A goodness-of-fit test for Archimedean copula models in the presence of censoring

To appear in

Computational Statistics and Data Analysis

Takeshi Emura* (江村剛志)、Weijing Wang (王維菁) Institute of Statistics, National Chiao Tung University

Chien-Wei Lin (林建威) Institute of Statistical Science, Academia Sinica

Table of Contents

Part I: Background (5 slides)

- Bivariate lifetime data
- Copula model
- Goodness-of-fit for bivariate lifetimes
- Shih (1998)'s goodness-of-fit test under Clayton model

Part II: Proposed Method (10 slides)

- Goodness-of-fit test under general AC model
- Asymptotic analysis
- Modification to censoring
- Data analysis & Simulations
- Concluding remarks

Background

• Australian Twin Study Data (Duffy et al. 1990, downloadable from Web) Bivariate lifetimes: $\{(X_j, Y_j) (j = 1, ..., n)\}$ For Twin pair *j*:

 $\begin{cases} X_j : \text{Age at appendecectomy for one of twin pairs} \\ Y_j : \text{Age at appendecectomy for the other one of twin pairs} \end{cases}$

*Appendecetomy: 盲腸手術

- 1. Correlation between X and Y may be of interest
- 2. Prentice & Hsu (1997) fitted Clayton model without model diagnostics
- 3. Some subject never experience appendecectomy (right-censoring)

Background - Copula -

• By Skalar (1959)'s theorem, any joint distribution of (*X*, *Y*) has a representation :

 $Pr(X > x, Y > y) = C[S_X(x), S_Y(y)],$ where $S_X(x) = Pr(X > x), S_Y(y) = Pr(Y > y)$ and the function C[u, v] is called "Copula".

• *C*[*u*, *v*] characterize the association between *X* and *Y* e.g., Clayton copula (Clayton, 1978):

$$C[u,v] = \left[u^{-(\alpha-1)} + v^{-(\alpha-1)} - 1\right]^{-\frac{1}{\alpha-1}} \qquad \Rightarrow \text{Kendall's tau} = \frac{\alpha-1}{\alpha+1}$$

Model selection: How to select C[u, v] given data without specifying marginal functions
 (Likelihood based approach, such as AIC do not apply).

Background -Archimedean copula -

• For some function $\phi_{\alpha}(\cdot)$, consider a subclass

 $C[u,v] = \phi_{\alpha}^{-1}[\phi_{\alpha}(u) + \phi_{\alpha}(v)]$

, called Archimedean copula (AC) family.

Parameter α is called association parameter

* Eample 1. Clayton copula :

 $\phi_{\alpha}(t) = (t^{-(\alpha-1)} - 1)/(\alpha - 1),$ Kendall's tau on (X, Y) $= \frac{\alpha - 1}{\alpha - 1}$ * Example 2: Frank copula

$$\phi_{\alpha}(t) = \log\{(1-\alpha)/(1-\alpha^{t})\}, \text{ Kendall's tau} = 1 - \frac{4\{D_{1}(-\log\alpha)-1\}}{\log\alpha}$$

* Example 3: Gumbel copula

 $\phi_{\alpha}(t) = \{-\log(v)\}^{\alpha}, \text{ Kendall's tau} = \frac{\alpha - 1}{\alpha}$

Background

- Our problem is to test wether a chosen ϕ_{α} fit data well under bivariate censored data.
- Many papers discuss this problem under complete data But, there is few paper on bivariate censored data
- 1.Model selection(Wang & Wells, 2000):
- How to select the best $\phi_{\alpha}(\cdot)$ among several candidates.
- 2. Goodness of fit test (Andersen et al. 2005):

Statistical test for checking whether a selected $\phi_{\alpha}(\cdot)$ is corrector not. * Ansersen et al.'s test is based on chi - square tests for comparing model based vs. model free estimates of the copula function. Bootstrap is used for fining cutoff since the null distribution is unknown.

Background - Shih's idea -

- Early work starts from Clayton model: $Pr(X > x, Y > y) = \{S_{Y}(x)^{-(\alpha-1)} + S_{Y}(x)^{-(\alpha-1)} - 1\}^{-1/(\alpha-1)}$
- Clayton (1979) proposed a conditional likelihood estimator $\hat{\alpha}_1$ while S_X and S_Y to be completely unspecified
- Oakes (1982) proposed a moment-type estimator \$\hat{\alpha}_2\$ while \$S_X\$ and \$S_Y\$ to be completely unspecified
 Oakes (1986) showed \$\hat{\alpha}_2\$ and \$\hat{\alpha}_1\$ belong to the same estimating

function, with the different weight

• Shih (1998) consider a distance : $|\hat{\alpha}_1 - \hat{\alpha}_2|$ Weighted Un-weighted Then, reject the Clayton model if $|\hat{\alpha}_1 - \hat{\alpha}_2|$ is large

Proposed method: Setup

- Temporality ignore censoring so that we observe complete data : $\{(X_j, Y_j) (j = 1, ..., n)\}$
- (X_j, Y_j) are i.i.d. replica from $Pr(X > x, Y > y) = C[S_X(x), S_Y(y)]$ where parameter (S_X, S_Y) is unspecified
- We are interested in testing

$$H_0: C[u, v] = \phi_{\alpha}^{-1}[\phi_{\alpha}(u) + \phi_{\alpha}(v)] \text{ for some } \alpha$$

versus

$$H_a: C[u, v] = any other copula.$$

Here, α is unknown.

Proposed method: Basic Idea

 α : Association parameter in $\phi_{\alpha}(\cdot)$

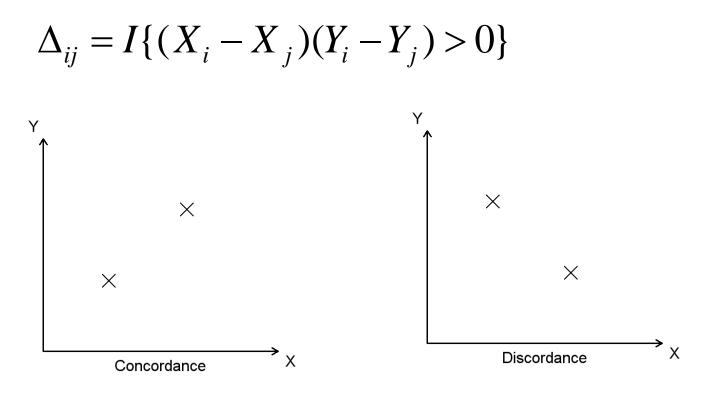
• Consider a distance : $|\hat{\alpha}_1 - \hat{\alpha}_2|$

• $\hat{\alpha}_1$ and $\hat{\alpha}_2$ are shown to belong to the same class, but differ only in weight (I explain later for details)

Weighted Un-weighted

- Both $\hat{\alpha}_1$ and $\hat{\alpha}_2$ converges to the true α if $\phi_{\alpha}(\cdot)$ is correctly specified
- Reject the model $\phi_{\alpha}(\cdot)$ if $|\hat{\alpha}_1 \hat{\alpha}_2|$ is large

Proposed method How to estimate α? Consider a concordance indicator



• Information for α is contained in Δ_{ij}

 \Rightarrow Moment estimator based on Δ_{ij}

Proposed method Oakes (1989) show that, if $\phi_{\alpha}(\cdot)$ is correctly specified $E(\Delta_{ij} \mid \breve{X}_{ij} = x, \widetilde{Y}_{ij} = y) = \frac{\theta_{\alpha}\{S(x, y)\}}{1 + \theta_{\alpha}\{S(x, y)\}}$ where $\widetilde{X}_{ii} = \min(X_i, X_i), \ \widetilde{Y}_{ii} = \min(Y_i, Y_i)$ $S(x, y) = \Pr(X > x, Y > y) \text{ and } \theta_{\alpha}(\eta) = -\eta \frac{\phi_{\alpha}''(\eta)}{\phi_{\alpha}'(\eta)}$ Estimating equation for α

$$U_{2}(\alpha) = \sum_{i < j} \left[\Delta_{ij} - \frac{\theta_{\alpha} \{ \hat{S}(\boldsymbol{X}_{ij}, \boldsymbol{\tilde{Y}}_{ij}) \}}{1 + \theta_{\alpha} \{ \hat{S}(\boldsymbol{X}_{ij}, \boldsymbol{\tilde{Y}}_{ij}) \}} \right]$$

where $\hat{S}(x, y) = n^{-1} \sum_{i} I(\boldsymbol{X}_{i} \ge x, \boldsymbol{Y}_{i} \ge y)$

• Unweighted estimator $\hat{\alpha}_2: U_2(\alpha) = 0$

Proposed method To derive weighted estimator, we extends Clayton (1979)'s likelihood principle (details, omitted)

- Estimating equation based on generalized Clayton's likelihood is
 - $U_1(\alpha) =$

$$\sum_{i < j} \frac{\dot{\theta}_{\alpha} \{\hat{S}(\tilde{X}_{ij}, \tilde{Y}_{ij})\} [\theta_{\alpha} \{\hat{S}(\tilde{X}_{ij}, \tilde{Y}_{ij})\} + 1]}{\theta_{\alpha} \{\hat{S}(\tilde{X}_{ij}, \tilde{Y}_{ij})\} [R_{ij} - 1 + \theta_{\alpha} \{\hat{S}(\tilde{X}_{ij}, \tilde{Y}_{ij})\}]} \left[\Delta_{ij} - \frac{\theta_{\alpha} \{\hat{S}(\tilde{X}_{ij}, \tilde{Y}_{ij})\}}{\theta_{\alpha} \{\hat{S}(\tilde{X}_{ij}, \tilde{Y}_{ij})\} + 1} \right]$$

where
$$\widetilde{R}_{ij} = nS(\widetilde{X}_{ij}, \widetilde{Y}_{ij})$$

- Weighted estimator $\hat{\alpha}_1 : U_1(\alpha) = 0$
- The above weight derivation is new result in this work. It gives smaller SD than unweighted estimator

Proposed method: Asymptotic Analysis

Theorem 1: Under correct model and suitable conditions,

 $n^{1/2}(\log \hat{\alpha}_1 - \log \hat{\alpha}_2) \rightarrow N(0, \sigma^2)$

where $\sigma^2 = 4E[h\{(X_1, Y_1), (X_2, Y_2)\}h\{(X_1, Y_1), (X_3, Y_3)\}],$

$$h\{(X_{i}, Y_{i}), (X_{j}, Y_{j})\} \equiv \frac{1}{\alpha} \left(\frac{\dot{\theta}_{\alpha}\{S(\tilde{X}_{ij}, \tilde{Y}_{ij})\} [\theta_{\alpha}\{S(\tilde{X}_{ij}, \tilde{Y}_{ij})\} + 1]}{A_{L}\theta_{\alpha}\{S(\tilde{X}_{ij}, \tilde{Y}_{ij})\} S(\tilde{X}_{ij}, \tilde{Y}_{ij})} - \frac{1}{A} \right) \left[\Delta_{ij} - \frac{\theta_{\alpha}\{S(\tilde{X}_{ij}, \tilde{Y}_{ij})\}}{\theta_{\alpha}\{S(\tilde{X}_{ij}, \tilde{Y}_{ij})\} + 1} \right]$$
$$A \equiv E \left(\frac{\dot{\theta}_{\alpha}\{S(\tilde{X}_{12}, \tilde{Y}_{12})\}}{[\theta_{\alpha}\{S(\tilde{X}_{12}, \tilde{Y}_{12})\} + 1]^{2}} \right) \text{ and } A_{L} \equiv E \left(\frac{[\dot{\theta}_{\alpha}\{S(\tilde{X}_{12}, \tilde{Y}_{12})\}]^{2}}{\theta_{\alpha}\{S(\tilde{X}_{12}, \tilde{Y}_{12})\} - 1]^{2}} \right)$$

• Reject $H_0: C(u, v) = \phi_\alpha^{-1} [\phi_\alpha(u) + \phi_\alpha(v)]$ if $|(\log \hat{\alpha}_1 - \log \hat{\alpha}_2) / \hat{\sigma}| > 1.96$

Proposed method: Adjustment for Censoring

• If lifetimes (X_j, Y_j) is censored by (A_j, B_j) , we observe $(\breve{X}_j, \breve{Y}_j, \delta_j^X, \delta_j^Y)$ where $\breve{X}_j = \min(X_j, A_j), \breve{Y}_j = \min(Y_j, B_j), \delta_j^X = I(X_j \le A_j), \delta_j^Y = I(Y_j \le B_j)$ • Following Oakes (1986), the estimating functions can be modified as $U_1(\alpha) =$

$$\sum_{i < j} Z_{ij} \frac{\dot{\theta}_{\alpha} \{\hat{S}(\tilde{X}_{ij}, \tilde{Y}_{ij})\} [\theta_{\alpha} \{\hat{S}(\tilde{X}_{ij}, \tilde{Y}_{ij})\} + 1]}{\theta_{\alpha} \{\hat{S}(\tilde{X}_{ij}, \tilde{Y}_{ij})\} [R_{ij} - 1 + \theta_{\alpha} \{\hat{S}(\tilde{X}_{ij}, \tilde{Y}_{ij})\}]} \left[\Delta_{ij} - \frac{\theta_{\alpha} \{\hat{S}(\tilde{X}_{ij}, \tilde{Y}_{ij})\}}{\theta_{\alpha} \{\hat{S}(\tilde{X}_{ij}, \tilde{Y}_{ij})\} + 1} \right],$$

Estimating equations are unbiased Under independent censoring assumption

where

$$\Delta_{ij} = I\{(\breve{X}_i - \breve{X}_j)(\breve{Y}_i - \breve{Y}_j) > 0\}, \ \widetilde{X}_{ij} = \min(\breve{X}_i, \breve{X}_j), \ \widetilde{Y}_{ij} = \min(\breve{Y}_i, \breve{Y}_j), \ Z_{ij} = I(\widetilde{X}_{ij} \le \widetilde{A}_{ij}, \widetilde{Y}_{ij} \le \widetilde{B}_{ij})$$

• Reject
$$H_0: C(u, v) = \phi_{\alpha}^{-1} [\phi_{\alpha}(u) + \phi_{\alpha}(v)]$$

if $|(\log \hat{\alpha}_1 - \log \hat{\alpha}_2) / \hat{\sigma}| > 1.96$

 $U_{2}(\alpha) = \sum_{i \leq i} Z_{ij} \left| \Delta_{ij} - \frac{\mathcal{O}_{\alpha} \{S(X_{ij}, Y_{ij})\}}{\mathcal{O}_{\alpha} \{\hat{S}(\tilde{X}_{ii}, \tilde{Y}_{ii})\} + 1} \right|,$

Proposed method: Data analysis

Table 3A: The Goodness-of-fit test results for four AC models

based on Australian Twin Study (Duffy et al. 1990)

	\hat{lpha}_1	\hat{lpha}_2	$(\log \hat{lpha}_1 - \log \hat{lpha}_2) / \hat{\sigma}_{Jack}$	p-value
Clayton	1.446	1.717	-1.867	0.000
Frank	1.308	1.496	-1.090	0.117
Gumbel	0.115	0.114	0.084	0.497
Log-copula	1.447	1.147	1.351	0.034

*Gumbel copula is the best fitted model.

*Analysis of Prentice & Hsu (1998) under Clayton copula model is questionable. Re-anaysis under Gumbel model is suggested.

* P-values are not adjusted for multiple testing

Proposed method: Simulations

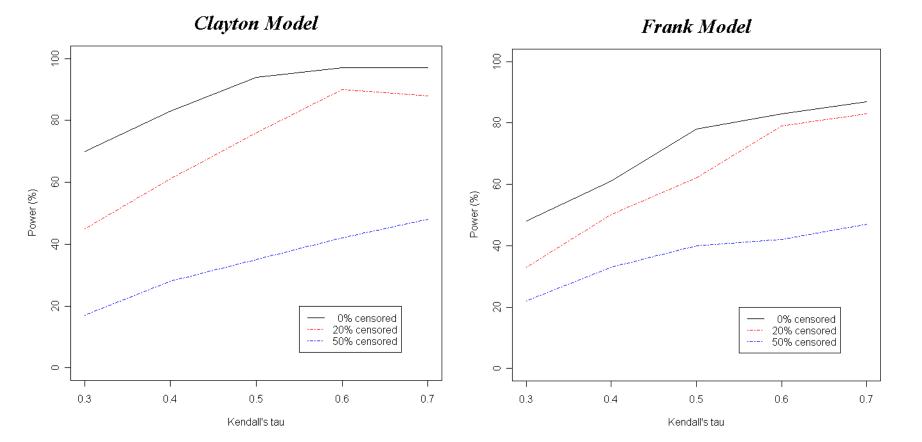


Fig. 1A: Empirical powers with n=100 under H_0 : Gumbel vs. H_a : Not Gumbel. Powers are the rates of rejecting H_0 with 5% significance during 100 replications.

Concluding remarks

- We proposed a goodness-of-fit test based on the distance between two points estimator
- Mean-zero property of the asymptotic null distribution lead to a simple test statistics
- The method can handle independent right-censoring, by applying Oakes (1986)'s idea
- The methods is empirically valid even under dependent right-censoring (robustness)
 - Under dependent censoring, $\hat{\alpha}_1$ and $\hat{\alpha}_2$ are *biased* estimator. Nevertheless,

$$\log \hat{\alpha}_1 - \log \hat{\alpha}_2$$

still follows zero - mean distribution since the bias cancel out (we prove this by simulations in the paper).

Thank you for your attention