‖2]

If X is standardized to meet Equation (2), one can also apply the equivalent formula

kNew = argmin
k≥0

[ p∑
i=1

k2α2
i (λi − n + 1)2

(λi + k)2(n − 1)2
+ σ 2

{
1
n

+
p∑

i=1

λi(k + n − 1)2

(λi + k)2(n − 1)2

}]

If we use β̂OLS, σ̂ 2 = (y − Xβ̂
OLS

)T(y − Xβ̂
OLS

)/(n − p− 1), and α̂
OLS = �Tβ̂OLS in place

of β, σ 2, and α, respectively, then the estimated optimal shrinkage parameter for β̂Ridge(k) is
as follows:

k̂New = argmin
k≥0

[σ̂ 2tr{(XTX + kI)−1[I + k{diag(XTX)}−1]XT

×X[I + k{diag(XTX)}−1](XTX + kI)−1}

+ ‖{(XTX + kI)−1[I + k{diag(XTX)}−1]XTX − I}β̂OLS‖2]

or

k̂New = argmin
k≥0

[ p∑
i=1

k2α̂2,OLS
i (λi − n + 1)2

(λi + k)2(n − 1)2
+ σ̂ 2

{
1
n

+
p∑

i=1

λi(k + n − 1)2

(λi + k)2(n − 1)2

}]

The numerical minimization can be done, for example, by R “optimize” routine.

5. Simulation

This section examines whether the new estimator improves upon the OLS estimator and the
ridge estimator in terms of the TMSE. In addition, we examine the correctness of our theo-
retical formulas for bias, variance, and TMSE obtained in Lemma 1 and Theorem 1.

5.1. Simulation design

We generate data by mimicking the setting of the Portland cement data that have a four-
component mixture (x1 + x2 + x3 + x4 ≈ 100) under n = 13 and p = 4. We consider four
cases:

Case 1: β = (50, 1, 1, 1, 1)Tand σ 2 = 1,
Case 2: β = (50, 1, 1, 1, 1)Tand σ 2 = 2,
Case 3: β = (1, 1, 1, 1, 1)Tand σ 2 = 1,
Case 4: β = (1, 1, 1, 1, 1)Tand σ 2 = 2.

Step 1. Generate the design matrix Xp = (x1, . . . , x4) as follows:[
xi1
xi2

]
∼ N2

([
12
25

]
, 5 × I2

)
,

[
xi3
xi4

]
∼

[
−xi1
−xi2

]
+ N2

([
50
50

]
, 5 × I2

)
, i = 1, · · · , n

In this way, we have the approximate constraint (x1 + x2 + x3 + x4 ≈ 100), and the multi-
collinearity (x2 + x4 ≈ 50) and (x1 + x3 ≈ 50). After standardization to meet Equation (2),
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we get

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1.015 −2.184 0.660 2.082
1 −0.020 0.940 −1.170 −0.927
1 −1.272 −0.154 0.563 −0.165
1 1.713 −0.127 −0.759 0.485
1 0.159 0.771 1.141 −0.291
1 −1.253 0.656 0.873 −1.083
1 0.353 0.443 0.169 −0.936
1 0.661 0.748 −0.428 −0.409
1 0.461 0.620 −1.427 −0.028
1 −0.621 −0.042 0.160 −0.150
1 1.610 −1.973 −1.387 2.006
1 0.233 0.468 −0.132 −0.174
1 −1.008 −0.165 1.738 −0.410

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡ [1,Xp]

The sample correlation form of Xp is as follows:

Sample Corr(Xp) =

⎡
⎢⎢⎢⎣
1.000 −0.039 −0.714 0.278
−0.039 1.000 0.014 −0.924
−0.714 0.014 1.000 −0.227
0.278 −0.924 −0.227 1.000

⎤
⎥⎥⎥⎦

We see that the four regressors are correlated as expected.
Step 2. Given X, generate ε(r) ∼ Nn(0, σ 2In) and set y(r) = Xβ + ε(r) for r =

1, · · · , 100, 000.
Then, β̂New(k)(r) = (XTX + kI)−1(XTy(r) + kβ̂∗(r)) is computed, where β̂∗(r) =

{diag(XTX)}−1XTy(r). Compute the approximate bias, variance, and TMSE as follows:

BNew(k) = { ¯̂
βNew(k)(·) − β}T{ ¯̂

βNew(k)(·) − β}

VNew(k) = 1
100, 000

100,000∑
r=1

[{β̂New(k)(r) − ¯̂
βNew(k)(·)}T{β̂New(k)(r) − ¯̂

βNew(k)(·)}]

TMSENew(k) = 1
100, 000

100,000∑
r=1

{β̂New(k)(r) − β}T{β̂New(k)(r) − β}

where ¯̂
βNew(k)(·) = ∑100,000

r=1 β̂New(k)(r)
/100, 000.

Step 3. Plot the bias, variance, and TMSE against k and then identify the minimizer of the
TMSE, kNew.

Perform the same algorithms for β̂Ridge(k)(r) and then identify the minimizer of the TMSE,
kRidge.
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Figure . Simulation results for the TMSE plot underβ = (50, 1, 1, 1, 1)Tandσ 2 = 1 (Case ). The black point
is kRidge = 0.1163 (left) and the red point is kNew = 0.6343 (left and right). The right plot shows the bias–
variance trade-off the proposed estimator.

5.2. Simulation result (comparison between β̂
Ridge

(k) and β̂New(k))

Figures 5–8 depict the TMSE plots. Both β̂New(k) and β̂Ridge(k) show a good amount of
improvement in TMSE relative to β̂OLS = β̂New(0) = β̂Ridge(0) in a range of k > 0. This
implies that both β̂New(k) and β̂Ridge(k) fix the problem of multicollinearity.

Figures 5 and 6 show that β̂New(k) has the smaller TMSE than the ridge estimator β̂Ridge(k)
when the intercept term is large (when β = (50, 1, 1, 1, 1)T). The superior performance
of β̂New(k) over β̂Ridge(k) is more remarkable when k is larger. The worse performance of
β̂Ridge(k)with large k is due to too much shrinkage of the true intercept term. Then, the supe-
riority of β̂New(k) is attributable to the different shrinkage schemes of the intercept term by
the compound covariate estimator.

Figures 7 and 8 show that β̂New(k) is slightly worse than β̂Ridge(k) if the intercept term is
small (when β = (1, 1, 1, 1, 1)T). However, the difference is very small.

Figure. Simulation results for the TMSEplot underβ = (50, 1, 1, 1, 1)Tandσ 2 = 2 (Case ). Theblackpoint
is kRidge = 0.1850 (left), and the red point is kNew = 1.3171 (left and right). The right plot shows the bias–
variance trade-off the proposed estimator.
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Figure . Simulation results for the TMSE plot under β = (1, 1, 1, 1, 1)Tand σ 2 = 1 (Case ). The black point
is kRidge = 0.5676 (left), and the red point is kNew = 0.6343 (left and right). The right plot shows the bias–
variance trade-off the proposed estimator.

Figure . Simulation results for the TMSE plot under β = (1, 1, 1, 1, 1)Tand σ 2 = 2 (Case ). The black point
is kRidge = 1.1234 (left), and the red point is kNew = 1.3171 (left and right). The right plot shows the bias–
variance trade-off the proposed estimator.

An important result is that the TMSE of β̂New(k) is invariant for the change of the intercept
term. This property can also be verified theoretically (Theorem 1). Therefore, if themodel has
a large intercept term, β̂New(k) is more desired than β̂Ridge(k) as a way to fix multicollinearity.

Figures 5–8 reveal that the bias is flat, and the total variance decreases steeply at k = 0+.
These results numerically support the conclusion of the existence theorem (Theorem 2).

Table 2 summarizes the conclusion. The new method is more robust against the change of
the intercept term than the ridge estimator is.

Table . The effects of intercept term and σ 2on two estimators (Ridge and New).

β̂Ridge(k) β̂New(k)

Large intercept term affected not affected
Large σ 2 affected affected
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Table . The bias of the proposed estimator β̂New(k), namely bias{β̂New(k)}Tbias{β̂New(k)}.
k = 0.2 k = 0.4 k = 0.6 k = 0.8

β =

⎡
⎢⎢⎢⎢⎢⎣

50
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 1
Formula (i) . . . .
Formula (ii) . . . .
Monte Carlo . . . .

β =

⎡
⎢⎢⎢⎢⎢⎣

50
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 2
Formula (i) . . . .
Formula (ii) . . . .
Monte Carlo . . . .

β =

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 1
Formula (i) . . . .
Formula (ii) . . . .
Monte Carlo . . . .

β =

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 2
Formula (i) . . . .
Formula (ii) . . . .
Monte Carlo . . . .

Formula (i):

bias{β̂New(k)}Tbias{β̂New(k)} = βT{(XTX + kI)−1[I + k{diag(XTX)}−1]XTX − I}T
× {(XTX + kI)−1[I + k{diag(XTX)}−1]XTX − I}β

Formula (ii): bias{β̂New(k)}Tbias{β̂New(k)} = ∑p
i=1

k2α2
i (λi−n+1)2

(λi+k)2(n−1)2

Monte Carlo: BNew(k) = { ¯̂
βNew(k)(·) − β}T{ ¯̂

βNew(k)(·) − β}

5.3. Result (checking theoretical properties of β̂New(k))

In Sections 5.1 and 5.2, we use the Monte Carlo approximations to examine the bias, total
variance, and TMSE. One can alternatively use the exact expressions for the bias, variance,
and TMSE (Lemma 1 and Theorem 1), which are free from error due to the finite number of
Monte Carlo replications.

We calculate exact values of the bias, total variance, and TMSE of the proposed estimator
at k = 0.2, 0.4, 0.6, and 0.8 using the formulas in Lemma 1 and Theorem 1 and compare them
with the Monte Carlo approximated values. Tables 3–5 show that the exact values of the bias,
total variance, and TMSE (from Lemma 1 and Theorem 1) are very close to the Monte Carlo
versions in all simulation settings. Furthermore, the numerical results of Tables 3–5 agree
with Figures 5–8. Therefore, we have numerically verified the correctness of our theoretical
formulas.

5.4. TMSE comparison under estimated parameter k

So far, the performance of the estimators is compared under fixed k. In reality, one needs to
estimate k by data, which induces some variation. Therefore, we take into account for the
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Table . The total variance of the proposed estimator β̂New(k), namely v{β̂New(k)}.
k = 0.2 k = 0.4 k = 0.6 k = 0.8

β =

⎡
⎢⎢⎢⎢⎢⎣

50
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 1
Formula (i) . . . .
Formula (ii) . . . .
Monte Carlo (SE) .(.) .(.) .(.) .(.)

β =

⎡
⎢⎢⎢⎢⎢⎣

50
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 2
Formula (i) . . . .
Formula (ii) . . . .
Monte Carlo (SE) .(.) .(.) .(.) .(.)

β =

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 1
Formula (i) . . . .
Formula (ii) . . . .
Monte Carlo (SE) .(.) .(.) .(.) .(.)

β =

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 2
Formula (i) . . . .
Formula (ii) . . . .
Monte Carlo (SE) .(.) .(.) .(.) .(.)

Formula (i):

σ 2tr{(XTX + kI)−1[I + k{diag(XTX)}−1]XTX[I + k{diag(XTX)}−1](XTX + kI)−1}

Formula (ii) : v{β̂New(k)} = σ 2{ 1
n + ∑p

i=1
λi (k+n−1)2

(λi+k)2(n−1)2
}

Monte Carlo : VNew(k) = 1
100,000

∑100,000
r=1 [{β̂New(k)(r) − ¯̂

βNew(k)(·)}T{β̂New(k)(r) − ¯̂
βNew(k)(·)}]

variation of k by changing Step 2 as follows:

TMSE{β̂New(k̂New)} = 1
100, 000

100,000∑
r=1

{β̂New(k̂New
(r)

)(r) − β}T{β̂New(k̂New
(r)

)(r) − β}

where k̂New(r) is based on the data y(r) = Xβ + ε(r). Similarly, TMSE{β̂Ridge(k̂Ridge)} is defined.
A comparison between TMSE{β̂New(k̂New)} and TMSE{β̂Ridge(k̂Ridge)} is made in Table 6.

Both k̂New and k̂Ridge are reasonably good estimators of their true kNew and kRidge, respec-
tively. Accordingly, TMSE{β̂New(k̂New)} is smaller than TMSE{β̂Ridge(k̂Ridge)} in the case of
a large intercept (first and second columns). On the other hand, TMSE{β̂New(k̂New)} is
slightly larger than TMSE{β̂Ridge(k̂Ridge)} in the case of a small intercept (third and fourth
columns). Importantly, TMSE{β̂New(k̂New)} is not affected by the size of the intercept term,
while TMSE{β̂Ridge(k̂Ridge)} is. These results agree with Figures 5–8.

6. Real data analysis

We analyze the dataset on Portland cement (Woods et al., 1932). As described in Section 2.3,
these data are obtained from a four-component mixture experiment that does not exactly
meet the constraint (x1 + x2 + x3 + x4 = 1); in particular, the sum of the four proportions is



COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 6663

Table . The TMSE of the proposed estimator β̂New(k), namely TMSE{β̂New(k)}.
k = 0.2 k = 0.4 k = 0.6 k = 0.8

β =

⎡
⎢⎢⎢⎢⎢⎣

50
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 1
Formula (i) . . . .
Formula (ii) . . . .
Monte Carlo (SE) .(.) .(.) .(.) .(.)

β =

⎡
⎢⎢⎢⎢⎢⎣

50
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 2
Formula (i) . . . .
Formula (ii) . . . .
Monte Carlo (SE) .(.) .(.) .(.) .(.)

β =

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 1
Formula (i) . . . .
Formula (ii) . . . .
Monte Carlo (SE) .(.) .(.) .(.) .(.)

β =

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 2
Formula (i) . . . .
Formula (ii) . . . .
Monte Carlo (SE) .(.) .(.) .(.) .(.)

Formula (i):

σ 2tr{(XTX + kI)−1[I + k{diag(XTX)}−1]XTX[I + k{diag(XTX)}−1](XTX + kI)−1}
+ ‖{(XTX + kI)−1[I + k{diag(XTX)}−1]XTX − I}β‖2

Formula (ii) : TMSE{β̂New(k)} = ∑p
i=1

k2α2
i (λi−n+1)2

(λi+k)2(n−1)2
+ σ 2{ 1

n + ∑p
i=1

λi (k+n−1)2

(λi+k)2(n−1)2
}

Monte Carlo : TMSENew(k) = 1
100,000

∑100,000
r=1 {β̂New(k)(r) − β}T{β̂New(k)(r) − β}

slightly less than 1 for all individuals. Since the requirement of the Scheffe-type model is not
met (

∑4
j=1 xij = 1 does not hold for all individuals), one cannot apply the Scheffe-type model

(Section 2.3). For this reason, we work on the intercept model (1).
We load the Portland cement data from R AICcmodavg package (Mazerolle, 2014). The

sample correlation between the columns of Xp is as follows:

Sample Corr(Xp) =

x1 x2 x3 x4⎡
⎢⎢⎢⎣
1.000 0.229 −0.824 −0.245
0.229 1.000 −0.139 −0.973
−0.824 −0.139 1.000 0.030
−0.245 −0.973 0.030 1.000

⎤
⎥⎥⎥⎦

where the columns x1, x2, x3 and x4 indicate the proportions of 3CaO · Al2O3, 3CaO · SiO2,
4CaO · Al2O3 · Fe2O3, and 2CaO · SiO2, respectively.We find that x1and x3 are negatively cor-
related. Also, x2and x4 are negatively correlated. Thus, we find necessity to adjust for multi-
collinearity. Hereafter, we divide our analysis into two cases according to whether X is stan-
dardized or not.
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Table . Simulation results for examining the performance of k̂New, k̂Ridge, β̂New(k̂New), and β̂Ridge(k̂Ridge)
based on , repetitions.

β =

⎡
⎢⎢⎢⎢⎢⎣

50
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 1 β =

⎡
⎢⎢⎢⎢⎢⎣

50
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 2 β =

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 1 β =

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, σ

2 = 2

True kNew . . . .
True kRidge . . . .
E(k̂New) . . . .
E(k̂Ridge) . . . .
TMSE{β̂New(k̂New)} . . . .
TMSE{β̂Ridge(k̂Ridge)} . . . .

Case (A): X is not standardized.
This is the standard way to perform regression on mixture experiments. Previously, the

same data are analyzed in this way by a number of authors, including Sakallıoğlu and
Kaçıranlar (2008) and Li and Yang (2012).

Under the un-standardized X, we obtain

β̂OLS = (62.41 1.55 0.510 0.102 − 0.144)T, σ̂ 2 = 5.983

In real data analysis, we do not know the true parameters. Sakallıoğlu and Kaçıranlar
(2008) regardβ = (62.41 1.55 0.510 0.102 − 0.144)T and σ 2 = 5.983 as the true val-
ueswhen calculating the TMSEof the several ridge-type estimators. Following their approach,
we compare

β̂ = COLSy, β̂Ridge(k) = CRidge(k)y, β̂Liu(d) = CLiu(d)y, β̂Liu
k,d = CLiu

k,dy,

β̂SK(k, d) = CSK(k, d)y, β̂New = CNew(k)y,

where

COLS = (XTX)−1XT

CRidge(k) = (XTX + kI(p+1))
−1XT

CLiu(d) = (XTX + I(p+1))
−1{I(p+1) + d(XTX)−1}XT

CLiu
k,d = (XTX + kI(p+1))

−1{XT − dCRidge(k)}
CSK(k, d) = (XTX + I(p+1))

−1{XT + dCRidge(k)}
CNew(k) = (XTX + kI(p+1))

−1[I(p+1) + k{diag(XTX)}−1]XT

Table 7 summarizes the results. All the ridge-type estimators exhibit some improvement in
the TMSE over the OLS estimator. This is the effect of correctingmulticollinearity. In particu-
lar, the proposed estimator β̂New(k̂New) achieves the smallest TMSE among all the estimators.
Except for the new estimator, all other estimators show nearly identical TMSE values as those
reported by Sakallıoğlu and Kaçıranlar (2008). Figure 9 shows that the TMSE plot of β̂New(k)
is uniformly smaller than that of β̂Ridge(k).
where λ1 ≥ . . . ≥ λp+1 are the eigenvalues of the matrix XTX.

The black point is k̂Ridge = 0.001521, and the red point is k̂NEW = 0.005192.
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Table . Analysis of the Portland cement data (Woods et al., ) based on the un-standardized design
matrix.

β̂ β0 β1 β2 β3 β4 Bias Var TMSE

β̂OLS . . . . − .  . .
β̂Ridge(k), k = k̂HK . . . . . . . .
β̂Ridge(k), k = k̂Ridge . . . . . . . .
β̂Liu(d),d = d̂opt . . . . − . . . .

β̂SK(k,d),k = k̂HK, d = d̂opt . . . . . . . .

β̂New(k), k = k̂HK . . . − . − . . . .
β̂New(k), k = k̂New . . . − . − . . . .

NOTES: k̂HK = σ̂ 2/{(β̂OLS)T(β̂OLS)} = 0.001535, k̂Ridge = 0.001521, k̂NEW = 0.005192, σ̂ 2 = 5.983, and

d̂opt = ∑p+1
i=1

λi (α̂
2
i −σ̂ 2 )

(λi+1)2(λi+k̂HK )
/
∑p+1

i=1
λi (λi α̂

2
i +σ̂ 2 )

(λi+1)2(λi+k̂HK )
2 = 0.997,

Case (B): X is standardized as in Equation (2).
Thismay not be the standardway to perform regression onmixture experiments. However,

this is the usual way to apply ridge regression in other applications. In addition, since we have
developed theoretical results under the standardized X, it is of our interest to examine this
setting.

Under the standardized X, we obtain

β̂OLS = (95.43 9.12 7.94 0.65 − 2.41)T, σ̂ 2 = 5.983

In real data analysis, we do not know the true parameters. Similar to Case (A), we regard
β = (95.43 9.12 7.94 0.65 − 2.41)T and σ 2 = 5.983 as the true values when we cal-
culate the TMSE of β̂Ridge(k) and β̂New(k).

The results of evaluating the TMSE are displayed in Figure 10. In a range of k > 0, both
β̂Ridge(k) and β̂New(k) perform much better than β̂OLS. Among them, β̂New(k) achieves the
smallest TMSE with the optimal value k̂New = 0.1826.

Figure . The TMSE plots of β̂OLS, β̂Ridge(k) and β̂New(k) based on the Portland cement data under the
un-standardized design matrix.
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Figure . The TMSE plots for β̂OLS, β̂Ridge(k) and β̂New(k) based on the Portland cement data under the
standardized design matrix. The black point is k̂Ridge = 0.1373 (left), and the red point is k̂New = 0.1826
(left). The range of k is different between the right and left figures.

7. Conclusion and discussion

In the Scheffe-type model for mixture experiments, the model does not include an inter-
cept term under the key assumption that the observed proportion of a mixture is the unity
(Section 2.3).We have pointed out that this assumption is occasionally not hold, in particular,
for the Portland cement data. With this problem, a direct application of ridge regression to
the Scheffe-type model can be misleading.

As an appropriate way to modify the ridge estimator, we have proposed a modification to
the Liu-type estimator (Liu, 2003) of an intercept and regression coefficients under multi-
collinearity. An important property of the proposed estimator is that the TMSE is invariant
for the size of the intercept, which is verified by both theoretically (Section 4) and numeri-
cally (Section 5). This invariance is exactly the consequence of using the compound covariate
estimator to modify the Liu-type estimator. As a result, the performance of the proposed esti-
mator is superior to the OLS estimator and the ridge estimator when the intercept is far from
zero. If the intercept is near zero, then the proposed estimator is only slightly inferior to the
ordinary ridge estimator.

While the present paper focuses onmixture experiments, the proposed idea can be applied
to other experimental designs, where there exist some constraints on the design region. For
instance, the uniform design over general input domains in computer experiments is consid-
ered by Chuang and Hung (2010). This design is applied to study a system which has sev-
eral queues in parallel. Another interesting instance is the higher-order designs, such as the
second-order mixture design.
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