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Abstract: In the linear regression, the least squared estimator does not perform well when multicollinearity exists. The problem of

multicollinearity occurs in industrial mixture experiments, where regressors are constrained. Hoerl and Kennard (1970) proposed

the ordinary ridge estimator to overcome the problem of the least squared estimator under multicollinearity. This paper considers

a special class of Liu-type estimators (1993, 2003). We derive the theoretical formula of the mean square error for the proposed

method. We perform simulations to compare the proposed estimator with the ridge estimator in terms of mean square error. We

demonstrate this special class using the dataset on Portland cement with mixture experiment (Woods et al., 1932).
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1. Introduction

In a regression model, when multicollinearity exists, the

ordinary least square (OLS) estimator is inappropriate.

Ridge regression is an alternative estimator derived by

Hoerl and Kennard (1970). Ridge regression aims to

reduce the large variance by shrinking the OLS

estimator toward zero. Hoerl and Kennard (1970)

showed that there exists some range of shrinkage

parameter such that the total mean squared error (MSE)

is smaller than that of the OLS. Multicollinearity arises

in mixture experiments, where explanatory variables

are proportions of a mixture. Ridge has been

successfully applied to overcome the multicollinearity

among the proportion (Jang and Anderson-Cook, 2014).

We proposed a ridge-type estimator and study the

properties by theory and simulation.

2.2 Ridge regression

The original definition of ridge is to add a diagonal

matrix to the information matrix of the OLS estimator

In another view, the ridge regression gives a penalty to

the residual sum of squares (RSS),
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Usual model with intercept is 1234567891011121

where , and the design matrix is fixed

and standardized. The model is written in the canonical

form:

where is an orthogonal

matrix defined as:

It follows that and

2.1 Multicollinearity and mixture experiments

The ordinary least squared (OLS) estimator of is

solved by minimizing the residual sum of squares.

And

When multicollinearity occurs, there exists a least one

small eigenvalue, say Then, The total variance

of OLS estimator is quite large.

A motivating example to illustrate the multicollinearity

is the dataset on Portland cement (Woods et al., 1932).
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3. Proposed method

Consider a penalized RSS, defined as

where can be any estimator of .

Thus, the new estimator is defined by

Following Emura et al. (2012), we estimate by the

so-called compound univariate estimator.

Definition (Compound Univariate Estimator):

We use a univariate model 

to estimate     . And again use univariate model

to estimate .

The compound univariate estimator can be expressed as

Therefore, the proposed estimator takes the form
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4.1 Mean squared error ( MSE ) calculation

Consider a linear estimator of the form . Then,

the MSE of is calculated as

We provide the bias and variance of the proposed

estimator

where is the i-th component of as in background.

4. Theory
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The most valuable feature of the MSE function is the

value of 1st order derivatives in the neighborhood of the

zero. We have shown that

We perform our simulation under and for

Generate design matrix by following:

where we set “seed(1)” to generate “rnorm” function in

R package.

5. Simulation
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5. Conclusion

1. Proposed a new method for regressor coefficient

estimation.

2. The method provides good estimate on MSE

criterion in some case.

7. Conclusion
No. of 

Cement 
2SiO  32OAl  32OFe  CaO  

1 27.7 3.8 2.0 65.0 

2 26.0 3.5 5.1 63.1 

3 21.9 5.7 2.8 65.0 

4 24.6 5.8 2.8 64.2 

5 25.0 3.9 2.1 66.6 

No. of 

Cement 

3232 OFeOAl4CaO   

3x  

32OAlCaO3   

1x  

2SiO2CaO   

4x  

2SiO3CaO   

2x  

1 6 7 60 26 

2 15 1 52 29 

3 8 11 20 56 

4 8 11 47 31 

5 6 7 33 52 

 

yXIXXβ
T1TRidge )()(ˆ  kk

6. Data analysis

13n

We use the Portland cement data to check the proposed

estimator. This data has and . The sample

correlation matrix of is

where we can have that multicollinearity occurs.

β̂  0  1  2  3  4  Bias Var m̂  

OLS
β̂  62.40 1.55 0.51 0.10 –0.14 0 4912.09 4912.09 

)ˆ(ˆ RidgeRidge kβ  27.50 1.91 0.86 0.46 0.20 1218.73 952.25 2170.98 

)ˆ(ˆ NewNew kβ  64.14 1.53 0.49 0.08 –0.16 724.71 159.84 884.56 

 

4p

pX

If we forget to standardized the model, it brings a result

as follow:

i α


