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Abstract: In the linear regression, the least squared estimator does not perform well when multicollinearity exists. The problem of
multicollinearity occurs In industrial mixture experiments, where regressors are constrained. Hoerl and Kennard (1970) proposed
the ordinary ridge estimator to overcome the problem of the least squared estimator under multicollinearity. This paper considers
a special class of Liu-type estimators (1993, 2003). We derive the theoretical formula of the mean square error for the proposed
method. We perform simulations to compare the proposed estimator with the ridge estimator in terms of mean square error. We
demonstrate this special class using the dataset on Portland cement with mixture experiment (\Woods et al., 1932).

1. Introduction

In a regression model, when multicollinearity exists, the
ordinary least square (OLS) estimator IS inappropriate.
Ridge regression Is an alternative estimator derived by
Hoerl and Kennard (1970). Ridge regression aims to
reduce the large variance by shrinking the OLS
estimator toward zero. Hoerl and Kennard (1970)
showed that there exists some range of shrinkage
parameter such that the total mean squared error (MSE)
IS smaller than that of the OLS. Multicollinearity arises
In  mixture experiments, where explanatory variables
are proportions of a mixture. Ridge has been
successfully applied to overcome the multicollinearity
among the proportion (Jang and Anderson-Cook, 2014).
We proposed a ridge-type estimator and study the
properties by theory and simulation.

2. Background

Usual model with intercept is

ynxl — an(p+1)B(p+l)><1 T 8n><1’ X= [ 1 Xp ]’

where €~ N,(0,0°1) , and the design matrix is fixed
and standardized. The model iIs written in the canonical

form:
y = Ao +&,

where A=XI',a = FTB and T
matrix defined as:
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2.1 Multicollinearity and mixture experiments

The ordinary least squared (OLS) estimator of B IS
solved by minimizing the residual sum of squares.

l’“}OLS = ( XTX )—1 XTy.

And A 1P
tr{ V(B°=> ) }= 02[ HJF,Z;Z j

When multicollinearity occurs, there exists a least one
small eigenvalue, say A, =0.001.Then, The total variance
of OLS estimator Is quite large.

A motivating example to illustrate the multicollinearity
IS the dataset on Portland cement (Woods et al., 1932).
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2.2 Ridge regression
The original definition of ridge 1s to add a diagonal
matrix to the information matrix of the OLS estimator

ﬁRidge ( k ) _ ( XTX+ kl )—1XTy

In another view, the ridge regression gives a penalty to 5. Simulation

the residual sum of squares (RSS),

RSS™ =y XB [ +k| B

ﬁR_idge ( 0 ) _ I’jOLS

by
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3. Proposed method

Consider a penalized RSS, defined as

2

RSSF* = |y —XB [ +k| p—p’

where B can be any estimator of P .
Thus, the new estimator is defined by

BN (k) =(X"X+kl) Xy +kB")

Following Emura et al. (2012), we estimate B~ by the
so-called compound univariate estimator.

Definition (Compound Univariate Estimator):
We use a univariate model

Vi = Bo+5
to estimate /3, . And again use univariate model
Vi = fo + BiX; + &
to estimate /3, .
The compound univariate estimator can be expressed as
p" ={diag( X"X)}'Xy.
Therefore, the proposed estimator takes the form
B (k)= (X" X+kI)™[ 1+k{diag( X"X)}]1X"y.
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4.1 Mean squared error ( MSE ) calculation
Consider a linear estimator of the form B=Cy . Then,
the MSE of P =Cy is calculated as

MSE( B ) = bias( p )oias(p )" +var(p ).

We provide the bias and variance of the proposed
estimator
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where ¢; Is the I-th component of a as in background.

MSE

The most valuable feature of the MSE function Is the

value of 15t order derivatives in the neighborhood of the

zero. We have shown that
lim iB( k)=0

k—0" dk

lim L V(k)<0.

k=0~ dk

We perform our simulation under n=13 and p=4 for
c’=1lor2 andp=(4,,1,111)", B, =500rl.
w =12, 1, =257 =5.

Generate design matrix by following:

X, e x. | [ —x, 50 |
I 1| 2 3 I .
“1~N, TLL, |, o~ T+ N, , 71,
Xi2 H, Xi4 — Xiz 50

where we set “seed(1)” to generate “rnorm” function In
R package.
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Simulation of MSE condition on B=(50,1,1,1,1)" and o> =2

6. Data analysis

We use the Portland cement data to check the proposed
estimator. This data has n=13 and p=4. The sample
correlation matrix of X Is

1.000 —0.133 —-0.848  0.082 |
Sample Corr( X ) = —1.133 1.000  0.245 -0.952 |
? —0.848  0.245 1.000 —-0.139
0.082 -0.952 -0.139 1.000 |

where we can have that multicollinearity occurs.
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If we forget to standardized the model, it brings a result
as follow:

Bias Var M

B g B B B P

ﬁOLS 6240 155 051 010 -0.14 0 4912.09 4912.09

fRidoe (i Ridae 2750 191 086 046 020 1218.73  952.25 2170.98

B New (K New) 6414 153 049 008 -0.16 72471 159.84 884.56

7. Conclusion \

1. Proposed a new method for regressor coefficient
estimation.

2. The method provides good estimate on MSE
criterion in some case.
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