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ABSTRACT 

In this dissertation, we investigate the dependent relationship between two failure time 

variables which have a truncation relationship. Chaieb et al. (2006) considered 

semi-parametric framework under a “semi-survival” Archimedean-copula assumption and 

proposed estimating functions to estimate the association parameter, the truncation probability 

and the marginal functions. 

In the first project, we adopt the same model assumption but propose different estimating 

methods. In particular we extend Clayton’s conditional likelihood approach (1978) to 

dependent truncation data for estimation of the association parameter. For marginal estimation, 

we propose a recursive algorithm and derive explicit formula to obtain the solution. The 

functional delta method is applied to establish large sample properties which can handle more 

general estimating functions than the U-statistic approach. Simulations are performed and the 

proposed methods are applied to the transfusion-related AIDS data for illustrative purposes. 



Quasi-independence has been assumed by many inference methods for analyzing 

truncation data. By forming a series of 22×  tables, we also propose a weighted log-rank 

statisitcs for testing this assumption, which is our second project. Power improvement is 

possible by choosing an appropriate weight function. Here, we derive score tests when the 

dependence structure under the alternative hypothesis is specified semiparametrically. 

Asymptotic analysis and simulations are used to justify our proposed methods. 
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Chapter 1 Introduction 

1.1 Motivation and Background 

In the thesis, we consider a pair of failure times ),( YX  which can be included in the 

sample only if YX ≤ . The variable Y  is said to be “left truncated” by X  and X  is said 

to be “right truncated” by Y . In many applications, usually one variable is of major interest 

while the other is nuisance. The book by Klein and Moeschberger (2003) mentioned an 

example which studied the survival distribution for elderly residents in a retirement center. In 

the example, X  denotes a subject’s age of entering the retirement community and Y  

denotes the lifetime for the person. Notice that only those who had lived long enough to be 

eligible for joining the retirement community could be included in the sample. Therefore the 

truncation scheme has to be taken into account in the development of inference methods for 

Y . Most nonparametric inference methods for truncation data assume independence between 

X  and Y  (e.g. Lynden-Bell, 1971 and Woodroofe, 1985). Under this assumption, 

Lynden-Bell suggested to estimate )Pr( tY >  based on the product-limit expression of this 

quantity and thereafter many nice properties of the Kaplan-Meier estimator for right censored 

data have been extended to the truncation setting. 

Unlike the situation of right censoring in which the independent censorship assumption 

is not testable, Tsai (1990) claimed that the independence assumption can be relaxed to a 

weaker assumption of “quasi-independence” and the latter can be verified nonparametrically. 

Tsai (1990) introduced a measure of “conditional Kendall’s tau” which was later applied to 

different truncation settings by Martin and Betensky (2005). Tsai also proposed a test of 

quasi-independence based on this measure. Alternatively, Chen, Tsai, and Chao (1996) 

suggested a conditional version of Pearson’s product-moment correlation coefficient, denoted 

as cρ , to measure the association between X  and Y . Based on the sample version of cρ , 

they proposed a test for quasi-independence. However the method based on cρ  can not be 
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extended to the more general situation that also includes right-censoring.  

 

 

 

 

 

Figure 1.a: individuals with YX ≤  can be observed. 

 

 

 

 

 

Figure 1.b: individuals with YX >  can not be observed. 

 

In some applications, X  and Y  may be correlated and their dependent relationship is 

of interest. Tsai (1990) applied his testing procedure to an example of transfusion-related 

AIDS study. Let T  be the infection time of individuals, measured form the beginning of the 

study, and X  be the incubation period from the time of infection to AIDS. Only individuals 

who developed AIDS by the end of study can be observed (see Figure 1.a). Since the total 

study period is 102 months, individuals with 102≤+ XT  were included in the sample. 

Using the notation YT =−102 , we view X  as being right truncated by Y . Primary 

interest on this study focuses on the incubation distribution X . Dependence between X  

and Y  might be of secondary interest. However applying Tsai’s method (1990), the 

assumption of quasi-independence was rejected. Positive association between X  and Y  

means negative association between T  and Y . That is the earlier the infection time, the 

larger the length of incubation. This surprising finding might shed some light on the study of 
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population dynamics of AIDS.  

Recently Chaieb et al. (2006) proposed a semi-parametric inference approach to 

assessing the dependence between X  and Y  under the assumption that the two variables 

jointly follow a modified version of an Archimedean copula (AC) model which adapts to the 

nature of truncation. Copula models have the nice feature that the dependence structure is 

modeled separately from the marginal effects. Semiparametric inference of copula models has 

received substantial attentions in the literature. There exist several ways of estimating the 

association parameter, for a specific copula model or a class of copula models, without 

specifying the marginal distributions. One popular approach, which has been taken by Oakes 

(1986) for right censored data and by Fine et al. (2000) for semi-competing risks data, is to 

utilize the concordance or discordance information for pairs of observations. This idea has 

been taken by Chaieb et al. (2006) in analysis of dependent truncation data. Compared with 

the previous results, the new challenge is that the association parameter can not be estimated 

without knowing the truncation probability. Hence the paper of Chaieb et al. (2006) also 

considered estimation of the truncation probability and the marginal functions. Their proposed 

algorithm can be considered as an extension of the method by Rivest and Wells (2001) who 

considered the situation of dependent censoring. 

The dissertation contains two parts, both of which deal with possibly correlated 

truncation data. The first project was motivated by the paper of Chaieb et al. (2006) but a 

different inference approach is proposed. Besides proving a new method, we also aim to unify 

the two different types of inference approaches under a general framework. In the second 

project we study the problem of testing quasi-independence. Specifically we construct a 

testing procedure similar to the setup of the weighted Log-rank statistics constructed based on 

a series of two-by-two tables. The proposed test is nonparametric in the sense that no model 

assumption is needed. We also derive an equivalent expression of the proposed test statistics 

which allows us to compare different methods under the same framework. It turns out that the 
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proposed test statistic can be viewed as a generalized version of some existing tests including 

Tsai’s test (1990). Furthermore, in both projects, the likelihood information is utilized to 

improve efficiency of the proposed estimator or power of the proposed test. 

 

1.2 Overview of the Dissertation 

Literature review is given in Chapter 2. The first part focuses on bivariate analysis in 

which some common association measures and models for lifetime variables are introduced 

and related inference results are reviewed. In particular the family of copula models and its 

sub-class, Archimedean copula models, are discussed. Different semi-parametric inference 

approaches developed for analyzing data which follow copula models are examined. 

Specifically we focus on three methods of constructing an estimating function of the copula 

association parameter. One is the conditional likelihood approach which first appeared in the 

landmark paper of Clayton (1978) for bivariate censored data. The second approach utilizes 

concordant information of paired observations and has been applied to bivariate censored data 

by Oakes (1986), Fine (2001) for semi-competing risks data and Chaieb et al. (2006) for 

dependent truncation data. The third approach suggests to construct estimating functions 

based on a series of two-by-two tables which has been applied by Day et al. (1997) and Wang 

(2003) in analysis of semi-competing risks data. In the second part of Chapter 2, we review 

the literature on marginal estimation. The idea of product-limit expression has been used to 

construct the Kaplan-Meier estimator and the Lynden-Bell’s estimator under independent 

censoring and (quasi-) independent truncation respectively. Many papers have studied the 

situation when the assumption of independence fails. We will review the papers which use 

copula models to specify the dependence relationship. 

Chapters 3 and 4 contain our results for the two projects. Specifically, in Chapter 3, we 

consider semi-parametric inference based on semi-survival AC models under the framework 
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proposed by Chaieb et al. (2006). Besides proposing a new inference approach which turns 

out to be more efficient, we also establish the relationships among different estimating 

functions. The unified framework allows us to compare different methods in a systematic way 

and hopefully such analysis can facilitate future development of statistical methodology or 

inference theory. In Chapter 4, we consider the problem of testing quasi-independence for 

truncation data. We propose a general class of test statistics which include some existing tests 

as special cases. In addition, we discuss how to incorporate additional likelihood information 

provided by the alternative hypothesis to improve the power of the test.  
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Chapter 2 Literature Review 

2.1 Association Measures and Copula Models 

To simplify the analysis, let ),( YX  be a pair of continuous failure time variables. 

Kendall’s tau, denoted as τ , is a rank-correlation measure which is often used to describe the 

level of global association between X  and Y . Let ),( ii YX  and ),( jj YX  be two 

independent replications of ),( YX  and }0))({( >−−=Δ jijiij YYXXI  indicates whether 

the two pairs are concordant ( 1=Δ ij ) or discordant )0( =Δ ij . Kendall’s tau is defined as 

1)(2   

)0Pr()1Pr(   

)0))(Pr(()0))(Pr((

−Δ=

=Δ−=Δ=

<−−−>−−=

ij

ijij

jijijiji

E

YYXXYYXXτ

     (2.1)  

We note that τ  has the nice property of rank invariance since its value is unchanged by 

both linear or nonlinear increasing transformations. For measuring local dependence or 

time-varying association, Oakes (1989) proposed the following cross ratio-function: 

  
yyYxXxyYxX

yYxXyxyYxXyx
∂>>∂⋅∂>>∂

>>⋅∂∂>>∂
=

/),Pr(/),Pr(
),Pr(/),Pr(),(~ 2

θ .            (2.2) 

Note that 1),(~
=yxθ  implies independence at time ),( yx , 1),(~

>yxθ  implies positive 

association and 1),(~
<yxθ  implies negative association respectively. Oakes also derived 

another useful expression of ),(~ yxθ  as the odds ratio of concordance for the ),( ji  pairs 

given that ),()~,~( yxYX ijij = . It follows that  

    ),(~ yxθ
)~,~|0Pr(
)~,~|1Pr(

yYxX
yYxX

ijijij

ijijij

===Δ

===Δ
= .      (2.3) 

The two expressions in (2.2) and (2.3) are useful in the development of inference methods for 

copula models which be introduced later.  

Modeling provides a systematic way of describing the behavior of random variables. 
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Copulas form a class of bivariate distribution functions whose marginals are uniform on the 

unit interval (Genest and MacKay, 1986). In applications of lifetime data analysis, the copula 

structure is usually imposed on the joint survival function such that one can write 

)}Pr(),{Pr(),Pr( yYxXCyYxX >>=>> , 

where the function ]1,0[]1,0[:),( 2 →vuC  can be viewed as the survival copula of 

),( YX (Nelsen, 1999, p.28). When the copula function is parameterized as ),( vuCα , the 

parameter α  is related to Kendall’s tau such that 

τ  1),(),(4
1

0

1

0

−= ∫ ∫ dvduCvuC αα . 

The copula family has the nice feature that the dependence structure can be studied separately 

from the marginal distributions. In practical applications, the association parameter α  is 

often the major of interest and can be estimated without specifying the marginal distributions. 

We will review existing semi-parametric inference methods developed for copula models 

later. 

Archimedean copulas (AC) are special copula models which possess useful analytical 

properties. For an AC model, the bivariate copula function ),( vuCα  can be further 

simplified as  

)}()({),( 1 vuvuC αααα φφφ += −  for ]1,0[, ∈vu ,         (2.4) 

where ],0[]1,0[:(.) ∞→αφ  is a univariate function which have two continuous derivatives 

satisfying ,0)1( =αφ 0/)()( <∂∂=′ ttt αα φφ and 0/)()( 22 >∂∂=′′ ttt αα φφ . A special property 

of AC models is that the bivariate relationship can be summarized by the univatiate function 

(.)αφ . In applications, selecting an appropriate Archimedean copula model refers to 

identifying the form of (.)αφ . For an AC model indexed by )(⋅αφ , Oakes (1989) showed that 

)},{Pr(),(* yYxXyx >>= αθθ , where (.)αθ  is a univariate function satisfying  
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    )(/)()( vvvv ααα φφθ ′′′⋅−= .       (2.5) 

When )log()( tt −=αφ , X  and Y  are independent. For the Clayton model with  

1)( )1( −= −− α
αφ tt  ( 1>α ) , it can be shown that αθα =)(v . 

   

2.2 Semi-parametric Inference for Survival-copula Models    

There have been substantial interests in developing inference methods for estimating the 

association parameter of a copula model without specifying the marginal distributions. Most 

results have been derived for survival copula models in which the copula structure is imposed 

on the joint survival function as mentioned earlier. Early work focused on the Clayton model 

(Clayton, 1978), a member of the AC family with  1)( )1( −= −− α
αφ tt  )1( >α  and 

αθ =),(~ yx . Clayton (1978) proposed to maximize a product of conditional probabilities and 

later his estimator was re-expressed by Clayton and Cuzick (1985) as a weighted form of 

Oakes’ concordance estimator (Oakes, 1982). The new representation is related to a 

U-statistics which turns out to be useful in the establishment of asymptotic properties (Oakes, 

1986). 

There has been a trend to develop unified inference approaches suitable for a class of 

copula models rather than a single member, say the Clayton model. The approach of 

two-stage estimation has been adopted by Genest et al. (1995), Shih and Louis (1995) and 

Wang and Ding (2000) for complete data, bivariate right censored data and current status data 

respectively. Specifically ),( vuCα  can be viewed as the joint survival function of 

)(XSU X=  and )(YSV Y= , where )Pr()( tXtS X >=  and )Pr()( tYtSY >= . If the 

marginals were completely specified, then a random sample of ),( VU , denoted as 

))(),((),( iYiXii YSXSVU =  ),...,1( ni = , or its censored version can be obtained in 

construction of the likelihood for α . However since the marginals are unspecified, a random 
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sample of ),( VU  is not available. These papers suggested a two-stage estimation procedure. 

In the first stage, the marginal distributions are estimated by applying existing nonparametric 

methods. In the second stage, the marginal estimators are treated as “pseudo observations” in 

the likelihood constructed based on ),( vuCα . Despite of its simplicity, this approach 

becomes infeasible when the data involve dependent censoring or other complicated situations 

so that the marginal distributions become non-identifiable nonparametrically.  

Semi-competing risks data provides such an example in which one variable is a 

competing risk for the other but not vise versa and hence the aforementioned two-stage 

estimation procedure is not applicable. For semi-competing risks data., two different 

approaches have been adopted. Specifically Day et al. (1997) and Wang (2003) constructed 

estimating functions, in the form of the log-rank statistics, based on a series of two-by-two 

tables in which the odds ratio of the table reveals the information of association. Day et al. 

(1997) considered the Clayton model with αθ =),(~ yx  and Wang (2003) extended the idea 

to the whole AC family using the properties of (2.5). The second approach was proposed by 

Fine et al. (2001) who utilized equation (2.3) to construct an estimating function for the 

Clayton model based on the concordance indicator ijΔ  whose expected value contains the 

information of α . 

 

2.3 Association Measures and Copula Models Suitable for Truncation Data 

For truncation data, we observe ),( YX  only if YX ≤ . Hence joint analysis has to be 

restricted in the upper wedge }0:),{( ∞<≤≤= yxyxRU . Consequently the aforementioned 

descriptive measures and models may not be directly applicable to describe ),( YX  if they 

have a truncation relationship.  

Kendall’s tau defined in (2.1) is obviously not identifiable for truncation data. Tsai (1990) 
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suggested to consider the event )}(~)(:{ ωωω ijijij YXA ≤=
�

, where jiij XXX ∨=
�

, 

jiij YYY ∧=~ . Notice that under the truncation scheme, as long as Uijij RYX ∈)~,(
�

, or 

equivalently ijij YX ~≤
�

, it follows that ),( ii YX  and ),( jj YX  are both in UR . By 

conditioning on the event ijA , Tsai proposed the modified version of Kendall’s tau such that  

 1)|(2 −Δ= ijija AEτ ,          (2.6) 

where ),( ii YX  and ),( jj YX  be two independent replications of ),( YX , which are known 

to satisfy the truncation scheme with ii YX ≤  and jj YX ≤  given ijA . The measure aτ  is 

a well-defined measure for truncation data.  

To measure local dependence for truncation data, Chaieb et al. (2006) adopted Tsai’s idea 

to modify equation (2.3). Specifically for yx ≤  they proposed to consider  

  
))(x,)~,(|1Pr(
))(x,)~,(|0Pr(

),(*
yYX
yYX

yx
ijijij

ijijij

==Δ

==Δ
= �

�
θ     (2.7) 

The value of ),(* yxθ  can be interpreted in the same way as ),(~ yxθ . Notice that ),(* yxθ  

in (2.7) and ),(~ yxθ  in (2.3) differ in the way of choosing the corner position. Specifically 

for ),(~ yxθ , the corner is chosen to be ),()~,~( jijiijij YYXXYX ∧∧=  while, for truncation 

data, the corner is ),()~,( jijiijij YYXXYX ∨∧=
�

. The measure ),(~ yxθ  is not appropriate for 

truncation data since given U)~,( RYX ijij ∈
�

, it is still possible that ),( ii YX  or ),( jj YX  may 

fall outside UR . In contrast, by choosing )~,( ijij YX
�

 as the target in making the conditioning 

arguments, the two points will fall in UR . 

For truncation data, Chaieb et al. (2006) suggested to impose the model structure on the 

“semi-survival” function, defined as ),(Pr yYxX >≤  ( yx ≤ ), which is a more natural 
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descriptive measure than the joint survival function ),(Pr yYxX >> . Furthermore since no 

information is available in the lower wedge }0:),{( ∞<<≤ xyyx , the function 

)|,(Pr),( YXyYxXyx ≤>≤=π  can be identifiable nonparametrically while ),(Pr yYxX >≤  

is not. Accordingly, adapting to the nature of truncation, Chaieb et al. (2006) suggested to 

impose the AC structure on ),( yxπ  such that  

cySxFyx YX /)}]({)}({[),( 1
ααα φφφπ += −   ( yx ≤ ),    (2.8) 

where )(⋅XF  and )(⋅YS  are continuous distribution and survival functions respectively and 

c  is a unknown normalizing constant satisfying 

∫∫
<

− +
∂∂
∂

−=
yx

YX dxdyySxF
yx

c )}]({)}({[1
2

ααα φφφ .     (2.9) 

Note that under model (2.8), the normalizing constant c  may not be the truncation 

proportion )Pr( YX ≤ , but it makes the model (2.8) to have a valid density function. Note 

that when )log()( tt −=αφ , quasi-independence between X  and Y  holds. 

 

2.4 Statistical Inference for Truncated Data under Quasi-Independence 

For truncation data, we observe ),( YX  only if YX ≤ . Replications of ),( YX  are 

located in the upper wedge }0:),{( ∞<≤≤= yxyxRU . The sample consists of 

)},,1( ),({ njYX jj …=  subject to jj YX ≤ . We can consider the sample 

)},,1( ),({ njYX jj …=  as iid from the cumulative distribution function 

)|,Pr(),( YXyYxXyxH ≤≤≤= . Let X  and Y  be positive independent random 

variables having the marginal distribution functions )Pr( xX ≤  and )Pr( yY ≤ . The 

independence between X  and Y  cannot be tested from data since the information for the 

lower wedge is unavailable. Thus, the independence assumption 
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∫∫∫ ∫
≤

≤≤≤≤≤≤=
vu

x y

vYduXdvuIvYduXdvuIyxH )Pr()Pr()()Pr()Pr()(),(
0 0

 

may not be acceptable unless independence between X  and Y  is known from prior 

knowledge. Instead, Wang, Jewell and Tsai (1986) assumed the model, 

0H : cvdFuFdvuIyxH YX

x y

/)()()(),(
0 0
∫ ∫ ≤= , 

where XF  and YF  are arbitrary distribution functions and c  is the normalizing constant 

satisfying  

∫∫
≤

=
yx

YX ydFxdFc )()(0 .  

Tsai (1990) called the assumption under 0H  as “quasi-independence”. 

Using the semi-survival function, the assumption of quasi-independence can be 

simplified as 

0H : cySxFYXyYxX YX /)()()|,Pr( =≤>≤ , 

where XF  and YS  are arbitrary right continuous distribution and survival functions, and 0c  

is the normalizing constant satisfying 

∫∫
≤

−=
yx

YX ydSxdFc )()(0 . 

Define the support of X  as ],[ UL xx , where }0)(;inf{ >= uFux XL  and 

}1)(;sup{ <= uFux XU . Similarly define the support of Y  as ],[ UL yy , where 

}1)(;inf{ <= uSuy YL  and }0)(;sup{ >= uSuy YU . It is usually assumed that UL yx ≤  so 

that 0>c . In general, the true distributions XF  and YS  cannot be estimated 

nonparametrically without further assumptions. However the following conditional 

distributions are estimable:  

),|Pr()(0
LUX xYyXxXxF ≥≤≤= , ),|Pr()(0

LUY xYyXyYyS ≥≤>= . 

Under the assumption of quasi-independence, Lynden-Bell (1971) derived the nonparametric 

maximum likelihood estimators (NPMLE) for the two marginal distributions which can be 
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expressed as following explicit formula: 

∏
> ⎭

⎬
⎫

⎩
⎨
⎧ −−
−=

xu
X uuR

uRuRxF
),(

)0,()0,(1)(ˆ , ∏
≤ ⎭

⎬
⎫

⎩
⎨
⎧ +∞−∞
−=

yu
Y uuR

uRuRyS
),(

),(),(1)(ˆ , (2.10) 

where  ),( yxR  ∑
=

≥≤=
n

j
jj yYxXI

1

),( . Woodroofe (1985) showed the uniform consistency 

results 

0|)()(ˆ|sup 0
0 ⎯→⎯−>

P
XXx xFxF ; 0|)()(ˆ|sup 0

0 ⎯→⎯−>
P

YYy ySyS . 

Wang et al. (1986) derived a simple asymptotic variance for the Lynden-Bell’s estimator, 

which turns out to be an analogy of the asymptotic variance of the Kaplan-Meier estimator. A 

necessary condition for the above Lynden-Bell’s estimators to be consistent estimators for 

XF  and YS  is that UU yx <  and LL yx <  so that 0
XX FF =  and 0

YY SS = . In other words, 

there exists two positive number UL xy <  such that 

0)( >LX yF , 1)( =LY yS , 1)( =UX xF  and 0)( >UY xS . 

 

2.5 Statistical Inference for Dependent Truncation Data 

Recall the modified version of Kendall’s tau proposed by Tsai in (2.6): 

1)|(2 −Δ= ijija AEτ . 

Based on the sample consists of )},,1( ),({ njYX jj …=  subject to jj YX ≤ , Tsai (1990) 

proposed to estimate aτ  by  

1
}{

}{
2

}{

}{)})(sgn{(
ˆ −

⋅Δ
⋅=

−−
=

∑
∑

∑
∑

<

<

<

<

ji
ij

ji
ijij

ji
ij

ji
ijjiji

a AI

AI

AI

AIYYXX
τ .   (2.11) 

Under the semi-survival AC assumption in (2.8), Chaieb et al. (2006) proposed to 

estimate α  by utilizing the concordant information provided by ijΔ  since its (conditional) 

expected value reveals the information of α . Their idea can be viewed as an extension of the 
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methods by Clayton and Cuzick (1985) for bivariate right censored data and by Fine et al. 

(2001) for semi-competing risks data. Specifically under the semi-survival AC model 

assumption, it follows that 

)},({1
1)),()~,(|(

yxc
AyxYXE ijijijij πθα+

=∈=Δ
�

, 

where the relationship between .)(αθ  and .)(αφ  is given in equation (2.5). Accordingly 

they proposed the following estimating function: 

∑
< ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−Δ=

ji ijij
ijijijcijw YXc

YXwAcU
)}~,(ˆ{1

1)~,(~}{1),(~
, �
�

πθ
α

α
α ,         (2.12) 

where ),(~
, yxw cα  is a weight function and 

),(ˆ yxπ ∑
=

>≤=
n

i
ii nyYxXI

1
/),( . 

Note that when 1),(~
, =yxw cα , the above estimating function is equivalent to 

∑
∑

<

<

+−
=

ji
ij

ji
ijijijijij

a AI

AIYXcYXc

}{

}{)}]~,(ˆ{1/[)}]~,(ˆ{1[
ˆ

��
πθπθ

τ
αα

,   (2.13) 

where the right-hand side can be viewed as an model-based estimator of aτ . 

Notice that ),(~ cU w α involves the truncation proportion parameter c  which is 

unknown. In the special case of the Clayton model with  1)( )1( −= −− α
αφ tt  ( 1>α ) and 

αθα =)(v , ),(~ cU w α  depends only on α . This implies that ),(~ cU w α  alone is not enough 

for estimation of α . Chaiebl et al. (2006) proposed their second estimating procedure which 

was motivated by the paper of Rivest and Wells (2001) on marginal estimation for dependent 

censored data. Their idea was inspired by the paper of Zheng and Klein (1995).  

Now we describe the second estimation procedure proposed by Chaiebl et al. (2006). Let 

ntt 21 <<"  be ordered observed points of ),,,,,( 11 nn YYXX ……  and 00 =t . Define 
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∑ ≥≤=
j

jj tYtXIttR ),(),( . Replacing ),( ttπ by nttR /),( +  in equation (2.8) , they 

obtained a set of estimating equations: 

)}({)}({),(
iYiX

ii tStF
n
ttRc ααα φφφ +=

⎭
⎬
⎫

⎩
⎨
⎧ +    )12,,1( −= ni … .      (2.14) 

To solve the above equations, Chaieb et al. (2006) modified the algorithm of Rivest and Wells 

(2001) originally proposed for dependent censored data. Specifically they first estimated the 

jumps, )}({)}({ −− iYiY tStS αα φφ  and )}({)}({ +− iXiX tFtF αα φφ , and then summed them 

up over all the failure times prior to t  to obtain the estimators for )}({ tFXαφ  and 

)}({ tSYαφ . Then by plugging in all the marginal estimators into the equations in (2.14), an 

estimating function for c  can be obtained. In Section 3 and Section 4, we propose different 

methods for estimating ),( cα  and solving the equations in (2.14), respectively.  
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Chapter 3 The Proposed Approach for 

Semi-parametric Inference 

In this chapter, we develop a new inference approach to analyzing semi-survival AC 

models of the form in (2-8). Specifically two types of estimating functions are needed to 

estimate the unknown parameters, ,, cα )(⋅XF  and )(⋅YS . One is for estimating the 

association parameter and the other is related to marginal estimation. The present method is 

semiparametric in the sense that we do not specify the form of )(⋅XF  and )(⋅YS , but specify 

the functional form (.)αφ . 

 

3.1 Estimation of Association 

3.1.1. Conditional Likelihood Approach 

In this section, we consider estimation of α  under the semi-survival AC model in (2.8). 

To simplify the analysis, we assume that there is no ties and, temporarily, we ignore external 

censoring. The sample consists of )},,1( ),({ njYX jj …=  subject to jj YX ≤ . Here we 

generalize Clayton’s likelihood approach (Clayton, 1978) to truncation data. Define the set of 

grid points as follows:  

⎭
⎬
⎫

⎩
⎨
⎧

=≥===≤≤= ∑∑
==

1),(,1),(,|),(
11

n

j
jj

n

j
jj yYxXIyYxXIyxyxϕ . 

For a point ),( yx  in ϕ , we can define the “risk set” },;{),( yYxXiyx ii ≥≤=ℜ .  Denote 

),( yxR  ∑
=

≥≤=
n

i
jj yYxXI

1
),(  as the number of observations in ),( yxℜ .  Let 

∑
=

===Δ
n

i
jj yYxXIyx

1
),(),( , which indicates whether failure occurs at ),( yx . Given 

ryxR =),(  for ϕ∈),( yx  and under model (2.8), the variable ),( yxΔ  follows a Bernoulli 

distribution with the probability 
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)},({1
)},({

}),(,),(|1),(Pr{
yxcr

yxc
yxryxRyx

πθ
πθ

ϕ
α

α

+−
=∈==Δ ,       (3.1) 

where the relationship between (.)αθ  and (.)αφ  is stated in equation (2.5). Ignoring the 

marginal distribution }),(|),(Pr( ϕ∈= yxryxR  which may contain only little information 

about α , we can construct the following conditional likelihood function  

∏
∈

Δ−Δ

⎥
⎦

⎤
⎢
⎣

⎡
+−

−
⎥
⎦

⎤
⎢
⎣

⎡
+−

=
ϕ αα

α

πθπθ
πθπα

),(

),(1),(

)},({1
1

)},({1
)},({)),,(,(

yx

yxyx

yxcr
r

yxcr
yxccyxL . 

The nuisance parameter ),( yxπ  can be estimated nonparametrically by nyxRyx /),(),(ˆ =π . 

Differentiating )),,(ˆ,(log cyxL πα  with respect to α , we get the following estimating 

function  

  ∫∫
∈

⎥
⎦

⎤
⎢
⎣

⎡
+−

−Δ=
ϕ α

α

α

α

πθ
πθ

πθ
πθα

),( )},(ˆ{1),(
)},(ˆ{),(

)},(ˆ{
)},(ˆ{),(

yx
L yxcyxR

yxcyx
yxc
yxccU

�
,       (3.2) 

where  αθθ αα ∂∂= /)()( vv� . 

For the Clayton model with  1)( )1( −= −− α
αφ tt  ( 1>α ) and αθα =)(v , ),( cU L α  

depends only on α . The proposed estimator of α  can be obtained by solving  

0
1),(

),(1)(
),(

=⎥
⎦

⎤
⎢
⎣

⎡
+−

−Δ= ∫∫
∈ϕ α

α
α

α
yx

L yxR
yxU . 

However for other members in the AC family, estimation of α  requires the information of 

c . It is important to note that, for most models, ccL ∂∂ /),(log α  yields the same estimating 

function as ),( cU L α . This implies that the likelihood function can not identify ),( cα  

simultaneously. Joint estimation of ),( cα will be discussed later in Section 3.2. 

 

3.1.2 Estimation based on Two-by-Two Tables   

Following the ideas proposed by Day et al. (1997) and Wang (2003), we can construct 

the following 22× table at an observed failure point ),( yx  with yx ≤ . Let  
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∑
=

• =≤=
n

i
ii yYxXIdyxN

1
1 ),(),(  and ∑

=
• ≥==

n

i
ii yYxXIdyxN

1
1 ),(),( . The table can be 

represented as follows: 

 

 

 

Table: Two-by-two Table for Truncated Data 

The odds ratio of the above table is the sample analogy of the cross ratio function 

),(* yxθ defined in (2.7). Given the marginal counts, the conditional mean of ),( yxΔ  can be 

derived as a function of ),(* yxθ  or )},({ yxcπθα  under model (2.8). The nuisance 

parameter ),( yxπ  can be estimated by ),(ˆ yxπ . Motivated by the log-rank type statistic, we 

can combine all the tables at different values of ),( yx  and then construct the following 

estimating function 

∫∫
≤

••
⎥
⎦

⎤
⎢
⎣

⎡
+−

−Δ=
yx

cw yxcyxR
yxcdyxNydxNyxyxwcU

)},(ˆ{1),(
)},(ˆ{),(),(),(),(),( 11

, πθ
πθα

α

α
α  

∫∫
∈

⎥
⎦

⎤
⎢
⎣

⎡
+−

−Δ=
ϕ α

α
α πθ

πθ

),(
, )},(ˆ{1),(

)},(ˆ{),(),(
yx

c yxcyxR
yxcyxyxw ,      (3.3) 

where ),(, yxw cα  is a weight function. Note that in derivation of (3.3), we use the 

assumption that the data have no ties and hence 1),(),( 11 =•• dyxNydxN  if and only if 

ϕ∈),( yx . 

 

3.1.3 Construction based on Concordance Indicators 

Here we review the idea proposed by Chaieb et al. (2006) and present a more general 

version of their estimating function . Based on (2.7) and for yx ≤ , it follows that  

 yY = yY >  
xX =  ),( yxΔ   ),(1 ydxN •  
xX <     

 ),(1 dyxN•  ),( yxR  
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)}~,({1
1)),~,(|(

ijij
ijijijij YXc

AYXE �
�

πθα+
=Δ            (3.4) 

Recall that if the event }~{ ijijij YXA ≤=
�

 happens, the two pairs ),( ii YX  and ),( jj YX  will 

be located in the identifiable region UR  for certain. The following function can be viewed as 

a generalization of Oakes’ method (1986): 

  ∑
< ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−Δ=

ji ijij
ijijijcijw YXc

YXwAcU
)}~,(ˆ{1

1)~,(~}{1),(~
, �
�

πθ
α

α
α        (3.5) 

where ),(~
, yxw cα  is a weight function. Note that the estimating function proposed by Chaieb 

et al. (2006) sets 1),(~
, =yxw cα , and is related to the conditional Kendall’s tau as mentioned 

in equation (2.13). 

  

3.1.4 Equivalence Condition for Different Approaches  

Now we establish the relationship among different estimating functions. This idea was 

motivated by the analysis of Clayton & Cuzick (1985) who expressed Clayton’s likelihood 

estimator in terms of concordance/discordance indicators. Consider the truncation setting. 

Some algebraic calculations yield the following identity:  

∫∫
∈

⎥
⎦

⎤
⎢
⎣

⎡
+−

−Δ
ϕ α

α
α πθ

πθ

),(
, )},(ˆ{1),(

)},(ˆ{),(),(
yx

c yxcyxR
yxcyxyxw  

∑
< ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−Δ

+−

+
−=

ji ijij
ij

ijijijij

ijijijijc
ij YXcYXcYXR

YXcYXw
A

)}~,(ˆ{1
1

)}~,(ˆ{1)~,(
)}]~,(ˆ{1)[~,(

}{1 , ���
��

πθπθ

πθ

αα

αα .    (3.6) 

The above equation provides a unified framework for comparing different estimating 

functions. Our proposed estimating function ),( cU L α  using the conditional likelihood 

principle, is a special case of ),( cU w α  constructed based on the two-by-two construction 

with the weight function:  

)},(ˆ{/)},(ˆ{),(, yxcyxcyxw c πθπθ ααα
�= . 
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Furthermore ),( cU L α  is also a special case of ),(~ cU w α , constructed based on the 

concordance indicators, with the weight function:   

)},(ˆ{1),(
)},(ˆ{1

)},(ˆ{
)},(ˆ{),(~

, yxcyxR
yxc

yxc
yxcyxw c πθ

πθ
πθ
πθ

α

α

α

α
α +−

+
−=
�

.       (3.7) 

The estimator proposed by Chaieb et al. (2006) is ),( cU w α  with  

)},(ˆ{1
)},(ˆ{1),(),(, yxc

yxcyxRyxw c πθ
πθ

α

α
α +

+−
−= . 

Its another representation is of the form ),(~ cU w α  with 1),(~
, =yxw cα .  

The above analysis implies that the three different estimation procedures yield the same 

form of estimating functions with different choices of the weight function. Now the next 

question is which weight function produces better results? Some authors such as Fine et al. 

(2001) have suggested practical guidelines for choosing the weight function under Clayton 

model but did not provide any theoretical justification. It seems that no simple theory is 

available for choosing the optimal weight in the estimating function (3-5). Here we 

recommend to use ),( cU L α  since it utilizes some likelihood information. We will see in our 

simulations that it also produces more efficient results than the weighted concordance 

estimator with 1),(~
, =yxw cα . 

 

3.2 Estimation of Marginal Functions and Truncation Probability 

3.2.1 The Approach of Chaieb et al. (2006) 

Here we adopt the framework of Chaiebl et al. (2006) but propose a different estimating 

algorithm. Let’s briefly describe their setup. Let ntt 21 <<"  be ordered observed points of 

),,,,,( 11 nn YYXX ……  and 00 =t . Replacing ),( ttπ by ntYtXInttR
j

jj /),(/),( ∑ >≤≡+  

in equation (2-8) with tyx == , it follows that  
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)}({)}({),(
iYiX

ii tStF
n
ttRc ααα φφφ +=

⎭
⎬
⎫

⎩
⎨
⎧ +    )12,,1( −= ni … .       (3.8) 

The idea of constructing the above estimating equations was motivated by the paper of Rivest 

and Wells (2001) who considered dependent censoring. For solving the equations, Chaieb et 

al. (2006) mimicked the approach of Rivest and Wells (2001) by estimating the difference 

)}({)}({ −− iYiY tStS αα φφ  and )}({)}({ +− iXiX tFtF αα φφ . Then the estimated differences 

are summed up to obtain the estimators of )})({)},({( jYjX tStF αα φφ . The marginal estimators 

are plugged into equation (3-8) to obtain an estimating function involving ),( cα . We find 

that it is difficult to understand the algorithm of Chaieb et al. (2006) and hence decide to 

propose a different algorithm. 

 

3.2.2 Recursive Solution to the Moment Constraints 

Here we propose to solve the equations in (3-8) in a different way. Suppose that XF̂  and 

YŜ  are step functions with jumps only at observed points. Then, the unknown parameters are 

22
11 )}(,),(),(,),(,,{ +∈−− n

nYYnXX RYSYSXFXFc ……α . 

Total 22 +n  non-homogeneous moment constraints are needed to produce a unique solution 

to the set of equations. However (3.8) only contains 12 −n equations which permit numerous 

solutions. With no prior information at hand, two boundary conditions 1)(ˆ
12 =−nX tF  and 

1)(ˆ
1 =tSY  would provide reasonable candidates for the additional constraints to be added into 

(3.8). Together with the constraint 0),( =cU L α  of the likelihood equation, we obtain the full 

22 +n  equations, giving a unique moment estimator for 

)}(,),(),(,),(,,{ 11 −− nYYnXX YSYSXFXFc ……α . 

Fixing an arbitrary value for ),( cα , we regard an equation in (3.8) as an estimating 

function for )}(),({ iYiX tStF . For instance, the initial constraint 1)(ˆ
1 =tSY  immediately gives 
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the solution )1)(ˆ,/),()(ˆ( 111 =+= jYX tSnttcRtF . The proposed procedure can be performed 

successively for 12,,1 −= nj … .  

(Step 1) If jt  corresponds to an observed value of X , set  

)}(ˆ{)}(ˆ{ 1−= jYjY tStS αα φφ  and )}(ˆ{
),(

)}(ˆ{ jY
jj

jX tS
n
ttR

ctF ααα φφφ −
⎭
⎬
⎫

⎩
⎨
⎧ +

= ;  

and if jt  corresponds to an observed value of Y , set  

)}(ˆ{)}(ˆ{ 1−= jXjX tFtF αα φφ  and )}(ˆ{
),(

)}(ˆ{ jX
jj

jY tF
n
ttR

ctS ααα φφφ −
⎭
⎬
⎫

⎩
⎨
⎧ +

= .  

(Step 2) Set 0)}(ˆ{),( )( == nXc xFcU αφα  to meet the assumption 1)(ˆ
12 =−nX tF . Jointly 

solving this equation and 0),( =cU L α  gives the estimators of ),( cα , denoted  

as )ˆ,ˆ( cα .  

(Step 3) Redo (Step 1) by setting )ˆ,ˆ(),( cc αα =  obtained in (Step 2) and then update  

)})(ˆ{)},(ˆ{( jYjX tStF αα φφ . 

We can show that the solutions to the above algorithm have the following explicit formula:  
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where ),()(~ ttRtR = , )(min
,...,1)1( ini

Xx
=

=  and )(min
,...,1)1( ini

Yy
=

= , and 
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),( ,        (3.11) 

In the case of quasi-independence with )log()( tt −=αφ , equations (3.9) , (3.10) and 

(3.11) reduce to the Lynden-Bell’s estimators and the natural estimator of the truncation 

proportion (He and Yang, 1998). It is worthy to note that the representation of the 
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Lynden-Bell’s estimator as a solution to the moment equation in (3.8) with )log()( tt −=αφ  

is new in the literature. Compared with the traditional expression as a product-limit estimator, 

our approach provides a more general estimating scheme which allows for dependent 

truncation. 

In principle, any other boundary constraints imposed on )( 12 −nX tF  and )( 1tSY  can give 

a different but unique solution to (3.8) and 0),( =cU L α . Here, our subjective choice of using 

1)(ˆ
12 =−nX tF  and 1)(ˆ

1 =tSY  facilitates the proposed recursive algorithms that leads the explicit 

solutions in (3.9) , (3.10) and (3.11). Compared with the results of Chaieb et al. (2006), the 

proposed estimators based on (3.9) and (3.11) are different from theirs. However, the 

proposed estimator in (3.10) is identical to the estimator proposed by Chaieb et al. (2006). 

 

3.3 Asymptotic Analysis 

3.3.1 General Results for Asymptotic Properties 

Under the regularity conditions (A-I)~(A-V) listed in Appendix 3.A (part I), the 

estimators )ˆ,ˆ( cα  which jointly solve 0),( =cU L α  in (3.2) and 0),( =cUc α  in (3.11) are 

consistent and asymptotically normal. Weak convergence of the marginal estimators is also 

established. The results are formally stated in the following theorems. 

 

Theorem 3.1 Random vector )ˆ,ˆ( cα  is consistent. 

 

Theorem 3.2 The random vector Tccn )ˆ,ˆ( 00
2/1 −−αα  converges in distribution to a  

bivairate normal distribution with mean-zero and the covariance matirix given 

by T)B(AA 11 −− , where )],([
00 , YXUEA cα

�= , ]),(),([
0000 ,,

T
cc YXUYXUEB αα=  

and the definitions of ),(
00 , YXU cα  and ),(

00 , YXU cα
�  are given in (A.4). 
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Theorem 3.3 The bivariate stochastic process T
XXYY tFtFtStSn ))()(ˆ),()(ˆ(2/1 −−  indexed  

by a single time ),0[ ∞∈t  convergences weakly to the mean-zero Gaussian 

random field T
YX tGtGtG ))(),(()( =  in the space 2)},0[{ ∞D  with the 

covariance function given in equation (A.4). for ∞<≤ ts,0 . 

 

Note that Chaieb et al. (2006) establish similar results for their estimator which solves 

),(~ cU w α  with 1),(~
, =yxw cα  by applying properties of U-statistics. However this 

approach may not be applicable when ),(~
, yxw cα  involves the plugged-in estimator ),(ˆ yxπ  

as in our case. Here we take a different approach which can handle more general weight 

functions. Specifically asymptotic linear representations of the proposed estimating functions 

are obtained. By applying the functional delta method (Van Der Vaart, 1998, theorem 20.8) 

and properties of empirical processes, large-sample properties of the proposed estimators can 

be established. The sketch of the proof is given in Appendix 3.A (part II). Since the analytic 

derivations involve complicated formula, we suggest to use the jackknife method or other 

re-sampling tools for variance estimation. This approach is also suggested by Chaieb et al. 

(2006). 

 

3.3.2 Asymptotic Behavior under Independence 

Given )log()( tt −=αφ , the condition for quasi-independence, the asymptotic expression 

of 0),(, =iic YXUα  in Appendix A. (part V) reduces to the iid representation obtained in both 

Stute (1993) and He and Yang (1998). Specifically it follows that  
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where 
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The linear expression can be estimated by: 
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The above expression implies that the variance can be estimated by: 
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i
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X xYXL
n
xFxFnV 2
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∑=
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On the other hand, Wang, Jewell & Tsai (1986) suggested the Greenwood-type estimator: 

∑
≤< −

=
Uj xxtj jj

XX xRxR
tFntFnV

:

2

)1)(~)((~
1)(ˆ))(ˆ(ˆ . 

Now we numerically compare the two different approaches for estimating the asymptotic 

variance. The variables ),( YX were generated from independent exponential distributions 

with hazard rates ),( 21 λλ  having the support ],0[ Ux  and ),0[ ∞  respectively. The point 

estimate for the variance estimator for XF̂  is compared for 50=n  and 1000=n . Two 

point estimates exhibit a little numerical difference in the small sample with 50=n . When 

1000=n , the difference seems negligible. 

 



 - 26 -

Table 3.1. Comparison of Two Variance Estimates based on 50=n , 10=Ux  

 

 

 

 

 

 

 

 

 

Table 3.2. Comparison of Two Variance Estimates based on 1000=n , 10=Ux  

 

 

 

 

 

 

 

 

 

The asymptotic expression via influence functions has significant advantage when we 

study the joint behavior of )ˆ,ˆ( YX SF . Now we fix a point URyx ∈),( . Based on the 

asymptotic linear expression, 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎯→⎯⎥

⎦

⎤
⎢
⎣

⎡

−
−

XXY

XYYd

XX

YY

VV
VV

N
xFxF
ySySn

0
0

)()(ˆ
)()(ˆ

. 

),( 21 λλ  )(tFX  
Based on influence function 

))(ˆ(ˆ tFnV X  

Base on WJT(1986) 

))(ˆ(ˆ tFnV X  

0.259 (t=0.2) 0.1957 0.1953 
0.451 (t=0.4) 0.2890 0.2871 
0.593 (t=0.6) 0.3057 0.3119 

(1.5,0.5) 

0.698 (t=0.8) 0.3273 0.3212 
0.393 (t=0.2) 0.2567 0.2549 
0.632 (t=0.4) 0.2695 0.2725 
0.776 (t=0.6) 0.2144 0.2170 

(2.5,0.5) 

0.864 (t=0.8) 0.1861 0.1878 

),( 21 λλ  )(tFX  
Based on influence function 

))(ˆ(ˆ tFnV X  

Base on WJT(1986) 

))(ˆ(ˆ tFnV X  

0.259 (t=0.2) 0.1318 0.1279 
0.451 (t=0.4) 0.2715 0.2695 
0.593 (t=0.6) 0.3562 0.3517 

(1.5,0.5) 

0.698 (t=0.8) 0.2884 0.2858 
0.393 (t=0.2) 0.2291 0.2358 
0.632 (t=0.4) 0.2693 0.2817 
0.776 (t=0.6) 0.2139 0.2183 

(2.5,0.5) 

0.864 (t=0.8) 0.1439 0.1462 
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The terms in the covariance matrix can be estimated as follows.  

]);,([)();,(ˆ)(ˆ
222

2

xYXLExFVxYXL
n

xF X
XX

i
ii

XX =→∑ , 

]);,([)();,(ˆ)(ˆ
222

2

yYXLEySVyYXL
n

yS Y
YY

i
ii

YY =→∑ , 

and 

)].;,();,([);,(ˆ);,(ˆ)(ˆ)(ˆ
xYXLyYXLEVxYXLyYXL

n
ySxF XY

XY
i

ii
X

ii
YYX =→∑  

Using the delta method, we obtain 

),0())()()(ˆ)(ˆ( VNxFySxFySn d
XYXY ⎯→⎯− , 

where the asymptotic variance is  

XYXYYXYX VySVySxFVxFV 22 )()()(2)( ++= . 

Simulation studies confirm the satisfactory results about the proposed estimators of XYV  and 

V . 
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Table 3.3: Performance of the estimators for the covariance matrix  
based on 5000 runs ( 100=n , 20=Ux , 0001.0=Ly ) 

),( 21 λλ  
x  

( )(xFX ) 
y  )ˆ,ˆ( YX SFnCov )ˆ{ XYVE )ˆˆ( YX SFnVar  )ˆ(VE  

0.2 0.0534 0.0425 0.2495 0.2014 
0.4 0.0888 0.0694 0.2297 0.1901 
0.6 0.0828 0.0799 0.2009 0.1697 

0.2 
(0.259) 

0.8 0.0880 0.0820 0.1708 0.1468 
0.4 0.0617 0.0651 0.4154 0.3481 
0.6 0.0879 0.0870 0.4021 0.3226 

(1.5,0.5) 

0.4 
(0.451) 

0.8 0.1198 0.0957 0.3802 0.2893 
0.2 0.0374 0.0403 0.3226 0.2836 
0.4 0.0810 0.0651 0.3269 0.2698 
0.6 0.0717 0.0708 0.2844 0.2409 

0.2 
(0.393) 

0.8 0.0806 0.0715 0.2412 0.2109 
0.4 0.0580 0.0508 0.5355 0.4029 
0.6 0.0745 0.0654 0.4845 0.3774 

(2.5,0.5) 

0.4 
(0.632) 

0.8 0.0802 0.0697 0.4395 0.3451 

 

Table 3.4: Performance of the estimators for the covariance matrix  
based on 5000 runs ( 250=n , 20=Ux , 0001.0=Ly ) 

),( 21 λλ  
x  

( )(xFX ) 
y  )ˆ,ˆ( YX SFnCov )ˆ{ XYVE )ˆˆ( YX SFnVar  )ˆ(VE  

0.2 0.0625 0.0475 0.2594 0.2205 
0.4 0.0661 0.0757 0.2393 0.2049 
0.6 0.1007 0.0850 0.2080 0.1805 

0.2 
(0.259) 

0.8 0.0853 0.0874 0.1848 0.1563 
0.4 0.0687 0.0703 0.4625 0.3803 
0.6 0.0979 0.0927 0.4427 0.3565 

(1.5,0.5) 

0.4 
(0.451) 

0.8 0.1083 0.1006 0.3860 0.3171 
0.2 0.0493 0.0445 0.3473 0.3080 
0.4 0.0777 0.0694 0.3288 0.2899 
0.6 0.0788 0.0750 0.2822 0.2580 

0.2 
(0.393) 

0.8 0.0730 0.0747 0.2560 0.2256 
0.4 0.0618 0.0531 0.5346 0.4494 
0.6 0.0603 0.0688 0.4750 0.4204 

(2.5,0.5) 

0.4 
(0.632) 

0.8 0.0720 0.0719 0.4604 0.3762 
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Theorem 3.3 describes the weak convergence result of Lynden-Bell’s estimator as a 

special case. By applying the independence copula, )log()( tt −=αφ , to the theorem, we 

obtain the following corollary: 

Corollary 3.2 ( Wang, Jewell & Tsai, 1986)  

Consider the Semi-survival AC model (2.8) with )log()( tt −=αφ . Under the 

condition (A-IV), stochastic process ))()(ˆ( tFtFn XX −  converges weakly to the 

Gaussian process )(tGX  with mean 0 and covariance given by 

∫
∨

=
Ux

ts
XXXX uu

udtFsFtGsGCov
),(
)0,()()()](),([ 2π

π , 

where )|Pr()0,( YXuXu ≤≤=π . 

The above result was first obtained by Wang et al. (1986). They also proved the same weak 

convergence result by applying the classical empirical distribution theory of Breslow and 

Crowley (1974). Based on the functional delta method, we provide a different proof given 

below. 

Proof of Corollary 3.2: It follows that 
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Here, 
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),(
)0,(),()}({)(

uu
uduYuXIuXIdudM X π

π
≥≤−≤= .

]);,([)];,();,([ 2stYXLEtYXLsYXLE X
c

X
c

X
c ∧= . 

 

3.4. Extension and Modification  

3.4.1. Extension under Right Censoring 

In addition to the truncation scheme discussed previously, we now allow Y  to be 

censored by another random variable C . Assume that C  is independent of ),( YX .  Let 

 ),,( iii CYX ),...,1( ni =  be random replications of  ),,( CYX . The sample becomes 

)},...,1( ),,({ niZX iii =δ  satisfying ii ZX ≤ , where iii CYZ ∧=  and )( iii CYI ≤=δ . We 

consider the same model as in Chaieb et al. (2006) such that   

)(            /)}]({)}({[)(               

)|,(Pr),(*
*1 yxcySxFyS

ZXyZxXyx

YXC ≤+=

≤>≤=
−

ααα φφφ

π
     (3.12) 

where )Pr()( yCySC >=  and *c  is a normalizing constant satisfying 

[ ]( )∫∫
≤

− +
∂∂
∂

−=
yx

YXC dxdyySxFyS
yx

c )}({)}({)(* 1
2

ααα φφφ .   (3.13) 

The objective is to estimate the unknown parameters ))(),(),(*,,( ⋅⋅⋅ CYX SSFcα . Hence we 

re-parameterize )},({ yxcπθα  as )},(*{ yxvcαθ , where ),(*),( yxvcyxc =π  and 

)(/),(*),( ySyxyxv cπ= .  

To simplify the presentation, we still use the same notations to denote ),( yxΔ , ),( yxR  

and ϕ  but change their definitions as follows. Let 

∑ ====Δ
j

jjj yZxXIyx )1,,(),( δ , 

∑ ≥≤=
j

jj yZxXIyxR ),(),( , 

⎭
⎬
⎫

⎩
⎨
⎧

=≥====≤≤= ∑∑
j

jj
j

jjj yZxXIyZxXIyxyx 1),(,1)1,,(,|),( δϕ . 
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In presence of left truncation and right censoring, the proposed estimating function is 

,
)},(ˆ*{1),(

)},(ˆ*{),(
)},(ˆ*{
)},(ˆ*{*),(

),(
∫∫

∈
⎥
⎦

⎤
⎢
⎣

⎡
+−

−Δ=
ϕ α

α

α

α

θ
θ

θ
θα

yx
L yxvcyxR

yxvcyx
yxvc
yxvccU

�
    (3.14) 

where )}(ˆ/{),(),(ˆ ySnyxRyxv C=  and )(ˆ ySC  is the Lynden-Bell’s estimator given by  

∏
=≤

−=
0,

)}(/11{)(ˆ
jj yz

jC zRyS
δ

. 

In Appendix 3.B, we derive another expression of *),( cU L α  in terms of a weighted form of 

the estimator proposed by Chaieb et al. (2006) constructed based on concordance indicators.  

Let ntt 21 <<"  be ordered observed points of ),,,,,( 11 nn ZZXX …… . Letting ityx == , 

we aim to solve the equations: 

)}({)}({
)(
),(* iYiX

iC

ii tStF
tnS

ttRc ααα φφφ +=
⎭
⎬
⎫

⎩
⎨
⎧ +  )12,,1( −= ni … .      (3.15) 

The case of ni 2=  is neglected since 0),( 22 =+nn ttR . We impose additional constraints that 

the estimators of XF , YS  and CS  are step functions with jumps only at their observed 

values, and that 1)(ˆ
12 =−nX tF , 1)(ˆ

1 =tSY  and 1)(ˆ
1 =tSC . The following procedure can be 

performed successively for 12,...,2,1 −= nj .  

(Step 1) If jt  corresponds to an observed value of X , set  

)}(ˆ{)}(ˆ{ 1−= jYjY tStS αα φφ , )}(ˆ{
)(ˆ

),(
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1
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jX tS
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−

, 

and )(ˆ)(ˆ
1−= jCjC tStS ; if jt  corresponds to an observed value of Y , set  

)}(ˆ{)}(ˆ{ 1−= jXjX tFtF αα φφ , )}(ˆ{
)(ˆ

),(
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and )(ˆ)(ˆ
1−= jCjC tStS ; and if jt  corresponds to an observed value of C , set  

)},(ˆ{)}(ˆ{ 1−= jXjX tFtF αα φφ  )}(ˆ{)}(ˆ{ 1−= jYjY tStS αα φφ , 
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and  

)(ˆ)},(/11{)(ˆ
111 −−− +−= jCjjjC tSttRtS . 

(Step 2) Set 0)}(ˆ{*),( )( == nXc xFcU αφα  to meet the constraint 1)(ˆ
12 =−nX tF . Jointly 

solving this equation and 0*),( =cU L α  in (3.14) produces the estimators of 

*),( cα , denoted as *)ˆ,ˆ( cα .  

(Step 3) Redo (Step 1) by setting *)ˆ,ˆ(*),( cc αα =  obtained in (Step 2) and then obtain 

))(ˆ)},(ˆ{)},(ˆ{( jCjYjX tStStF αα φφ . 

Explicit formula of the proposed estimators are given by  
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The estimating function in (Step 2) is equivalent to 
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Under the quasi-independent condition with )log()( tt −=αφ , the resulting estimators )(ˆ tSY , 

)(ˆ tFX  and  )(ˆ tSC  are equivalent to the Lynden-Bell’s estimators under right censoring. In 

Appendix 3.C, we derive the proposed estimating functions explicitly for selected examples. 

 

3.4.2. Modification for Small Risk Sets 

  The proposed estimation procedure, as well as that proposed by Chaieb et al. (2006) 

are both based on the implicit assumption that 1),( ≥+jj ttR  for all jt . However it 

sometimes happens that an empty risk set may occur especially in the tail area. Several 
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remedies have been proposed to handle this problem (Klein & Moeschberger, 2003, p. 122). 

Here we adopt the idea of Lai and Ying (1991) and propose the following modification: 
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δ
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where 10 << a  and 0>b  are arbitrary tuning parameters. Modifications for )}(ˆ{ tFXαφ  

and )(ˆ tSC  are obtained in a similar way. Based on our simulation results not reported here, 

we recommend to take 1=b  and 10/1=a , by which estimators are less biased. 

 

3.5 Numerical Analysis 

3.5.1 Simulation Studies 

The main purposes of the simulation studies are (i) to check the validity of the proposed 

estimators and (ii) to compare the performance of our method with its competitor proposed by 

Chaieb et al. (2006). Random replications of ),( YX  were generated from the Clayton and 

Frank models subject to YX ≤  with the marginal distributions following exponential 

distributions. For the Clayton model, the values of )log(α−  were chosen to be 0.511 and 

1.099 and, for the Frank model, the value of )log(α  were set to be 2.380 and 5.746. The 

former transformation corresponds to 0.25=τ  and the latter corresponds to 0.5=τ . The 

censoring variable C  was also exponentially distributed. Denote )Pr( YXc ≤=  and 

)Pr(* CYXc ∧≤= . For each setting, we report the bias and the MSE based on 500 

replications. 

Two estimators of the association parameter α  were compared under the Clayton 

model and Frank model respectively. The proposed method solve 0),( =cU L α  and the 

competing estimator proposed by Chaieb et al. (2006) solve 0),(~ =cU w α  with 

1),(~
, =yxw cα . Explicit formulas for the Clayton and Frank models were available in 
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Appendix 3.C. Tables 3.5.A and 3.5.B summarize the results. We see that both methods are 

approximately unbiased, and the MSE decreases as the sample size increases. Comparing two 

estimators, the MSE of the proposed estimator is uniformly smaller, and the efficiency gain is 

remarkable in the Clayton model but modest in the Frank model. Notice that the two 

approaches produce similar results under the Frank model in absence of external censoring 

)( *cc = . Via the relationship in equation (3.6), we find that for the uncensored case of the 

Frank model, 

)},(ˆ{1
)},(ˆ{1),(.

)},(ˆ{
)},(ˆ{
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yxcyxRconst
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πθ
πθ

πθ
πθ

α
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α

α

+
+−

×≅
�

 

which explains why the numerical results are close. When the degree of external censoring 

increases, the advantage of the proposed estimator becomes more obvious. 

The proposed recursive algorithm was evaluated jointly with 0),( =cU L α  to obtain the 

estimators of the marginal functions and c . The performances of ))(ˆ),(ˆ( tStF YX  were 

evaluated at points t  with 8.0,6.0,4.0,2.0)( =tFX  and 8.0,6.0,4.0,2.0)( =tSY . Table 3.6.A 

and Table 3.6.B report the results for the Clayton model and Frank model respectively. Denote 

)|Pr( ZXYCPCEN ≤<=  which measures the censoring proportion in the truncated sample. 

We see that when this value decreases, the performance improves. In all the cases, 

))(ˆ),(ˆ*,( ⋅⋅ YX SFc  are fairly unbiased. It is worthy to note that the estimated probabilities may 

have nicer performance in the tail area but poorer performance in a middle time point, which 

behave differently from the Kaplan-Meier estimator without considering truncation.  
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Table 3.5.A: Comparison of two Estimators for the Association Parameter 
under the Clayton Model 

  

 

 

 

 

 

 

 

 

 

Each cell contains the bias ( 310−× ) and MSE ( 210−× ) (in parenthesis) of the corresponding 
estimator based on 500 replications. 
 

Table 3.5. B: Comparison of two Estimators for the Association Parameter 

under the Frank Model 

 

250=n  500=n  )log(- α
)(τ  

*),( cc  
Proposed Chaieb Proposed Chaieb 

0.3 (.17) 5.4 (0.53) 2.5 (0.08) 3.7 (0.26) 

-0.9 (.44) 1.5 (1.13) -0.3 (0.18) 2.9 (0.53) 

0.7 (0.29) 0.5 (0.74) -1.2 (0.12) -1.5 (0.38) 

1.6 (0.44) 6.1 (1.04) -0.6 (0.19) -1.3 (0.49) 

0.5 (0.35) 5.2 (0.80) 0.3 (0.14) 1.2 (0.40) 

0.5108 
)25.0(

 

(0.80,0.80) 
(0.80,0.63) 
(0.66,0.53) 
(0.66,0.45) 
(0.55,0.39) 
(0.55,0.34) 3.6 (0.37) 7.8 (0.98) -2.2 (0.19) -0.3 (0.51) 

-6.7 (0.28) -2.1 (0.86) 0.6 (0.13) 0.6 (0.38) 

2.5 (0.56) 6.2 (1.44) -0.7 (0.24) 0.2 (0.74) 

-0.2 (0.20) 4.0 (0.54) -4.6 (0.18) -2.9 (0.47) 

-5.4 (0.52) -5.5 (1.27) -0.1 (0.23) 0.2 (0.62) 

-3.5 (0.44) -3.2 (0.95) -1.5 (0.18) 2.7 (0.49) 

1.0986 
)5.0(  

(0.86,0.86) 
(0.86,0.66) 
(0.74,0.58) 
(0.74,0.48) 
(0.63,0.42) 
(0.63,0.36) 3.0 (0.44) 7.1 (1.09) -0.3 (0.20) -0.5 (0.52) 

250=n  500=n  )log(- α
)(τ  

*),( cc  
Proposed Chaieb Proposed Chaieb 

-68.6 (37.55) -68.1 (37.62) -26.1 (20.53) -25.8 (20.53) 

-53.5 (52.87) -36.0 (55.31) -19.4 (26.87) -24.5 (28.49) 

-162.9 (95.06) -156.4(102.07) -35.9 (44.27) -34.6 (48.62) 

-102.2(100.42) -106.3(116.84) -99.2 (51.85) -88.4 (59.76) 

-294.2(201.13) -342.5(239.21) -140.5 (94.01) -141.8 (96.03) 

2.380 
)25.0(  

(0.81,0.81) 
(0.81,0.63) 
(0.63,0.51) 
(0.63,0.43) 
(0.50,0.36) 
(0.50,0.31) -371.9(216.14) -360.6(241.92) -243.3 (131.45) -257.1 (151.72) 

-128.3 (41.53) -128.2 (41.56) -27.8 (21.91) -27.5 (22.01) 

-57.0 (64.71) -21.4 (72.73) -78.0 (33.97) -78.0(36.76) 

-136.9(100.55) -142.4(104.41) -114.0 (49.40) -100.0 (51.47) 

-182.2(129.78) -155.9(147.13) -0.1259 (68.20) -96.1 (73.32) 

-367.3(223.11) -368.2(247.30) -246.1 (115.74) -252.5 (129.13) 

5.746 
)5.0(  

(0.88,0.88) 
(0.88,0.66) 
(0.69,0.53) 
(0.69,0.44) 
(0.50,0.34) 
(0.50,0.29) -429.6(293.47) -411.3(332.07) -373.9(130.48) -349.2 (146.83) 
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Each cell contains the bias ( 310−× ) and MSE ( 210−× ) (in parenthesis) of the corresponding 
estimator based on 500 replications. 

 

Table 3.6.A: The proposed estimators of marginal functions and  
truncation proportion under Clayton Model ( 5.0=τ ). 

 

 

 

 

 

 

 

 

Each cell contains the bias ( 310−× ) and MSE ( 210−× ) (in parenthesis) based on the recursive 
estimator using the likelihood method for the association parameter. The censoring proportion 
is denoted by )|Pr( ZXYCPCEN ≤<= . 
 

Table 3.6.B: The proposed estimators of marginal functions and 
truncation proportion under Frank Model ( 5.0=τ ). 

250=n  500=n  
parameter True 

CENP =0.00 CENP =0.39 CENP =0.00 CENP =0.39

*/ cc  0.86/0.66 -0.9 (0.11) -4.1 (0.34) -1.7 (0.06) -1.7 (0.06) 

)( 1tFX  0.2 -0.1 (0.08) -3.4 (0.07) -1.8 (0.04) -1.8 (0.04) 

)( 2tFX  0.4 -3.5 (0.11) -3.6 (0.12) -1.9 (0.05) -1.9 (0.05) 

)( 3tFX  0.6 -3.7 (0.09) -0.8 (0.14) -0.8 (0.05) -0.8 (0.05) 

)( 4tFX  0.8 -1.5 (0.06) -1.9 (0.12) -0.7 (0.03) -0.7 (0.03) 

)( 1tSY  0.8 -0.4(0.11) -4.7 (0.13) -1.6 (0.07) -1.6 (0.07) 

)( 2tSY  0.6 -1.1 (0.11) -3.9 (0.14) -0.6 (0.06) -0.6 (0.06) 

)( 3tSY  0.4 -0.4 (0.10) -2.6 (0.16) -1.5 (0.05) -1.5 (0.05) 

)( 4tSY  0.2 -1.0 (0.06) -1.9 (0.15) -1.0 (0.03) -1.0 (0.03) 

Each cell contains the bias ( 310−× ) and MSE ( 210−× ) (in parenthesis) based on the recursive 
estimator using the likelihood method for the association parameter. The censoring proportion 
is denoted by )|Pr( ZXYCPCEN ≤<= . 

 

250=n  500=n  
parameter True 

CENP =0.00 CENP =0.41 CENP =0.00 CENP =0.41 

*/ cc  0.86/0.66 2.0 (0.04) 1.3 (0.27) 2.0 (0.02) 0.4 (0.15) 
)( 1tFX  0.2 -1.6 (0.06) -1.7 (0.05) -0.2 (0.03) -1.1(0.03) 
)( 2tFX  0.4 -2.0 (0.08) -2.1 (0.11) -0.3 (0.04) -1.1(0.06) 
)( 3tFX  0.6 -0.2 (0.09) -2.3 (0.15) 0.7 (0.05) -1.9(0.08) 
)( 4tFX  0.8 -1.2 (0.07) 0.7 (0.16) 1.9 (0.04) -0.9(0.07) 
)( 1tSY  0.8 0.8 (0.09) 0.1 (0.08) 0.0 (0.04) 0.2 (0.04) 
)( 2tSY  0.6 1.5 (0.10) -0.3 (0.12) -0.7 (0.05) 0.9 (0.06) 
)( 3tSY  0.4 1.5 (0.08) 0.4 (0.14) -1.1 (0.04) 0.2 (0.06) 
)( 4tSY  0.2 -0.6 (0.06) -1.3 (0.15) -0.1 (0.03) -0.2(0.07) 
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3.5.2 Data Analysis 

We applied the inference procedures to analyze the dataset from a study of 

transfusion-related AIDS in the United States (Kalbfleisch and Lawless, 1989). Let iT  be the 

infection time of patients, measured form January 1, 1978 and iX  be the incubation period 

from the time of infection to AIDS. Only individuals who developed AIDS by the starting 

date, July 1 1986, could be observed. Since the total study period is 102 months, individuals 

with 102≤+ ii XT  were included in the sample which consisted of 293 subjects. With the 

notation ii TY −= 102 , we view iX  as being right truncated by iY . Note that there was no 

external censoring.  

Table 3.7 summarizes the results based on the proposed method and the approach of 

Chaieb et al. (2006). We also computed 95% confidence intervals based on the jackknife 

method and normal approximation. Under Clayton’s model, both methods show positive 

correlation between iX  and iY . This implies that the earlier the infection time iT  and the 

larger the incubation time iX . The confidence interval for )log(α−  based on the proposed 

likelihood estimator is slightly narrower than that obtained by the estimator of Chaieb et al. 

(2006). Quasi-independence can be verified by testing 1:0 =αH . The rejection of 0H  due 

to small p-value coincides with the result of Tsai (1990) based on a nonparametric testing 

procedure. Under the Frank model assumption, the level of association between iX  and iY  

was even stronger. We see that the two estimators also produced similar results as in the 

simulations (Table 1B with *cc = ). We applied the proposed recursive algorithm to estimate 

the distribution of the incubation time. The estimated curves under two model assumptions 

are plotted in Figure 3.1. The estimated function under the Clayton model is significantly 

lower than that under Frank’s model. It implies that the marginal estimator is also sensitive to 

the model choice. 
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Table 3.7: Analysis of the transfusion-related AIDS data 
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Fig. 3.1: The cumulative distribution functions of the incubation time of AIDS 

under two copula models. 

Proposed Chaieb 

Assumption 

Parameter 

and 

Statistics Estimates 
95% 

jackknife interval
Estimates 

95% 

jackknife interval

)log(α−  
0.203 

(τ =0.101) 
(0.112, 0.295) 

0.195 

(τ =0.097) 
(0.065, 0.326) 

C 0.336 (0.201, 0.472) 0.329 (0.176, 0.483) Clayton 

copula Wald’s 

chi-square 

for 

0)log(:0 =αH  

19.173 

(p-value<0.001)
 

8.562 

(p-value≈ 0.00) 
 

)log(α  
3.752 

(τ =0.369) 
(2.272, 5.232) 

3.736 

(τ =0.368) 
(2.256, 5.215) 

C 0.543 (0.356, 0.729) 0.541 (0.354, 0.7271) Frank 

copula Wald’s 

chi-square 

for 

0)log(:0 =αH  

24.696 

(p-value<0.001)
 

24.495 

(p-value<0.001) 
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3.6. Conclusion 

In this project, we consider semi-parametric inference for dependent truncation data 

based on semi-survival AC models. Following the framework in Chaieb et al. (2006), we 

proposed a different approach for estimating the association parameter as well as the marginal 

functions. In addition, we have provided a unified framework for comparing different 

estimation strategies. In particular, we have found that these approaches can be viewed as 

equivalent with a flexible choice of weight. The proposed method for estimating the 

association parameter extends the idea of Clayton’s conditional likelihood to the truncation 

setting. Hence it produces more efficient results than methods which are constructed based on 

only the first-moment condition and use an ad-hoc way of choosing the weight function. The 

proposed recursive algorithm, which solves the equations in (3.11) and the two artificial 

constraints, is easy to be understood and yields nice explicit formula. In the establishment of 

the large-sample properties, we apply the functional delta method which can handle more 

general estimating functions than the U-statistic approach.  
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Appendices : Project 1 

Appendix 3.A: Asymptotic Analysis 

To simplify the notations, we define the following quantities )}(1/{1)( vvg αα θ+≡ , 

)|(pr),( YXyYy ≤>=∞π  and )|Pr()0,( YXxXx ≤≤=π . Also, let 2)},0[{ ∞D  be a 

space consisting of right-continuous function Ttftf ))(),(( 21  with left-side limits, where 

Rtfk 6),0[:)( ∞  for 2,1=k . The metric is defined as =),( gfd  

}2,1|;)()(|supmax{
0

=−
∞<≤

ktgtf kk
t

 for 2)},0[{, ∞∈ Dgf . Similarly, the space }),0{[ 2∞D  

consists of right-continuous function ),( tsf  with left-side limits, where 

Rtsf 62),0[:),( ∞ , equipped with the usual sup-norm. Let 2R⊂Θ  be the parameter space 

for ),( cα , and ( ) Θ∈00 ,cα  is denoted as the true parameter value. Hereafter, expectation 

symbols represent the conditional expectation given YX ≤ . 

 

Part I: Regularity Conditions 

(A-I) A parameter space Θ  is compact;  

(A-II) Deterministic functions )(vαφ , vvv ∂∂≡′ /)()( αα φφ , 22 /)()( vvv ∂∂≡′′ αα φφ , 

)(1 vαφ− , ανφφ αα ∂∂= −− /)()( 11 v� , )(vαθ , vvv ∂∂≡′ /)()( αα θθ , 22 /)()( vvv ∂∂≡′′ αα θθ , 

αθθ αα ∂∂≡ /)()( vv� , )(~ vwα , and vvwvw ∂∂≡′ /)(~)(~
αα  are twice continuously 

differentiable and bounded function of ),( vα ; 

(A-III) )()},(ˆ{~),(~sup 2/1
,

,

−=− noyxcwyxw pc
yx

παα ; 

(A-IV) There exists two positive numbers UL xy <  such that 

0)( >LX yF , 1)( =LY yS , 1)( =UX xF  and 0)( >UY xS . 

(A-V) The )22( ×  matrix A  is non-singular, whose definition is given later. 
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Part II. Asymptotic Linear Representation for ),(~ cU w α  

It follows that  
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Note that the second term in the right-hand side of the above equation has smaller order 

)( 2/1−nop  than the first term. Based on the condition (A-III), we have the following 

asymptotic expression: 

)()}]~,(ˆ{)[~,(~}{1
)1(

1),(~
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2/1

,
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��
πα αα . 

The estimating function can be further expressed as a function of ),(ˆ yxπ  such that  

)(),;ˆ(),(~
2

2/1
1

−
−

+Φ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
noccU

n
pw απα , 

where }),0{[ 2∞∈Dπ , 

).,(),()}],({)0))((([

)},({~),;(
******

**
**

yxdyxdyyxxcgyyxxI

yyxxcwc
yyxx

πππ

παπ

α

α

∧∨−>−−×

∧∨=Φ ∫∫∫∫ ∧≤∨  

Chain rules can be applied to establish the Hadamard differentiability of Φ  and to obtain 

the derivative map at π  with direction }),0{[ 2∞∈Dh  as: 

(
)

).,(),()}],({}0))({([                        

)},({~2   

),(),()},({)},({~                       

)}],({}0))({()}[,({~

),(),;(
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**

******
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yxdyxdhyyxxcgyyxxI

yyxxcw
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yyxxcgyyxxIyyxxcw
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yyxx
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α
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π

∧∨−>−−

×∧∨′

+∧∨′∧∨

−∧∨−>−−∧∨′

×∧∨=Φ′

∫∫∫∫

∫∫∫∫

∧≤∨

∧≤∨

　　　　　　

 

The functional delta method (Van Der Vaart, 1998, Theorem 20.8) shows that 
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)(),;(1),;(),(~
2
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⎠
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⎛ ∑ noc
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n

i
YXw ii

αππαπα π ,        (A.1) 

where ),(),(),( yYxXIyx iiYX ii
≥≤=π  and the term ),;( ),( c

ii YX απππ −Φ′  has mean zero for 

any value of ),( cα . 

 

Part III: Asymptotic Linear Representation for ),( cU c α  

Let )(ˆ
,, LcX yF α  be the marginal estimator for a specified value of ),( cα . Then by 

Taylor expansions, we have  

{ }
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Applying the functional delta method on ),,( cαπΨ , we obtain the asymptotic linear 

expression as: 

)(),;(1),;(),( 2/1

1
),(

−

=

+−Ψ′+Ψ= ∑ noc
n

ccU p

n

i
YXc ii

αππαπα π ,       (A.2) 

where 

∫ −≥≤′′=−Ψ′
U

L

ii

x

y
iiYX uduuuYuXIuuccc )0,()},(),()}{,({),;( 2

),( πππφαππ απ   

                           ∫ ′−<−
U

L

x

y
i uucduuXIc )),(()}0,()({ πφπ α , 

which has mean zero for any value of ),( cα . 

 

Part IV: Proof for Consistency of )ˆ,ˆ( cα  

Define the following notations: 
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),(/),(),( ,, cYXUYXU iiciic ααα ∂∂=�  and )],([
00 , YXUEA cα

�= . From (A.1) and (A.2), we 

have )(/),( 2/1

1
ˆ,ˆ

−

=

=∑ nonYXU p

n

i
iicα . This formula implies that )ˆ,ˆ( cα  is an approximate 

Z-estimator (Van Der Vaart, 1998, p.46) for the criterion function ),(),( , yxUc cαα 6 . The 

consistency of )ˆ,ˆ( cα  follows by checking the conditions: 

(A) Point ),( 00 cα  is the unique zero for 0)],([ , =YXUE cα  in its neighborhood. 

(B) )1(  ||)],([/),(||sup ,1 ,),( pc
n

i iicc oYXUEnYXU =−∑=Θ∈ ααα , where |||| ⋅  is the Euclid norm. 

For (A), we need to check 0),;( 00 =Φ cαπ  and 0),;( 00 =Ψ cαπ . The first equation follows 

from the fact that the conditional expectation of ijΔ  given )~,~( ijij YX  is ))~,~(( 00 ijij YXcg πα . 

The second equation can be directly shown from the identity:  

( ) ( ) ∫
∞

′==
Ly

LXLL uu
uduucuucyFyyc

),(
)0,()),((),()(),( 000 000 π

ππφπφπφ ααα . 

The non-singularity of matrix )],([
00 , YXUEA cα

�=  in (A-V) is sufficient to show the 

uniqueness of the point ),( 00 cα . Condition (B) holds if the set of functions 

}),();,({ , Θ∈⋅⋅=ℑ cU c αα  is Glivenko-Cantelli (Van Der Vaart, 1999, p.46). The sufficient 

conditions are that ),(, yxU cα  is continuous in ),( cα  for any fixed point ),( yx  and that 

the function ),(, yxU cα  is bounded with respect to ),,,( cyx α , both of which hold under the 

regularity condition (A-II). 

  

Part VI: Asymptotic Normality of Tccn )ˆ,ˆ( 00
2/1 −−αα  

The consistency of )ˆ,ˆ( cα  allows us to use the standard argument for proving the 
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asymptotic normality based on the second-order Taylor expansion. Following the argument of 

Theorem 5.4.1. of Van Der Vaart (1998), we obtain 
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Thus, the statement of Theorem 2 holds by letting ]),(),([
0000 ,,

T
cc YXUYXUEB αα= . 

 

Part VI: Asymptotic expression of )}({)}(ˆ{
0ˆ tStS YY αα φφ −  and )}({)}(ˆ{

0ˆ tFtF XX αα φφ −  

By the second-order Taylor expansion and the boundedness of )(vαφ ′′ , it follows that 
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where the integral value is defined to be 0 for Lyt ≤ . Defining the function 

)();,( πφπαψ α ccc ′=  and applying the Taylor expansion around ),( 00 cα , we have 
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By the continuous mapping theorem, the process );ˆ(00 , tH c
Y πα  converges in probability to 

T
c

Y
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Using the asymptotic expression for )ˆ,ˆ( cα , we have 
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where each term in the summation has mean 0 and finite variance. As a consequence of the 

functional delta method, ∑=
− n

i iic
Y tYXLn

1 ,
2/1 );,(00α  converges weakly to a linear function of 

the Gaussian process ),( yxW , which implies the tightness of this term. Since the random 

variable ),(
00 , iic YXUα  is time independent, the second term is naturally tight. 

Using similar arguments, we obtain the expression 
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For instance, the Frank model has the expression 
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Using the expression 

)1/(1)( ),( uueuA γπ−= , )1/()( ),(),( uuuu eeuB γπγπ −= , )()()( uBuAuC = , 

We can write: 



 - 46 -

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

−
=

′
∫

∫
U

U

X

X

x

t

x

t
tF

tF

X

X

uduuuAuB

uduC

tF
t

)0,()},()(1){(

)0,()(
1

)(
)(

)(

)(

ππγ

πγ

α
α

φα

h  

∫

∫

−<+−≤+

−≥≤−=

U

U

x

t
ii

x

t
iiiic

X

uuduuXIttXItB

uduuuYuXIuCtYXL

),()}0,()({)}0,()(){(

)0,()},(),(){();,(

2

2
,

ππγπγ

ππγα

 

This function may be empirically estimated by 
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Part VII: Weak convergence of T
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   The following result follows from the second order Taylor expansion: 
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are mean-zero i.i.d. stochastic processes and their summation are tight processes. We use the 

definition 00/0 =  for the case with 0)}(ˆ{
0

=tSYαφ  and 0)}(ˆ{
0

=tFXαφ . 

Let T
XXYYn tFtFtStSntV ))()(ˆ),()(ˆ()( 2/1 −−= . Also, let T

YX tGtGtG ))(),(()( = be a zero-mean 

Gaussian random field, the covariance function being specified as 
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for ∞<≤ ts,0 . Both )(tVn  and )(tG  are maps from the probability space to the 

space 2)},0[{ ∞D . Now we show the weak convergence of )(tVn  to the Gaussian random 

field )(tG  in 2)},0[{ ∞D . Based on the expression (A.3) and the central limit theorem, the 

finite-dimensional distribution of )(tVn  converges weakly to that of )(tG . The tightness of 

process )(tVn  is already shown in Section A.6. 

 

Appendix 3.B: Equivalence of Different Estimating Functions 

Let 
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be the event that the pair ),( ji  is orderable and comparable (Martin and Betensky, 2005). 

We aim to establish the following identity: 
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As a special case with ∞=iC , the above identity yields equation (9). 

The following proof is for the general situation that permits external censoring. Let 

)},(ˆ*{),(ˆ yxvcyx αθθ =  and ),(),( *, yxwyxw cα= . Writing the integral via the finite sum, we 

obtain 
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The above equation follows by noting that the number of j  satisfying ijij XXZZ <> ,  is 

1),( −ji ZXR  and using the notation ijX~  and ijZ~ . It is easy to see that 
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Appendix 3.C: Examples of AC Models 

For illustration, we derive explicit formulas for the Clayton and Frank models. 

Examp1e 1: Clayton model (Clayton, 1978) 

The Clayton copula is indexed by 1)( )1( −= −− α
αφ tt  ( 0>α ) and, by equation (1), 

αθα =)(v . The semi-survival Clayton model follows that   

1
1

)1()1( }]0,1)()()[max{/1()|,Pr( −
−−−−− −+=≤>≤ ααα ySxFcYXyYxX YX . 

Note that the above expression also accommodates the case of 10 << α , where ∞<)0(αφ  

(Nelsen, 1999, p.92). By equations (2) or (5), αθ =),(* yx  but its interpretation is the 

reciprocal of the usual odds ratio. Hence, when 10 << α , we have 11
),(

1
* >=

αθ yx
 which 

implies positive association between X  and Y .  

The proposed estimating function is given by 
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and, by solving 0)( =αLU , α̂  can be obtained without estimating *c  or c . The second 
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Plugging in α̂  in the above equation, we obtain *ĉ . The recursive algorithm yields the 

following marginal estimators:  
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Example 2: Frank model (Frank, 1987) 

The Frank copula is indexed by )}1/()1log{()( tt ααφα −−= )0( >α  with 

)1/()log()( −= vvv ααθα . The semi-survival Frank’s model can be written as  

)]1/()1)(1(1[log)/1()|,(Pr )()( αααα −−−−=<>≤ ySxF YXcYXyYxX .  

It follows that  

)},({),( ** yxvcyx θθ = )1/()log()},({ ),(** −⋅= yxvcyxvc αα . 

Consider the transformation )log(* αγ c= . The likelihood estimating function can be 

expressed in terms of γ , and the proposed estimating function of γ  is given by  
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γ γ −−= . Let γ̂  be the solution to 0)( =γLU . 

The association parameter α  can be estimated by 
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Chapter 4 Testing Quasi-independence 

In this chapter we study the problem of testing independence between ),( YX  subject to 

YX ≤ . Tsai (1990) was the first one to study the problem and he found that only a weaker 

assumption of quasi-independence can be tested.  

Before we present our proposal, it is worthy to briefly review the development of ideas 

which have been utilized in construction of test statistics in related problems. Testing 

independence between a pair of failure times has been an important area of research. For 

bivariate failure-time data subject to right censoring, several nonparametric tests have been 

proposed. For example, Oakes (1982) suggested a concordance test based on Kendall's tau. 

Cuzick (1982, 1985) and Dabrowska (1986) considered rank-based tests. Shih and Louis 

(1996) proposed to utilize the covariance process of martingale residuals to constructs test 

statistics. Hsu and Prentice (1996) generalized the idea of the Log-rank (Mantel-Haenszel) 

statistic for testing association.  

Recall that for truncation data, no information about ),( YX  is available in the region, 

}0:),{( ∞<<< xyyx . Hence truncation data are fundamentally different from typical 

bivariate survival data mentioned above in which there is no restriction on the range of 

observations. Most existing methods for analyzing truncation data have assumed 

independence between the two variables (Lynden-Bell, 1971 and Woodroofe, 1985). Tsai 

(1990) introduced the concept of quasi-independence, a weaker condition than independence, 

and showed that this assumption can be tested. Formally the assumption of 

quasi-independence can be stated as 

 00 /)()(),(: cySxFyxH YX=π   ( yx ≤ ),        (4.1) 

where )|,Pr(),( YXyYxXyx ≤>≤=π  and XF  and YS  are right continuous 

distribution and survival functions, and 0c  is the normalizing constant satisfying 

∫∫
≤

−=
yx

YX ydSxdFc )()(0 . 
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His proposed to utilize the conditional Kendall’s tau estimator in (2.11) to construct a test for 

quasi-independence. 

Here we propose to constructed a series of 22×  tables which have the same form as the 

tables illustrated in Section 3.1.2. The proposed tests are motivated by the weighted log-rank 

statistics based on these 22×  tables. Power improvement is possible by choosing an 

appropriate weight function. Hence we also derive score tests when the dependence structure 

under the alternative hypothesis is specified semiparametrically. Extension to right-censored 

data is also discussed. Asymptotic analysis is provided based on properties of empirical 

processes and the functional delta method. Simulations are performed to evaluate 

finite-sample performances of the proposed methods. 

  

4.1. The Proposed Test Statistics 

Temporarily, we ignore external censoring. Under the truncation scheme, we observed 

)},,1( ),({ njYX jj …=  subject to jj YX ≤ . To facilitate the interpretation of the proposed 

test statistics, we set }0))({( <−−=Δ jijiij YYXXI  which now represents the discordant 

indicator and hence is different from the definition in Section 2.1. 

  

4.1.1. Construction based on Two-by-two Tables 

Adapt to the nature of truncation, we can construct the following 22× table at ),( yx  

with yx ≤   

 

 

 

Table: Two-by-two table for Truncated Data 

 yY = yY >  
xX =  ),(11 dydxN  ),(1 ydxN •  
xX <     

 ),(1 dyxN•   ),( yxR  
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The cell counts and marginal counts in this table are defined as  
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The odds ratio of the table reveals the information of association between X  and Y  at time 

),( yx . For example the theoretical value of the odds ratio equals 1 under 0H . Given the 

marginal counts, the conditional mean of ),(11 dydxN  for yx ≤  becomes 

  
),(

),(),(),,|),((E 11
1111 yxR

dyxNydxNRNNdydxN ••
•• = .          (4.2) 

We propose to test 0H  by the following weighted Log-rank type of test statistics: 
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where ),( yxW  is arbitrary pre-specified weight function which affects the power under the 

alternative hypothesis. In the special case that there is no tie in data, we have 

1),(),( 11 == •• dyxNdyxN  and the expected value in (4.2) becomes ),(/1 yxR .  

We now illustrate the idea of the 22× table construction using a simple case. Assume that the 

data have no ties so that all the tables under analysis have marginal 

counts 1),(),( 11 == •• dyxNdyxN . Given marginal counts 1),(),( 11 == •• dyxNdyxN  and 

ryxR =),( , the table at ),( yx  has the following two possible configurations: 

 

 

 

Under 0H , the probability that the first table appears is r/1 . 

The test based on WL  is nonparametric in that no assumption is made on ),( YX . In 

Section 3, we will discuss how to utilize the information provided by the alternative 

hypothesis, which specifies the association pattern, to choose a weight function that leads to a 

0  1 

   
1  r  

1  1 

   
1  r  
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more powerful test. We can modify the ρG  class proposed by Harrington and Fleming 

(1982) for truncation data and obtain 
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yx yxR
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where nyYxXIyx
j

jj /),(),(ˆ ∑ >≤=π  and ),0[ ∞∈ρ  is an arbitrary constant. 

  

4.1.2 Relationship with Tsai’s test 

In this section, we assume that the observations have no ties, that is, all 

nn YYXX ,,,, 11 ……  are distinct. We derive another expression of WL  based on the newly 

defined discordance indicator  

}0))({( <−−=Δ jijiij YYXXI . 

Tsai (1990) proposed the following modified version of Kendall’s tau, )|(21 ijija AE Δ−=τ , 

where }~{ ijijij YXA ≤=
�

, jiij XXX ∨=
�

 and jiij YYY ∧=~ . Note that when event ijA  occurs, 

the two pairs are both located in the observable region, }0:),{( ∞<<< yxyx  and hence aτ  

is well-defined for truncation data. Tsai proposed the following nonparametric estimator of 

aτ : 
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}{
21τ̂ .           (4.5) 

Note that the formula in (2.11) and (4.5) are actually the same. Because the change of 

notations, they have different expressions.  

It follows that the proposed test statistic can be written as 
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where }~{ ijijij YXA ≤=
�

. The derivation of equation (4.6) is proven in Appendix 4.B under a 

more general setting that accounts for right-censoring. Under 0H , we have 2/1)( =Δ ijE . 

Expression (4.6) implies that the proposed Log-rank statistics WL  can be viewed as a 

weighted sum of the difference between the discordant indicator ijΔ  and its expected value 

2/1  under 0H  over all comparable ),( ji  pairs satisfying 1}{ =ijAI .  

 Notice that setting nyxRyxW /),(),( = , we get 
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ji
ijijAI

n 2
1}{2 ,  

which is exactly Tsai (1990)’s statistics based on conditional Kendall’s tau.  

 The equivalence relationship in (4.6) allows us to compare different types of testing 

procedures under a unified framework. Note that Tsai’s statistics, or 1=ρL , can be written as 

the conditional independent sum of ranks (Tsai, 1990). In this special case, theoretical 

analysis may utilize rank-based results. The expression of WL  in (4.6) based on ijΔ  will be 

a U-statistic if the weight function does not involve any unknown nuisance parameter. In this 

situation, properties of U-statistics will be helpful for theoretical analysis. This approach has 

been adopted by Martin & Betensky (2005). However here we consider a general class of 

WL  which can include more flexible weight functions. Hence for large-sample analysis, we 

will apply the functional delta method, a useful tool which can handle more flexible weight 

functions. 

  

4.2. Conditional Score Test 

4.2.1. Likelihood Construction 
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 The weight function in (4.6) affects the power of the corresponding test. Now we express 

the local odds ratio function proposed by Chaieb et al. (2006) for truncated data using the new 

notation of ijΔ . Specifically for yx ≤ , the odds ratio function can be expressed as  

yyxxyx
yxyxyxyx
∂∂⋅∂∂
∂∂∂⋅

=
/),(/),(
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2

ππ
ππϑ

),~,|0Pr(
),~,|1Pr(

ijijijij

ijijijij

AyYxX
AyYxX

===Δ

===Δ
= �

�
. 

Under quasi-independence, the above ratio reduces to 1. It should be noted that if 1),( <yxϑ  

implies positive association while 1),( >yxϑ  implies negative association since here ijΔ  is 

the discordance indicator. The proposed score test is derived if the following assumptions for 

the alternative hypothesis hold. 

(i) The cross-ratio function can be parameterized as )),((),( yxyx ηθϑ α= , where α  is 

one dimensional parameter and ),( yxη  is an unspecified nuisance parameter. 

(ii) For each fixed η , )(ηθα  is a continuously differentiable function of α , and 

1)(lim
1

=
→

ηθαα
. 

If the above assumptions hold under the alternative hypothesis and given that 

1),(),( 11 == •• dyxNdyxN  and ryxR =),( , the cell count ),(11 dydxN  follows a Bernoulli 

distribution with 

)),((1
)),((

),1|1),((Pr 1111 yxr
yx

rRNNdydxN
ηθ

ηθ

α

α

+−
===== •• . 

Suppose that the nuisance parameter ),( yxη  can be estimated separately by ),(ˆ yxη . Under 

a working assumption of independence for different tables of ),( yx , we can construct the 

following conditional likelihood function 

∏
≤

−

⎥
⎦

⎤
⎢
⎣

⎡
+−

−
⎥
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⎤
⎢
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=
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yxyxR
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),(1),( 1111

)),(ˆ(1),(
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)),(ˆ(1),(
)),(ˆ()(

ηθηθ
ηθα

αα

α     (4.8) 

Which ignore the distributions of the margins. The idea of equation (4.8) was motivated by 

the landmark paper of Clayton (1978). The corresponding score function αα ∂∂ /)(log L  
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becomes 
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     (4.9) 

where, αθθ αα ∂∂= /)()( vv� .  

By letting 1→α  for quasi-independence, we obtain the score test under the model 

assumptions (i) and (ii). Since 1)),((lim
1

=
→

yxηθαα
, the score statistics belongs to the 

weighted Log-rank test with weight function being specified as: 

)),(ˆ(lim),(
1

yxyxW ηθαα
�

→
= .                   (4.10) 

If the alternative hypothesis follows model (i) and (ii), it is expected that the weight in (4.10) 

can lead to a more powerful test than an arbitrary choice of weight without any theoretical 

justification. 

  

4.2.2 Semi-survival Archimedean Copula Models 

Now we apply the above discussions to the semiparametric models proposed by Chiaeb 

et al. (2006). Specifically the “semi-survival” function can be expressed as  

cySxFYXyYxXyx YX /)}]({)}({[{)|,Pr(),( 1
ααα φφφπ +=≤>≤= −    (4.11) 

where c  is a unknown normalizing constant satisfying 

[ ]( )∫∫
<

− +
∂∂
∂

−=
yx

YX dxdyySxF
yx

c )}({)}({1
2

ααα φφφ ,  

where the properties of )(⋅αφ  have be given in Section 2.1.  

For models in this AC family, assumption (i) and (ii) are also satisfied. It has been shown 

that )),((),( yxcyx πθϑ α= , where 
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)(
)()(

ηφ
ηφηηθ

α

α
α ′

′′
−= .                (4.12) 

In other words, the nuisance parameter is ),(),( yxcyx πη = . The formulation in (4.11) 

contains the case of quasi-independence as a special such that, under assumption (ii), we have 

)log()(1 tt −==αφ  after appropriate parameterization and 0cc = . 

 To apply the result in equation (4.9) for a semi-survival AC model, we need to estimate 

),(),( yxcyx πη =  separately under 0H  and then compute the weight function in equation 

(4.10) when the form of )(⋅αφ  is specified. Under 0H , the truncation probability c  can be 

estimated by  

∏ ∑
< ⎪⎭

⎪
⎬
⎫
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⎪
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−=

jXXj jj

k jk

XXR
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where jj
XX min)1( = , and ),( yxπ  can be estimated by 

nyYxXIyx
j

jj /),(),(ˆ ∑ >≤=π . 

Now we calculate )),(ˆ(lim)),(ˆ(
1

yxyxw ηθη αα
�

→
=  for selected AC models, namely the Clayton, 

Frank and Gumbel copula models. We will evaluate how these weight functions affect the 

power of the corresponding tests by simulations.  

Example 1. Claytonl copula 

Clayton’s model (1978) has the generating function )1/()1()( )1( −−= −− αφ α
α tt  for 

1,0 ≠∞<< αα . It follows that αηθα =)(  and hence it is easy to see that 1)),((lim
1

=
→

yxηθαα
� . 

Thus the resulting weight function does not involve any nuisance parameter. In this case, the 

corresponding score statistics is equivalent to 0=ρL . We may also refer to this unweighted test 
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as the original log-rank statistic.  

Example 2. Frank copula  

For Frank’s model, the generating function is { })1/()1(log)( tt ααφα −−=  for 

1,0 ≠∞<< αα . Since )1/()log()( )log( −= αη
α αηηθ e , the weight function has the form 

),(ˆ)),(ˆ(lim
1

−∝
→

yxyx πηθαα
� . 

The corresponding score test statistics is equivalent to 1=ρL  or Tsai’s statistics based on the 

conditional Kendall’s tau. Note that 1=ρL  has similar expression as the Gehan’s test for 

typical right censored data.  

Example 3. Gumbel copula 

The generator function is α
αφ )}log({)( tt −=  where α<1 . Notice that this generator 

function only can generate ),( YX  which are negatively correlated for semi-survival Gumbel 

models. Since )log(/)1(1)( ηαηθα −−= , the weight choice becomes 

)},(ˆˆlog{/1)),(ˆ(lim
1

−−∝
→

yxcyx πηθαα
� . 

Denote the corresponding weighted Log-rank statistics as loginvL .  

The suggested weight functions for the three models are plotted in the following figure. 

From the three examples, we see that the weight function is independent of the location 

),( yx  for Clayton’s model. For Frank or Gumbel models, however, the weight is an 

increasing function of ),(ˆ −yxπ , suggesting the higher weight for the large risk set. Also 

notice that the suggested weight function for the Gumbel model also involves the truncation 
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probability c . The presence of additional nuisance parameters increase the technical 

difficulty of asymptotic analysis. In Appendix 4.C, we give the formula of the score tests for 

the latter two examples.  

 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Plot of weight functions

v

W
(v

)

Clayton

Frank
Gumbel

 
Figure 4.1: The suggested weight functions for three AC models. 

 

4.3. Asymptotic Analysis 

4.3.1. Asymptotic normality 

For large sample analysis, we introduce the two classes of weighed Log-rank statistics: 

  ∫∫
≤
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⎬
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−−=
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w yxR
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≤

••
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⎬
⎫

⎩
⎨
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−−=
yx

w yxR
dyxNydxNdydxNyxcwL

),(
),(),(),()),(ˆˆ(* 11

11π ,          (4.14) 

where )(vw  is a known continuously differentiable function on )1,0(∈v . Notice that the 

difference of the two statistics is whether the truncation proportion c  is involved.  

To simplify the analysis we assume that the distributions under the null hypothesis in 
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(4.1) are absolutely continuous. In the Appendix, we provide a sketch of the proof. Detailed 

derivations are given in the technical report. The formula in (4.13) and (4.14) can be 

re-expressed as the following functional forms:  

∫∫ ∫∫ ∧≤∨
−−

−∧∨
−∧∨

−=
**

),(ˆ),(ˆ)})(sgn{(
),(ˆ
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yyxx
yyxxwnL ππ

π
π , 

,),(ˆ),(ˆ)})(sgn{(
),(ˆ

)},(ˆ)ˆ({
2 **

****
**

**
*
w ∫∫ ∫∫ ∧≤∨

−−
−∧∨

−∧∨
−=

yyxx
yxdyxdyyxx

yyxx
yyxxgwnL ππ

π
ππ

where )(⋅g  is a functional such that )ˆ(ˆ πgc = , defined in Appendix A (part III) and )sgn(x  

is defined to be -1, 0, or 1 if 0<x , 0=x , or 0>x , respectively. These functionals can be 

shown to be Hadamard differentiable functions of π̂  given the differentiability of )(⋅w . By 

applying the functional delta method (Van Der Vaart, 1998, p. 297), we obtain the following 

asymptotic expression: 

)1(),(
1

2/12/1
P

n

j
jjw oYXUnLn +−= ∑

=

−− ,  

)1(),(
1

*2/1*2/1
P

n

j
jjw oYXUnLn +−= ∑

=

−− , 

where the random variables ),( jj YXU  and ),(*
jj YXU  are defined in Appendix 4.A (part 

I and part III).  

Theorem 4.1: Under 0H , the statistics wLn 2/1−  converges weakly to a mean 0 normal  

distribution with the variance ]),([ 22
jj YXUE=σ . 

 

Corollary 4.1: The Fleming-Harrington type ρG  statistics ρLn 2/1−  with ρvvw =)(   

converges weakly to a mean-zero normal distribution with the variance 

]),([ 2
jj YXUE ρ , where  
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Note that the statistics *wL  involves the estimator of truncation probability, which is 

closely related to the marginal estimators of )(tFX  and )(tSY . To show the asymptotic 

normality for *wL , we need to assume the following condition.  

 

Identifiability Assumption (I): There exists two positive numbers UL xy <  such that 

0)( >LX yF , 1)( =LY yS , 1)( =UX xF  and 0)( >UY xS . 

The above statement is an identifiability condition for ))(),(( ⋅⋅ YX SF , which has been 

routinely used in theoretical analysis of truncation data. For example, the upper limit Ux  

plays the same role as the notation *T  in Wang, Jewell & Tsai (1986).  

Theorem 4.2: Under 0H  and the identifiability assumption (I), statistics *2/1
wLn−   

converges weakly to a mean 0 normal distribution with the variance 

]),([ 2*2*
jj YXUE=σ . 

 

4.3.2 Variance Estimation: Empirical vs. Jackknife 

For ρG  class, the asymptotic variance, defined by ]),([ 2
jj YXUE ρ , has a tractable form. 

Based on the method of moment and applying the plug-in principle, we obtain the following 

estimator of )( ρLAVar :  
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Alternatively, for both computational and theoretical convenience, the jackknife method 

is another useful choice for variance estimation. It can handle the situation of right censoring 

easily without going through complicated mathematical derivations. In our simulations, we 

have found that the Jackknife estimator actually outperforms the empirical estimator based on 

analytic derivations.  

Asymptotic behavior of the jackknife estimator is closely related to the smoothness of 

the functional expression. Unfortunately, Hadamard differentiability of the present statistics 

alone does not ensure the consistency of the Jackknife estimator. The consistency of the 

Jackknife estimator requires a more stringent smoothness condition on the statistical 

functional. The following theorem provides the theoretical justification for the use of 

jackknife estimator in the proposed testing procedure. 

Theorem 4.3: The asymptotic variance 2σ and 2*σ  of the class of statistics wL  and *
wL   

can be consistently estimated by the Jackknife estimator. 

The sufficient condition of continuous Gateaux differentiability (Shao, 1993) for the 

consistency proof is given in Appendix A (part IV). The continuous differentiability of the 

function )(⋅w  plays an essential role in this proof. 

 

4.4. Modification for Right Censoring 

4.4.1 The Weight Log-rank Statistic under Censoring  

Censoring is common in analysis of lifetime data. In addition to be left truncated by iX , 

suppose the variable iY  is subject to right censoring by another variable iC . Assume that 
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iC  is independence of ),( ii YX . Observed data become ),,{( iii ZX δ  )},...,1( ni =  subject to 

ii ZX ≤ , where iii CYZ ∧=  and )( iii CYI ≤=δ . The 22×  table can be modified as 

follows. At any point ),( yx  with yx ≤ , one can construct a 22×  table with cell and 

marginal counts defined as 

∑ ====
j

jjj yZxXIdydxN )1,,(),(11 δ , ∑ ≥==•
j

jj yZxXIydxN ),(),(1 , 

∑ ==≤=•
j

jjj yZxXIdyxN )1,,(),(1 δ  and ∑ ≥≤=
j

jj yZxXIyxR ),(),( . 

 

 1, == δyZ yZ >  
xX =  ),(11 dydxN   ),(1 ydxN •  
xX <     

 ),(1 dyxN•   ),( yxR  

Table: Two-by-two table for Truncated Data subject to Right Censoring 

 

We define 
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In Appendix 4.B, we show that the above statistics can also be expressed as 
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where 
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ZXB
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�
 

implies that the pair ),( ji  is comparable and orderable (Martin & Betensky, 2005). Under 

the quasi-independence assumption, it can be shown that 2/1)|( =Δ ijij BE .  

For a constant ),0[ ∞∈ρ , the Fleming-Harrington type ρG  class statistics can be 

modified as 
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where )(ˆ/),()/1(),(ˆ ySyZxXInyxv C
j

jj∑ >≤=  and )(ˆ ySC  is the Lynden-Bell’s 

estimator for )()Pr( ySyC C=>  based on data )1,,{( iii ZX δ−  )},...,1( ni = . Note that the 

weight ρ),(ˆ yxv  mimics ρπ ),( yx  by applying the idea of inverse probability of censoring 

weighting . 

For the weight choice nyxRyxW /),(),( = , the expression in the discordance form becomes 
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which is equivalent to the modified statistics proposed by Tsai (1990). 

 

4.4.2 The Conditional Score Test under Censoring 

Under model assumption (i) and (ii), the conditional score function has the same form as 

(4.9), where the cell and marginal counts are redefined for the censored case. For a 

semi-survival AC model in (4.11), the model assumption (i) holds for 

)(/)()( ηφηφηηθ ααα ′′′−= , and the nuisance parameter becomes ),(),( * yxcyx νη = , where 

)Pr(* ZXc ≤=  and 

)(/)|,Pr(),( ySZXyZxXyxv C≤>≤= . 

The nuisance parameters can be estimated by 
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where jj
XX min)1( = , and )(ˆ/),(),(ˆ ySyxRyxv C=− . 

   

4.4.3 Asymptotic Analysis under Censoring 

Now we discuss the asymptotic normality of the classes 
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As we could see in the proofs of Theorem 4/1 and 4.2, the formulas under censoring are very 

complicated. Hence here we describe a brief sketch of proving the asymptotic normality under 

0H . For the empirical process  

ncCyYxXIcyxH
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jjj /),,(),,(ˆ ∑ >>≤= , 

it can be shown in Appendix A (part III) that 
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where ),;( yx⋅ϕ  and )(* ⋅g  are functions such that ),;ˆ(),(ˆ yxHyx ϕν =−  and )ˆ(ˆ ** Hgc = , 

each defined in Appendix A (part V). The asymptotic normality follows from the functional 

delta method that is applied based on the fact that both wL  and *
wL  are Hadamard 

differentiable function of Ĥ  and that the standardized process  )ˆ(2/1 HHn −  converges 

weakly to some Gaussian process. 

Similar to the uncensored case, the consistency of jackknife estimator can be proven by 

checking the continuous Gateaux differentiability of the functional expression. The proof 

follows the same lines as that for Theorem 4.3 and is omitted. 
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4.5. Numerical Analysis 

The analysis has several objectives. First we want to choose a better variance estimator 

via simulations. Then we will study the size and power of the proposed tests. In particular, we 

want to confirm whether our conjecture that the score statistics leads a more powerful test 

when the dependence structure under the alternative hypothesis is specified. The rejection rule 

is determined based on the normal approximation using the Jackknife variance estimator in 

the standardization. 

 

4.5.1 Comparison of two Variance Estimators 

We generated truncated data ),( YX  which follow exponential distributions with 

hazards 1=Xλ  and 1=Yλ . Total 500 replications of samples 100,50=n and 200 were 

examined for comparing the analytic and Jackknife estimators for variance estimation. The 

true variances were approximated by the sample variance of 30,000 separate Monte Carlo 

replications. To obtain the size of the tests, we compute the empirical proportion of rejection 

based on the standard normal approximation. 

 
Table 4.1: Comparison of Two Variance Estimators 

 

Recall that based on the asymptotic mean-zero linear expression of the test statistic, we 

can derive an analytic estimator for the variance using the ideas of method of moment and the 

Average of nV /ˆ  Size ρ  n  )( 2/1
ρLnVar −  

Analytic Jackknife Analytic Jackknife
0 50 0.759 0.613 0.840  0.088 0.060 
0 100 0.843 0.744 0.913  0.076 0.062 
0 200 0.906 0.829 0.946  0.070 0.058 
1 50 0.0469 0.0512 0.0523  0.048 0.046 
1 100 0.0466 0.0476 0.0481  0.044 0.040 
1 200 0.0458 0.0460 0.0463  0.060 0.060 
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plug-in approach. However based in Table 4.1, this complicated formula slightly 

underestimates the true variance and hence inflate the type I error rates for small sample sizes. 

It improves as the number of sample size increase. The jackknife method has much smaller 

bias and the empirical sizes are satisfactory in all the sample sizes considered here. 

 

4.5.2 Size of the Proposed Tests 

The main purpose here is to examine the size of the proposed tests, namely 0=ρL , 1=ρL  

and loginvL , under the null hypothesis of quasi-independence. The nominal level is set to be 

05.0=α . Note that the variance of each test statistic was estimated using the Jackknife 

method. We consider three sample sizes with =n 50, 100 and 200. For each sample size, we 

evaluate four configurations of ),,( CYX λλλ . Specifically we set ),,( CYX λλλ =(1,1,0), 

(1,0.5,0), (0.5,1,0), (1.5,1,0.5), which yields )Pr( YXc ≤=  = 0.5, 0.667, 0.333 and 

)Pr(* ZXc ≤=  = 0.5 respectively. The rejection rule is determined by whether the 

standardized statistic falls outside the 95% confidence interval based on the standard normal 

distribution. 

Table 4.2 presents summary of the results including the means of the Jackknife variance 

estimator ( )/ˆ(Ave nV ), the true variance (the number in the parenthesis) and the size of the 

test. The Jackknife variance estimates slightly overestimate the true variance. Note that this 

kind of positive bias may be common for using the jackknife method, which has been 

explained by Theorem 4.1 of Efron (1982). The rejection rates of the three tests are close to 

the nominal 5% level.  
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Table 4.2. Empirical Size of the Proposed Tests (based on 500 runs) 

at nominal level 05.0=α  under different truncation proportions 

 

0=ρL  1=ρL  loginvL  

n  c / *c  
)/ˆ(Ave nV

(True) 
Size 

)/ˆ(Ave nV  

(True) 
Size 

)/ˆ(Ave nV  

(True) 
Size 

50 =c 0.5 
0.864 

(0.752) 
0.070

0.0517 
(0.0499) 

0.074
0.195 

(0.179) 
0.066

50 =c 0.67 
0.853 

(0.749) 
0.050

0.0646 
(0.0606) 

0.054
0.314 

(0.281) 
0.034

50 =c 0.33 
0.830 

(0.733) 
0.058

0.0433 
(0.0396) 

0.056
0.134 

(0.120) 
0.036

100 =c 0.5 
0.894 

(0.843) 
0.062

0.0483 
(0.0466) 

0.048
0.178 

(0.174) 
0.040

100 =c 0.67 
0.912 

(0.851) 
0.042

0.0609 
(0.0597) 

0.044
0.286 

(0.276) 
0.036

100 =c 0.33 
0.915 

(0.822) 
0.056

0.0388 
(0.0374) 

0.056
0.1225 
(0.115) 

0.044

100 5.0* =c  
0.614 

(0.549) 
0.044

0.0666 
(0.0625) 

0.050
0.185 

(0.1709) 
0.044

200 =c 0.5 
0.949 

(0.906) 
0.054

0.0459 
(0.0455) 

0.058
0.175 

(0.172) 
0.048

200 =c 0.67 
0.963 

(0.899) 
0.042

0.0592 
(0.0580) 

0.062
0.280 

(0.269) 
0.048

 
200 =c 0.33 

0.946 
(0.892) 

0.048
0.0374 

(0.0368) 
0.044

0.119 
(0.114) 0.044

200 5.0* =c  
0.647 

(0.592) 
0.052

0.0634 
(0.0610) 

0.060
0.177 

(0.168) 
0.054
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4.5.3 Empirical Power of the Tests 

To examine the power of the proposed weighted Log-rank statistics, we generate ),( YX  

from three semi-survival AC models, namely the Clayton, Frank and Gumbel models. Then 

we apply the conditional score tests, 0=ρL , 1=ρL  and loginvL  to the above all the three 

settings respectively. All the marginal distributions are exponentially distributed. Marginal 

hazards are fixed to be ),,( CYX λλλ =(1,1,0) and (1.5,1,0.5) which yield 5.0=c  and 

5.0* =c  respectively. Tables 4.3 and 4,4 show the empirical powers of the three tests based 

on 500 replications. Also two sample sizes =n 100 and 200 are evaluated. The power 

functions are also depicted in Figures 4.2 and 4.3.  

The tests based on 0=ρL  and 1=ρL  are uniformly more powerful under correct 

specification of Clayton and Frank model respectively. It indicates that the weight choice 

based on the score test yields high efficiency when the model assumption (I) is correctly 

specified. The large discrepancy between the powers of 0=ρL  and 1=ρL  can be explained by 

the obvious difference in the suggested weight functions for the Clayton and Frank models. 

Note that, under the Frank model, the performance in presence of censoring is deceptively 

better since we changed the parameter values for the marginal distributions are different.  

Table 5.5 shows the empirical powers under the semi-survival Gumbel model which only 

permits negative association. Five five selected levels of association are examined. In contrast 

to the Clayton and Frank models, the discrepancy amongr the power curves becomes less 

clear for n=100. Nevertheless loginvL  still performs slightly better than the other two tests for 

n=200. To explain why the power improvement is less obvious for the Gumbel case, we 

suspect that the problem is caused by the estimation of the nuisance parameter 

),(),( yxcyx πη =  which is used in )),(log(/1)),(( yxcyxw πη = . The extra variation due to 

ĉ  and ),(ˆ −yxπ  may bring extra variation especially for 100=n  which offset the correct 
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choice of the weighting form. In other simulations not provided here, we have seen that the 

test based on loginvL  clearly dominant the other two tests for both sample size n=100 and 200 

when the true weight function )),(log(/1 yxcπ  is used. 

 

Table 4.3: Empirical Power of *
0=ρL , 1=ρL  and loginvL  at level α  =0.05 

for the Clayton model (based on 500 runs) 

* denotes the score test when the alternative is correctly specified. 

n=100 n=200 

5.0=c ,cen%=0  5.0* =c ,cen%=33 5.0=c ,cen%=0  5.0* =c ,cen%=33 Tau 

*
0=ρL  1=ρL loginvL   

*
0=ρL 1=ρL loginvL *

0=ρL 1=ρL loginvL   
*

0=ρL  1=ρL loginvL

-0.25 0.976 0.944 0.962  0.930 0.844 0.858 1.000 0.996 0.998  0.998 0.990 0.994

-0.20 0.910 0.782 0.844  0.810 0.676 0.706 0.996 0.988 0.994  0.966 0.916 0.940

-0.15 0.710 0.560 0.630  0.562 0.450 0.472 0.942 0.876 0.916  0.838 0.736 0.790

-0.10 0.414 0.276 0.344  0.312 0.210 0.224 0.676 0.504 0.602  0.566 0.430 0.470

-0.05 0.176 0.116 0.118  0.140 0.098 0.096 0.284 0.184 0.212  0.218 0.154 0.172

0.05 0.176 0.146 0.136  0.128 0.108 0.098 0.290 0.226 0.252  0.192 0.160 0.168

0.10 0.484 0.348 0.398  0.344 0.260 0.266 0.860 0.654 0.804  0.656 0.520 0.600

0.15 0.904 0.696 0.822  0.702 0.516 0.564 0.998 0.968 0.998  0.980 0.872 0.946

0.20 0.998 0.910 0.976  0.938 0.768 0.850 1.000 0.996 1.000  1.000 0.972 0.998

0.25 1.000 0.982 1.000  0.944 0.944 0.984 1.000 1.000 1.000  1.000 0.994 0.996
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Figure 4.2: Power function under Clayton alternative 
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 Table 4.4: Empirical Power of 0=ρL , *
1=ρL  and loginvL  at level α  =0.05 

for the Frank model (based on 500 runs) 

* denotes the score test when the alternative is correctly specified. 
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n=100 n=200 

5.0=c ,cen%=0  5.0* =c ,cen%=33 5.0=c ,cen%=0  5.0* =c ,cen%=33 Tau 

0=ρL  *
1=ρL  loginvL   0=ρL  *

1=ρL loginvL 0=ρL *
1=ρL loginvL  0=ρL  *

1=ρL loginvL

-0.5 0.912 0.990 0.980  0.944 0.976 0.972 0.998 1.000 1.000  0.998 1.000 1.000

-0.4 0.670 0.808 0.788  0.700 0.818 0.790 0.904 0.988 0.982  0.942 0.982 0.982

-0.3 0.390 0.466 0.462  0.458 0.468 0.460 0.608 0.770 0.754  0.680 0.806 0.798

-0.2 0.184 0.192 0.180  0.204 0.212 0.204 0.296 0.376 0.336  0.328 0.416 0.396

-0.1 0.074 0.086 0.072  0.090 0.090 0.076 0.094 0.118 0.082  0.096 0.136 0.122

0.2 0.092 0.098 0.084  0.082 0.092 0.068 0.080 0.090 0.082  0.080 0.104 0.088

0.10 0.090 0.124 0.084  0.140 0.164 0.138 0.156 0.198 0.156  0.206 0.292 0.246

0.3 0.172 0.196 0.166  0.204 0.288 0.206 0.256 0.330 0.272  0.396 0.536 0.464

0.4 0.184 0.244 0.180  0.338 0.428 0.348 0.336 0.418 0.354  0.614 0.750 0.668

0.5 0.216 0.274 0.206  0.494 0.576 0.492 0.416 0.528 0.454  0.774 0.900 0.800
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Figure 4.3: Power function under Frank alternative 

 

Table 4.5 Empirical powers of 0=ρL , 1=ρL  and loginvL  at level α  =0.05 

for the Gumbel model ( based on 500 runs). 

* denotes the conditional score test under the alternative. 

 

n=100 n=200 

5.0=c ,cen%=0  5.0* =c ,cen%=33 5.0=c ,cen%=0  5.0* =c ,cen%=33Tau 

0=ρL  1=ρL *
lognvL   0=ρL *

1=ρL loginvL 0=ρL *
1=ρL *

lognvL   0=ρL  *
lognvL *

lognvL

-0.5 0.930 0.928 0.934  0.908 0.900 0.914 0.998 0.996 1.000  0.994 0.988 0.998

-0.4 0.692 0.698 0.708  0.656 0.668 0.644 0.932 0.940 0.946  0.894 0.936 0.940

-0.3 0.352 0.336 0.334  0.346 0.320 0.318 0.630 0.658 0.671  0.612 0.612 0.620

-0.2 0.182 0.160 0.162  0.144 0.158 0.150 0.290 0.282 0.306  0.296 0.300 0.302

-0.1 0.066 0.060 0.060  0.098 0.078 0.076 0.100 0.084 0.096  0.102 0.080 0.088
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Figure 4.4: Power function under Gumbel alternative 
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4.6. Data Analysis 

We applied the proposed tests to the contaminated blood transfusion AIDS dataset 

provided in Lagakos et al. (1988). The variables included the infection times T  measured 

from April 1, 1978, and the induction period X  measured from their infection times. The 

sample contained 258 adults and 37 children. Only those who developed AIDS within the 8 

years study period can be included in the sample, and thus 8≤+ TX  is the truncation 

criteria. We set the new variable TY −= 8  so that the pair ),( YX  is observed subject to 

YX ≤ . Lagakos et al. (1988) applied the product-limit estimator for the survival function of 

X  under the quasi-independence of ),( YX  for adults and children groups separately. Now 

we examine the validity of this assumption. 

Applying the proposed Log-rank tests for the adult group, we found that the Z-values of 

the test statistics 0=ρL , 1=ρL  and loginvL , standardized by the jackknife estimators, were 

-5.012, -2.918 and -3.795 respectively. The negative sign of the Z-values indicates the 

positive association for ),( YX . The corresponding two-sided p-values of the three test 

statistics were 5.4 710−× , 3.5 310−× and 1.5 410−×  respectively. All p-values in the adult group 

showed significant deviation from quasi-independence, but the test based on 0=ρL  produced 

the smallest p-value. 

For the children group, the Z-values of the test statistics 0=ρL , 1=ρL  and loginvL , after 

standardized by the jackknife estimator, were -1.838, -1.379 and -1.373 respectively. The 

positive association on ),( YX  can be found in the children group as well. The p-values for 

the two sided alternative were 0.0661, 0.1679 and 0.1697 respectively. The smallest p-value 

was also achieved by the 0=ρL  statistics, showing 10% significance level. In this case, the 

other statistics 1=ρL  and loginvL  could not reveal significant departure form 

quasi-independence. 
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In both groups, the significance level from 1=ρL  is the highest and that from 1=ρL  , 

which is equivalent to Tsai’s test statistics, was the lowest. One possible explanation of this 

result is that the data is better approximated by the Clayton semi-survival model than the 

Frank model. As we have seen in the simulation studies, the statistics 0=ρL  has the highest 

efficiency while the statistics 1=ρL  is the worst under the Clayton model. This data analysis 

also indicates that choosing an appropriate weight function is essential for power 

improvement especially when the sample size is small. 

  

4.7. Conclusion 

In the second project, we have proposed a general class of tests in the form of the 

weighted Log-rank statistics for testing quasi-independence for truncation data. Tsai’s test 

(1990) turns out to be a special case of our proposal.  

We also utilize the distributional property of the 22×  tables in constructing the 

proposed score test. Our results show that the score test belongs to the proposed class of 

weighted Log-rank tests with an appropriate choice of the weight function. Our simulations 

confirm that the score test yields a more powerful testing procedure if the pattern of 

dependence under the alternative hypothesis is correctly specified. It is important to note that 

optimal properties of the score test cannot be derived by applying the results for parametric 

models or the efficiency theory under a semi-parametric framework (Van Der Vaart, 1998, 

Chapter 25). The difficulty comes from the fact that each term in the product of the likelihood 

function (4.9) is neither the conditional likelihood nor partial likelihood since the probabilities 

are calculated conditional on an un-nested sequence of conditioning events. Further 

theoretical investigation on the likelihood formulation would be helpful.  

For establishing the asymptotic normality, we have applied the functional delta method 
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which can handle more general situations than the U-statistics or rank statistics approaches. 

Furthermore, the expression of the proposed statistics in the statistically differentiable 

functional allows us to verify the consistency of the jackknife estimator. These theoretical 

justifications allow us to safely use a computationally simpler way for finding the cut-off 

values.  

Another important and practical problem is how to choose the best weight in real data 

analysis where the association pattern on ),( YX  is unknown in a nonparametric setting. 

Now we discuss the possible approaches based on the literature of survival analysis. A 

common, but somewhat ad-hoc way of choosing weight function is to rely on the researchers’ 

own experience, or their knowledge on the association structure. Another more elaborate 

approach is to use a combination of several weighed Log-rank statistics (Tarone, 1981; 

Chapter 7 of Fleming & Harrington, 1991 and Kosorok & Lin, 1999). Such an approach is 

considered to be a robust test (Kosorok & Lin, 1999) in that one may avoid using the worst 

weight choice in data analysis. To implement this methodology, the joint distribution for 

several weighted Log-rank statistics must be derived in some sense, and it would be our future 

problem for investigation.    
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Appendices : Project 2 

Appendix 4.A. Asymptotic Analysis 

Let }),0{[ 2∞D  be the collection of all right-continuous functions with left-side limit 

defined on 2),0[ ∞ , whose norm is defined by |),(|sup),( , yxfyxf yx=
∞

 for 

}),0{[ 2∞∈Df . We assume that the function cySxFyx YX /)()(),( =π  is absolutely 

continuous. The empirical process on the plane is defined as: 

∑
=

>≤=
n

j
jj yYxXI

n
yx

1
),(1),(π̂ . 

The functional delta method is applied based on the weak convergence result of 

)),(),(ˆ(2/1 yxyxn ππ −  to a Gaussian process ),( yxV  on }),0{[ 2∞D  with the covariance 

structure given by 

),(),(),()},(),,(cov{ 221121212211 yxyxyyxxyxVyxV πππ −∨∧= , 

for any ),( 11 yx , 2
22 ),0[),( ∞∈yx . 

 

Part I: Proof of Theorem 4.1 

After some algebraic manipulations involving (6), we obtain  
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Here, the last equation follows from the relation ijjiji YYXX Δ−=−− 21)})(sgn{(  and the 

symmetry of each term between index ),( ji  and ),( ij . Using the property that 

},...,1{ somefor 
otherwise

,
0
/1

),(ˆ
niyYxXn

yxd ii ∈

⎩
⎨
⎧ ==−

=π , 
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the above expression can be written as 

),ˆ(

),(ˆ),(ˆ)})(sgn{(
),(ˆ
)},(ˆ{
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n
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yyxxw  

where the definition of the functional R→∞⋅Φ }),0{[:)( 2D  is 
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Letting an argument π  be )|,Pr(),( YXyYxXyx ≤>≤=π , the above integral can be 

interpreted as the expectation, and we have 0)( =Φ π : 
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By direct calculations, we can show the Hadamard differentiability of )(⋅Φ . The differential 

map of )(⋅Φ  at }),0{[ 2∞∈Dπ  with direction }),0{[ 2∞∈Dh  is: 
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By applying the functional delta method (Van Der Vaart, 1998, p. 297), we obtain the 

following asymptotic linear expression 
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where ),(),(),( yYxXIyx jjYX jj
>≤=δ . It is easy to see that the sequences, 
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)(),( ),( πδπ −Φ′≡
jj YXjj YXU  for nj ,,1…= , 

are iid random variables with mean-zero. From the central limit theorem, wLn 2/1−  converges 

weakly to a mean-zero normal distribution with the variance ]),([ 22
jj YXUE=σ . 

 

Part II: Analytic Variance Estimator for the ρG  Class 

The statistics in the ρG  class are special cases of wL . For this class, it is relatively 

easier to obtain an analytic formula for estimating 2σ  based on asymptotic linear 

expressions. Specifically, the derivative map is given by 
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The asymptotic expression ∑
=

−Φ′
n

j
YX jj

1
),( )( πδπ  can be estimated by ∑ −Φ′

j YX jj
)ˆ( ),(ˆ πδπ , 

where 

{ }

{ }

.)~,()})(sgn{()~,(ˆ}{1

)1(
)})(sgn{()~,(ˆ}{1

),(ˆ),(ˆ),(

)})(sgn{(),(ˆ

),(ˆ),(ˆ)})(sgn{(),(ˆ),(

),(ˆ2/)1(

)ˆ(

2
2

1

**

**1**

********

2**

),(ˆ

**

**

∑

∑

∫∫∫∫

∫∫ ∫∫

<

−

−

∧≤∨

−

∧≤∨

−

≥≤−−−
−

+

+
+−−−=

+==×

−−−∧∨−

−−−∧∨−∧≥∨≤×

−∧∨−=

−Φ′

lk
kljkljlklkklklkl

k
kjkjjkjkjk

jj

yyxx

jj

yyxx

YX

YYXXIYYXXYXAI
n

n
L

YYXXYXAI
n

yxdyxdyYxXI

yyxxyyxx

yxdyxdyyxxyyxxyyYxxXI

yyxx
jj

��

�

ρ

ρρ

ρ

ρ

π

πρ

ρ
π

ππ

π

πππ

πρ

πδ

 

Based on the above expression, we can estimate 2)( σρ nLAVar =  by the following 

empirical estimator: 
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Part III: Proof of Theorem 2 

*
wL  involves the estimator of the truncation probability c . From the result of He and 

Yang (1998), ĉ  has an algebraically equivalent expression 

∫
∞

=
0

)(ˆ)(ˆˆ uFduSc XY . 

The product limit estimators (Lynden-Bell, 1971; Wang, Jewell & Tsai , 1986) for ),( YX  

are defined as: 
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Define )ˆ(ˆ πgc =  and we will show that the map cg ˆˆ: 6π  is the composition of two 

Hadamard differentiable maps: 

∫
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)(ˆ)(ˆ))(ˆ),(ˆ(),(ˆ uFduSySxFyx XYYX 66π .         (A.1) 

It is well-known for right-censored data that the product limit estimator is Hadamard 

differentiable function of the empirical process. For truncation data, we apply the arguments 

of example 20.15 of Van Der Vaart (1998) to show the Hadamard differentiability of maps 

from }),0{[ 2∞D  to )},0{[ ∞D : 

)(ˆ),(ˆ tFyx X6π , )(ˆ),(ˆ tSyx Y6π . 

To prove the former statement, we decompose the map into three differentiable maps 
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where the Hadamard differentiability of the second map follows from Lemma 20.10 of Van 

Der Vaart (1998) and the last map follows from the Hadamard differentiability of product 

integral (Andersen et al., 1993, proposition II.8.7). The Hadamard differentiability of the map 

)(ˆ),(ˆ tSyx Y6π  can be established by the same arguments. The Hadamard differentiability 

of the second map in (A.1) can be found in Lemma 20.10 of Van Der Vaart (1998).Using 

chain rules (Van Der Vaart, 1998, theorem 20.9), the map g  is shown to be Hadamard 

differentiable. Let R∈′ )(hgπ  be the differential map of g  at }),0{[ 2∞∈Dπ  with 

direction }),0{[ 2∞∈Dh  such that  
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The statistics *
wL  can be expressed as 
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Applying similar arguments in Section A.1, we can show 0)( =Ψ π . Now we show the 

Hadamard differentiability of the map R→∞⋅Ψ }),0{[:)( 2D . From the Hadamard 

differentiability of )(⋅g , 

|)(|)()()( totggthg +′+=+ πππ π , 0→t , 

uniformly in h  in compact subsets of }),0{[ 2∞D . This leads to the following Taylor 

expansion 
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A little calculus shows the derivative map of )(⋅Ψ  at }),0{[ 2∞∈Dπ  with direction 

}),0{[ 2∞∈Dh : 
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By applying the functional delta method, we obtain the following asymptotic linear 

expression: 
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where the sequences, 

)(),( ),(
* ππ −Ψ′≡

jj YXjj hYXU  ),,1( nj …= , 

are mean-zero i.i.d. random variables. From the central limit theorem, *2/1
wLn−  converges 

weakly to a mean-zero normal distribution with the variance *2σ . 

 

Part IV: Consistency of the Jackknife Estimator 

Now we show the consistency of the jackknife estimator for wL . We have shown that 

statistics of the form wL  have asymptotic normal distributions with finite variances. 

According to the Theorem 3.1 of Shao (1993), we need to show the continuous Gateaux 

differentiability of )(πΦ  at }),0{[ 2∞∈Dπ . Note that the Hadamard differentiability is 

stronger than the Gateaux differentiability, and hence the Gateaux derivative map is already 

available from Section A1. We only need to show the continuous requirement of the 

derivative map. For sequence }),0{[ 2∞∈Dkπ  satisfying 0→−
∞

ππ k  and 0→kt , we 
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need to show 
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where ),(),(, yyuxIyxvu >≤=δ  and |)(| kto  is uniform in ),( vu . The present method for 

proving the continuous Gateaux differentiability is essentially the same manner as the 

example 2.6 in Shao (1993). The continuous differentiability of )(⋅w  and the assumption 
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ππ k  ensure the following expansion 
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uniformly in ),( vu . Hence a straightforward but tedious calculation shows that 
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Under the assumption that 0→−
∞

ππ k , it can be seen that kk CB ,  and kD  have order 

)1(o . 

To show the consistency of the jackknife estimator for *
wL , we only need to check whether 

the continuity of the Gateaux differential map of )(πΨ  which is available in Section A.3. 

We can obtain the continuity requirement after tedious algebraic operations similar to the 

above arguments in A4. 

 

Part V: Asymptotic Analysis in Presence of Censoring 

Based on the product integral form of the Lynden-Bell’s estimator )(ˆ ySC , we obtain 

the expression 
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A little algebra shows that the event ijB  can be written as 

)~~(}{ ijijijij CYXIBI <≤=
�

.                   (A.3) 

From equation (?), (A-1) and (A-2), we obtain the following functional expression: 
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Here, the last equation follows from the property 
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Based on the similar arguments with Section A3, we can express the estimator *ĉ  as a 

function of Ĥ  such that )ˆ(ˆ ** Hgc = . The similar algebraic operation can be applied to 

obtain the functional expression for *
wL . 

 

Appendix 4.B: Proof of Equivalence Formula 

For right censored data, we show the identity: 
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As a special case of ∞=iC , we can show that the above formula reduces to: 
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Specifically, let ijijij WZXW ~)~,( =
�

 and ijijij RZXR ~)~,( =
�
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The identity 1=Δ ij  holds for a pair ),( ji  with jiij ZZXX << , . It follows that 
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Similar algebraic manipulation shows that 
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Combining these formulae, we obtain 
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For a pair ),( ji  with ij XX < , the following equation holds: 
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The last equation follows from the permutation symmetry of each term with respect to 

arguments ),( ji . 
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Chapter 5 Future Work 

In Chapter 3, we consider semi-parametric inference for semi-survival AC models and 

propose a likelihood-based approach for estimating the association parameter. A nice 

equivalent condition for different types of estimating functions is established. Similar idea is 

used again to construct a score test. Despite that we have seen efficiency gain or power 

improvement by choosing an appropriate weight function, optimality results are still not 

available. As mentioned earlier, each term in the product of the likelihood function is neither 

the conditional likelihood nor the partial likelihood since the probabilities are calculated 

conditional on an un-nested sequence of conditioning events. Further investigation is needed 

to elucidate the proposed likelihood, and it is hoped that we develop more understanding for 

the theoretical properties of the proposed methods.  

For establishing the asymptotic normality, the functional delta method is applied for two 

problems. For the Log-rank statistics in Chapter 4, its expression has been shown to be a 

statistically differentiable functional that allows us to verify the consistency of the jackknife 

estimator. This theoretical justification allows us to safely use a computationally simple way 

for determining the decision rule of the testing procedure. Theoretical property of the 

jackknife estimator is only proven for the simple case of the Log-rank statistics with no 

censoring. For other complicated cases, the jackknife method is still a useful tool even though 

it may lack theoretical justification. Nevertheless finding a tractable and theoretically valid 

way of constructing confidence intervals or bands still deserves further investigation. 
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