A class of generalized ridge estimator for high-dimensional linear regression

Advisor: Takeshi Emura Presenter: Szu-Peng Yang

June 23, 2014 Graduate Institute of Statistics, NCU

Outline

- Introduction
- Methodology
- Numerical analysis
- Conclusion

Introduction

Introduction

- Methodology
- Numerical analysis

• Conclusion

Background

• Model

$$\mathbf{y}_{n\times 1} = X_{n\times p} \boldsymbol{\beta}_{p\times 1} + \boldsymbol{\varepsilon}_{n\times 1}, \quad \boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 I)$$

• Least square estimator (LSE)

$$\hat{\boldsymbol{\beta}} = (X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}\mathbf{y}$$

- Advantage: unbiasedness, minimum variance
- Disadvantage: high-dimensionality (*p* > *n*)
 Performance in terms of MSE?

Background – High-dimensionality

• Microarray data

Ridge regression

• Ridge estimator – Hoerl and Kennard (1970)

$$\hat{\boldsymbol{\beta}}(\lambda) = (X^{\mathrm{T}}X + \lambda I)^{-1}X^{\mathrm{T}}\mathbf{y}, \quad \lambda > 0.$$

Shrinkage parameter

Ridge regression

Theorem 1 (Existence Theorem, Hoerl and Kennard, 1970)

There always exists a $\lambda > 0$ such that $MSE\{\hat{\beta}(\lambda)\} < MSE(\hat{\beta})$.

Figure 1 The plot of the MSE of the ridge estimator.

Ridge regression

- Is the ridge estimator adapt to p > n case ?
 - Whittaker, Thompson and Denham (2000)
 - Zhao, Rødland and Sørlie, et al. (2011)
 - Cule, Vieis and De Iorio (2011)

SNP data, Significance testing

Generalized ridge regression

• Generalized ridge estimator – Hoerl and Kennard (1970)

$$\hat{\boldsymbol{\beta}}(W) = (X^{\mathrm{T}}X + W)^{-1}X^{\mathrm{T}}\mathbf{y},$$

- W is a diagonal matrix.
 - Allen (1974)
 - McLachlan (1980)
 - Loesgen (1990)

Generalized ridge regression

• Benefit

- 1. different weights for different regressors
- 2. Performance in terms of MSE

(McLachlan, 1980)

• Problem:

No application in p > n case.

Methodology

• Introduction

- Methodology
- Numerical analysis

• Conclusion

Baysian interpretation

Good Bayesian interpretation (Loesgen, 1990):

• Prior $\boldsymbol{\beta} \sim N_p(\boldsymbol{0}, \sigma^2 W^{-1})$

•
$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \ \boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 I)$$

→ Bayes estimator (posterior mean) $E[\beta | X, \mathbf{y}] = (X^T X + W)^{-1} X^T \mathbf{y}$

Baysian interpretation

- $\boldsymbol{\beta} = (\beta_1, ..., \beta_p)^{\mathrm{T}}, \beta_1, ..., \beta_p \text{ are independent}$
 - → $\sigma^2 W^{-1}$ is a diagonal matrix and $W = diag(w_1, ..., w_p)$.

- $W^{-1} \propto \sigma^2 W^{-1}$ (precision of prior)
 - → Precision of prior knowledge $(\beta_j = 0) \propto w_j^{-1}$

Baysian interpretation

• How to choose shrinkage parameters ?

1. More likely $\beta_j = 0 \rightarrow w_j^{-1}$ small $\rightarrow w_j$ large

2. More likely $\beta_j \neq 0 \rightarrow w_j^{-1}$ large $\rightarrow w_j$ small

Proposed method – Idea

• Define
$$W = diag(w_1, ..., w_p)$$
,

$$w_{j} = \begin{cases} \lambda \gamma & \text{if } \beta_{j} \neq 0 \\ \lambda & \text{if } \beta_{j} = 0 \end{cases}, \ \gamma \in [0, 1], \ \lambda > 0, \quad j = 1, ..., p.$$

Problem: $\beta_1, ..., \beta_p$ unknown

 \rightarrow estimate *w* from data.

Proposed method – Estimator

• Initial estimate $\hat{\boldsymbol{\beta}}^0 = (\hat{\beta}_1^0, ..., \hat{\beta}_p^0)^T$,

$$\hat{\beta}_{j}^{0} = \frac{\mathbf{X}_{j}^{\mathrm{T}} \mathbf{y}}{\mathbf{X}_{j}^{\mathrm{T}} \mathbf{X}_{j}}$$
 for $j = 1, ..., p$

where x_j , for j = 1, ..., p, are the columns of *X*.

•
$$\overline{\beta}^{0} = \sum_{j=1}^{p} \hat{\beta}_{j}^{0} / p$$

•
$$se(\hat{\beta}^0) = \sqrt{\sum_{j=1}^p (\hat{\beta}_j^0 - \overline{\beta}^0)^2 / (p-1)}$$

• Under the sparse model ($\beta \approx 0$),

$$\hat{\boldsymbol{\beta}}_{j}^{0} / se(\hat{\boldsymbol{\beta}}^{0}) \stackrel{\sim}{\sim} N(0,1)$$

Proposed method – Estimator

• Proposed estimator

$$\hat{\boldsymbol{\beta}}(\lambda, \Delta) = \{ X^{\mathrm{T}}X + \lambda \hat{W}(\Delta) \}^{-1} X^{\mathrm{T}} \mathbf{y}, \quad \Delta \ge 0,$$

where $\hat{W}(\Delta) = diag\{\hat{w}_1(\Delta), ..., \hat{w}_p(\Delta)\}$ and

$$\hat{w}_{j}(\Delta) = \begin{cases} 1/2 & \text{if } |\hat{\beta}_{j}^{0}| / se(\hat{\beta}^{0}) \ge \Delta, \\ 1 & \text{otherwise,} \end{cases}$$
for $j = 1, ..., p$.
Thresholding parameter

Proposed method – Parameters estimation

• Allen's PRESS (1974)

generalized cross-validation (GCV) (Golub, Heath and Wahba, 1979)

• Minimizer of GCV

•
$$\hat{\beta}_j^0 / se(\hat{\beta}^0) \approx N(0,1)$$
 \rightarrow Choose $\hat{\Delta}$ among $D = \{0, 3/100, ..., 300/100\}$

Table 1 Formula of GCV function

Ridge estimator	$V(\lambda) = \frac{1}{n} \ \{ I - A(\lambda) \} \mathbf{y} \ ^{2} / \left[\frac{1}{n} \operatorname{Tr} \{ I - A(\lambda) \} \right]^{2}$ $A(\lambda) = X(X^{\mathrm{T}}X + \lambda I)^{-1} X^{\mathrm{T}}$
Proposed estimator	$V(\lambda, \Delta) = \frac{1}{n} \ \{I - A(\lambda, \Delta)\}\mathbf{y}\ ^2 / \left[\frac{1}{n} \operatorname{Tr}\{I - A(\lambda, \Delta)\}\right]^2$ $A(\lambda, \Delta) = X\{X^{\mathrm{T}}X + \lambda \hat{W}(\Delta)\}^{-1} X^{\mathrm{T}}$

Introduction

MSE comparison

Mean square error matrix

- Trenkler (1985)
- Loesgen (1990)

$$MSEM(\hat{\beta}) = E\{(\hat{\beta} - \beta)(\hat{\beta} - \beta)^{T}\}$$
$$= C + dd^{T}$$
$$C = Cov(\hat{\beta})$$
$$= E\{\hat{\beta} - E(\hat{\beta})\}\{\hat{\beta} - E(\hat{\beta})\}^{T}$$
$$d = Bias(\hat{\beta}) = E(\hat{\beta}) - \beta$$

MSE comparison

Lemma 1 (Trenkler, 1985)

- Suppose *A* is a symmetric $n \times n$ matrix, **a** is an $n \times 1$ vector and γ is a positive real number. Then $\gamma A - \mathbf{a}\mathbf{a}^{\mathrm{T}}$ is n.n.d. if and only if
 - 1) A is n.n.d. 2) $\mathbf{a} = A\mathbf{v}$ for some $\mathbf{v} \in R^p$ 3) $\mathbf{a}^{\mathrm{T}}A^{\mathrm{T}}\mathbf{a} \leq \gamma$

where A^- is the generalized inverse of A.

Note: the diagonals of a nonnegative definite (n.n.d.) matrix are nonnegative.

MSE comparison

•
$$\hat{\boldsymbol{\beta}}_i = (X^T X + W_i)^{-1} X^T \mathbf{y} \text{ for } i = 1, 2.$$

•
$$MSEM(\hat{\boldsymbol{\beta}}_1) - MSEM(\hat{\boldsymbol{\beta}}_2) = (C_1 + \mathbf{d}_1\mathbf{d}_1^T) - (C_2 + \mathbf{d}_2\mathbf{d}_2^T)$$

Theorem 2

 $MSEM(\hat{\beta}_1) - MSEM(\hat{\beta}_2)$ is n.n.d. if all the three conditions hold:

1)
$$(C_1 - C_2) / \sigma^2$$
 is .n.n.d.
2) $C_1 - C_2 + \mathbf{d}_1 \mathbf{d}_1^T$ is full rank
3) $\mathbf{d}_2^T (C_1 - C_2 + \mathbf{d}_1 \mathbf{d}_1^T)^{-1} \mathbf{d}_2 \le 1$

MSE comparison – Example

$$\beta = (\beta_{1}, 0)^{T}, \quad \beta_{1} \neq 0$$

$$W_{1} = I = diag(1, 1)$$

$$W_{2} = diag(2.5\gamma, 2.5), \quad 0 < \gamma < 1$$

$$X^{T}X = I \quad \text{(For simplicity)}$$

$$(C_{1} - C_{2}) / \sigma^{2} = diag(\frac{1}{4} - \frac{1}{(1+2.5\gamma)^{2}}, \frac{33}{196})$$

$$C_{1} - C_{2} + \mathbf{d}_{1}\mathbf{d}_{1}^{T} = diag(\frac{\sigma^{2}\{(1+2.5\gamma)^{2}-4\}+(1+2.5\gamma)^{2}\beta_{1}^{2}}{4(1+2.5\gamma)^{2}}, \frac{33}{196})$$

$$\mathbf{d}_{2}^{T}(C_{1} - C_{2} + \mathbf{d}_{1}\mathbf{d}_{1}^{T})^{-1}\mathbf{d}_{2} = \frac{25\gamma^{2}\beta_{1}^{2}}{\sigma^{2}\{(1+2.5\gamma)^{2}-4\}+(1+2.5\gamma)^{2}\beta_{1}^{2}}}$$
Figure 2 The plot of $\mathbf{d}_{2}^{1}(C_{1} - C_{2} + \mathbf{d}_{1}\mathbf{d}_{1}^{T})^{-1}\mathbf{d}_{2}$

Result:

$$|\beta_1|$$
 not too large, $\gamma \ge 2/5 \rightarrow MSEM(\hat{\beta}_1) - MSEM(\hat{\beta}_2)$ n.n.d.
 $\rightarrow MSE(\hat{\beta}_1) \ge MSE(\hat{\beta}_2)$

2

1

Significance testing (Cule, Vineis and De Iorio, 2011)

Hypothesis

$$H_{0j}: \beta_j = 0$$
 v.s. $H_{1j}: \beta_j \neq 0$, $j = 1, ..., p$

• Wald test statistics

$$Z_{j} = \frac{\hat{\beta}_{j}(\hat{\lambda}, \hat{\Delta})}{se\{\hat{\beta}_{j}(\hat{\lambda}, \hat{\Delta})\}} \stackrel{H_{0j}}{\stackrel{\leftarrow}{\star}} N(0, 1), \quad j = 1, ..., p$$

Two-sided P-value

$$P_{j} = \Pr(Z > |Z_{j}| \text{ or } Z < -|Z_{j}|) = 2 \times \Pr(Z > |Z_{j}|)$$

Numerical analysis

• Introduction

- Methodology
- Numerical analysis

• Conclusion

Simulation – Model setting

- Sparse model
 - Emura, Chen and Chen (2012)
 - Ing and Lai (2011)
 - Binder, et al. (2009)

•
$$\mathbf{y} = X\mathbf{\beta} + \mathbf{\epsilon}, \ \mathbf{\epsilon} \sim N_n(\mathbf{0}, I)$$

• $\mathbf{\beta} = (\overbrace{b/q, ..., b/q}^q, \overbrace{d/r, ..., d/r}^r, \overbrace{0, ..., 0}^{p-(q+r)})^T$
 $Corr = 0.5 \quad Corr = 0.5$

Correlated regressors

Numerical analysis

Simulation – Model setting

• $n = 100, p \in \{50, 100, 150, 200\}, q = r = 10$

• Case I b = d = 5

Case II
$$b = d = 10$$

- Case III b = 5, d = -5
- Case IV b = 10, d = -10

Simulation – MSE comparison

•
$$MSE(\hat{\boldsymbol{\beta}}(\lambda)) = E\{(\hat{\boldsymbol{\beta}}(\lambda) - \boldsymbol{\beta})^{\mathrm{T}}(\hat{\boldsymbol{\beta}}(\lambda) - \boldsymbol{\beta})\}$$

• $MSE(\hat{\boldsymbol{\beta}}(\lambda, \Delta^*)) = E\{(\hat{\boldsymbol{\beta}}(\lambda, \Delta^*) - \boldsymbol{\beta})^{\mathrm{T}}(\hat{\boldsymbol{\beta}}(\lambda, \Delta^*) - \boldsymbol{\beta})\}$

Figure 2 The plot of the MSE curve with b=d=5.

Simulation – MSE comparison

•
$$MSE(\hat{\boldsymbol{\beta}}(\hat{\boldsymbol{\lambda}})) = E\{(\hat{\boldsymbol{\beta}}(\hat{\boldsymbol{\lambda}}) - \boldsymbol{\beta})^{\mathrm{T}}(\hat{\boldsymbol{\beta}}(\hat{\boldsymbol{\lambda}}) - \boldsymbol{\beta})\}$$

- $MSE(\hat{\boldsymbol{\beta}}(\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\Delta}})) = E\{(\hat{\boldsymbol{\beta}}(\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\Delta}}) \boldsymbol{\beta})^{\mathrm{T}}(\hat{\boldsymbol{\beta}}(\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\Delta}}) \boldsymbol{\beta})\}$
- $MSE(\hat{\beta}_{j}) = E(\hat{\beta}_{j} \beta_{j})^{2}, \quad j = 1, ..., p$

Table 2 Simulation results based on 500 replicates with b=d=5.

setting	estimate	$E(\hat{\lambda})$	$E(\hat{\Delta})$	$MSE(\hat{eta}_1)$	$MSE(\hat{eta}_p)$	$MSE(\hat{\boldsymbol{\beta}})$
n - 50	Ridge	23.2051		0.0112	0.0077	0.4663
p = 30	Proposed	47.3432	0.9257	0.0107	0.0048	0.3763
n - 100	Ridge	23.8657		0.0080	0.0086	1.0228
p = 100	Proposed	46.9601	1.3195	0.0086	0.0058	0.7191
n - 150	Ridge	20.4585		0.0118	0.0065	1.2909
p = 150	Proposed	43.8348	1.5310	0.0171	0.0037	0.7822
<i>p</i> = 200	Ridge	10.6090		0.0036	0.0046	1.4137
	Proposed	30.8835	1.5098	0.0043	0.0027	0.8364

• Hypothesis

$$H_{0,50}: \beta_{50} = 0$$
 v.s. $H_{1,50}: \beta_{50} \neq 0$

Note: $\beta_{50} = 0$, $H_{0,50}$ is true

• Wald test statistic

$$Z_{50} = \frac{\hat{\beta}_{50}(\hat{\lambda}, \hat{\Delta})}{se\{\hat{\beta}_{50}(\hat{\lambda}, \hat{\Delta})\}} \stackrel{H_{0,50}}{\stackrel{\leftarrow}{\star}} N(0,1)$$

Type I error

$$\frac{\sum_{s=1}^{500} \mathbf{I}(|Z_{50}^{(s)}| > Z_{\alpha/2})}{500}$$

 $Z_{\alpha/2} \equiv$ the upper $\alpha/2$ percent point of N(0,1)

•
$$\alpha = 0.05$$

Table 3 Simulation results for significance testing based on 500 replicates with b=d=5.

	$E(\hat{eta}_{50})$	$sd(\hat{eta}_{50})$	$E(Z_{50})$	$sd(Z_{50})$	Type I error
<i>p</i> = 50	-0.0027	0.0691	-0.0424	0.9683	0.042
p = 100	-0.0075	0.0660	-0.1137	0.9412	0.028
<i>p</i> =150	-0.0222	0.0549	-0.3889	0.8860	0.046
<i>p</i> = 200	0.0332	0.0515	0.5549	0.8414	0.048

Note:

1.
$$E(\hat{\beta}_{50}) = \overline{\hat{\beta}}_{50} = \sum_{s=1}^{500} \hat{\beta}_{50}^{(s)} / 500$$

2.
$$sd(\hat{\beta}_{50}) = \sqrt{\sum_{s=1}^{500} (\hat{\beta}_{50}^{(s)} - \overline{\hat{\beta}}_{50})^2 / 499}$$

3.
$$E(Z_{50}) = \overline{\hat{Z}}_{50} = \sum_{s=1}^{500} Z_{50}^{(s)} / 500$$

4.
$$sd(Z_{50}) = \sqrt{\sum_{s=1}^{500} (Z_{50}^{(s)} - \overline{\hat{Z}}_{50})^2 / 499}$$

• Hypothesis

$$H_{0,1}: \beta_1 = 0$$
 v.s. $H_{1,1}: \beta_1 \neq 0$

Note: $\beta_1 \neq 0$, $H_{1,1}$ is true

• Wald test statistic

$$Z_{1} = \frac{\hat{\beta}_{1}(\hat{\lambda}, \hat{\Delta})}{se\{\hat{\beta}_{1}(\hat{\lambda}, \hat{\Delta})\}} \stackrel{H_{0,1}}{\stackrel{\sim}{\leftarrow}} N(0, 1)$$

• Power

$$\frac{\sum_{s=1}^{500} \mathbf{I}(|Z_1^{(s)}| > Z_{\alpha/2})}{500}$$

 $Z_{\alpha/2} \equiv$ the upper $\alpha/2$ percent point of N(0,1)

•
$$\alpha = 0.05$$

	<u> </u>	÷	-	· · · · · · · · · · · · · · · · · · ·	
	$E(\hat{eta}_1)$	$sd(\hat{eta}_1)$	$E(Z_1)$	$sd(Z_1)$	Power
<i>p</i> = 50	0.4647	0.0973	4.9996	1.0090	0.998
<i>p</i> = 100	0.5135	0.0918	5.9685	0.9981	0.998
<i>p</i> =150	0.4111	0.0958	5.6371	0.9409	1
<i>p</i> = 200	0.4998	0.0657	6.5303	0.9281	1

Table 4 Simulation results for significance testing based on 500 replicates with b=d=5.

Note:

1.
$$E(\hat{\beta}_1) = \overline{\hat{\beta}_1} = \sum_{s=1}^{500} \hat{\beta}_1^{(s)} / 500$$

2.
$$sd(\hat{\beta}_1) = \sqrt{\sum_{s=1}^{500} (\hat{\beta}_1^{(s)} - \overline{\hat{\beta}}_1)^2 / 499}$$

3.
$$E(Z_1) = \overline{\hat{Z}_1} = \sum_{s=1}^{500} Z_1^{(s)} / 500$$

4.
$$sd(Z_1) = \sqrt{\sum_{s=1}^{500} (Z_1^{(s)} - \overline{\hat{Z}_1})^2 / 499}$$

Numerical analysis

NSCLC data

NSCLC data – 4-fold cross validation

•
$$\mathbf{x}_i \equiv i$$
th row of X

• $\hat{\boldsymbol{\beta}}^{(-k)} \equiv \text{estimator based on all the data not in } \mathfrak{I}_k$

• Prediction error
$$PE = \frac{1}{124} \sum_{k=1}^{4} \sum_{i \in \mathfrak{I}_k} (y_i - \mathbf{x}_i^{\mathrm{T}} \hat{\boldsymbol{\beta}}^{(-k)})^2$$

NSCLC data – 4-fold cross validation

Table 5 *PE* comparison of the ridge regression and the proposed method over 100 random cross validation.

No. of replicate	$\hat{\lambda}^{ridge}$	$\hat{\lambda}^{proposed}$	$\hat{\Delta}^{proposed}$	$PE^{\it ridge}$	$PE^{proposed}$
1	294.401	410.763	1.448	0.502	0.454
2	258.612	349.376	1.418	0.703	0.753
3	315.201	431.229	1.598	0.481	0.441
4	310.829	419.522	1.598	0.495	0.452
5	306.745	418.203	1.545	0.471	0.441
6	325.630	447.352	1.538	0.518	0.472
7	312.526	442.847	1.500	0.474	0.433
8	323.645	435.895	1.523	0.476	0.438
9	307.684	423.964	1.470	0.507	0.464
10	303.928	426.297	1.313	0.472	0.436
~	≈	≈	~	~	~
99	320.884	441.779	1.448	0.481	0.442
100	285.245	393.704	1.583	0.505	0.461
Average	307.035	422.718	1.482	0.494	0.456

NSCLC data – Prediction

NSCLC data – Prediction

Table 6 The 20 most strongly associated genes

	Ridge			Proposed method		
No.	Gene symbol	Coefficient	P-value	Gene symbol	Coefficient	P-value
1	FGA	-0.0381	2.6050E-07	FGA	-0.0507	3.7370E-07
2	AKR1B10	-0.0462	7.9121E-07	AKR1B10	-0.0590	1.7486E-06
3	CPS1	-0.0411	2.5736E-05	CPS1	-0.0562	2.6618E-05
4	KRT6A	-0.0345	4.5128E-05	FGG	-0.0465	8.0691E-05
5	MSMB	-0.0446	0.0001	MSMB	-0.0603	0.0001
6	FGG	-0.0337	0.0001	KRT6A	-0.0445	0.0001
7	CYP2B7P1	0.0302	0.0002	CYP2B7P1	0.0413	0.0004
8	SERPINB5	-0.0290	0.0002	FGB	-0.0372	0.0007
9	FGB	-0.0285	0.0003	CYP2B6	0.0163	0.0009
10	CYP2B6	0.0232	0.0005	SERPINB5	-0.0339	0.0018
11	LOC344887	-0.0302	0.0011	GPR110	0.0427	0.0022
12	SERPINB3	-0.0263	0.0014	LOC344887	-0.0366	0.0023
13	GPR110	0.0310	0.0022	CRP	-0.0206	0.0034
14	HSD17B6	0.0260	0.0035	SERPINB3	-0.0318	0.0044
15	CRP	-0.0138	0.0037	SLC6A14	-0.0210	0.0051
16	DKK1	-0.0389	0.0041	HSD17B6	0.0349	0.0058
17	SLC34A2	0.0217	0.0043	DKK1	-0.0492	0.0066
18	MUC13	-0.0318	0.0045	MUC13	-0.0408	0.0077
19	CPN1	-0.0083	0.0054	CPN1	-0.0115	0.0108
20	SLC6A14	-0.0273	0.0080	(7895136)	0.0242	0.0121
PE			0.7069			0.6648

July 14, 2014

Szu-Peng Yang

Conclusion

- Introduction
- Methodology
- Numerical analysis

• Conclusion

Conclusion

- Proposed estimator under high-dimensionality
- Able to utilize prior knowledge
- Good Baysian interpretation and theoretical calculation
- Reduction of the MSE
- Significance testing
- Apply to microarray data

Reference

- Allen, D. M. (1974). The relationship between variable selection and data augmentation and a method for prediction. *Technometrics* **16**, 125-127.
- Binder, H., Allignol, A., Schumacher, M., and Beyersmann, J. (2009). Boosting for high-dimensional time-to-event data with competing risks. *Bioinformatics* **25**, 890-896.
- Cule, E., Vineis, P. and De Iorio, M. (2011). Significance testing in ridge regression for genetic data. BMC Bioinformatics 12, 372.
- Emura, T., Chen, Y. H., and Chen, H. Y. (2012). Survival prediction based on compound covariate under cox proportional hazard models. *PLoS ONE* **7**, e47627.
- Golub, G. H., Heath, M. and Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. *Technometrics* **21**, 215-223.
- Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: biased estimation for nonorthogonal problems. *Technometrics* 12, 55-67.
- Ing, C.-K. and Lai, T.-L. (2011). A stepwise regression method and consistent model selection for high-dimensional sparse linear models. *Statistica Sinica* **21**, 1473-1513.
- Loesgen, K.-H. (1990). A generalization and Bayesian interpretation of ridge-type estimators with good prior means. *Statistical Papers* **31**, 147-154.
- McLachlan, G. J. (1980). On the mean square error associated with adaptive generalized ridge regression. *Biometrical Journal* 22, 125-129.
- Trekler, G. (1985). Mean square error matrix comparisons of estimators in linear regression. *Communications in Statistics* A14, 2495-2509.
- Whittaker, J. C., Thompson, R., and Denham, M. C., (2000). Marker-assisted selection using ridge regression. *Genetical Research* **75**, 249-252.
- Zhao, X., Rødland, E. A., and Sørlie, T., et al. (2011). Combining gene signatures improves prediction of breast cancer survival. *PLoS ONE* **6**, e17845.

Szu-Peng Yang

Thank you for your listening.