CM Statistics 2018, Pisa 2018 / 12 / 14~15

Comparison between the marginal hazard and sub-distribution hazard with an assumed copula

Takeshi Emura

Graduate Institute of Statistics National Central University, Taiwan

Joint work with Ha ID and Shih JH

Competing risks

• Survival is determined by several different events of failures (Cox and Oakes 1984)

Example A:

Death due to breast cancer (Event 1) Death due to other cancers (Event 2)

Example B:

Death (Event 1) Dropout (Event 2)

Classical competing risks

- X : time to "Event 1"
- Y : time to "Event 2"
- $T = \min(X, Y)$: first occurring event time
- $\delta = \mathbf{I}(T = X)$: event type indicator

Marginal hazard functions

$$\lambda_1(t) = \Pr(t \le X \le t + dt \mid X \ge t) / dt,$$
$$\lambda_2(t) = \Pr(t \le Y \le t + dt \mid Y \ge t) / dt,$$

*Marginal distributions are not identifiable from observed quantities (T, δ) :Nonidentifiability (Tsiatis 1975)

3

Three approaches to avoid nonidentifiability

• Cause-specific hazard (Kalbfleish & Prentice 2002)

$$\begin{cases} \lambda_1^{CS}(t) = \Pr(t \le T < t + dt, \, \delta = 1 \mid T \ge t) / dt, \\ \lambda_2^{CS}(t) = \Pr(t \le T < t + dt, \, \delta = 0 \mid T \ge t) / dt. \end{cases}$$

• Sub-distribution hazard (Fine & Gray 1999)

 $\begin{cases} \lambda_1^{Sub}(t) = \Pr(t \le T < t + dt, \, \delta = 1 | \{T \ge t\} \cup \{T < t, \, \delta = 0\}) / dt, \\ \lambda_2^{Sub}(t) = \Pr(t \le T < t + dt, \, \delta = 0 | \{T \ge t\} \cup \{T < t, \, \delta = 1\}) / dt. \end{cases}$

• Assumed copula (Zheng & Klein 1995: Escarela & Carrière 2003) $\Pr(X > x, Y > y) = C_{\theta} \{ S_{1}(x), S_{2}(y) \} \begin{cases} S_{1}(t) = \exp[-\Lambda_{1}(t)] = \exp\left[-\int_{0}^{t} \lambda_{1}(s) ds\right], \\ S_{2}(t) = \exp[-\Lambda_{2}(t)] = \exp\left[-\int_{0}^{t} \lambda_{2}(s) ds\right]. \end{cases}$

Copula

The Clayton copula:

$$C_{\theta}(u, v) = (u^{-\theta} + v^{-\theta} - 1)^{-1/\theta}, \quad \theta > 0,$$

The Gumbel copula:

$$C_{\theta}(u,v) = \exp\left[-\{(-\log u)^{\theta+1} + (-\log v)^{\theta+1}\}^{\frac{1}{\theta+1}}\right], \qquad \theta \ge 0,$$

The Farlie-Gumbel-Morgenstern (FGM) copula:

$$C_{\theta}(u, v) = uv\{1 + \theta(1 - u)(1 - v)\}, \quad -1 \le \theta \le 1.$$

Independent risks assumption $X \perp Y$

Marginal hazard <=> Cause-specific hazard

$$\lambda_{1}(t) = \lambda_{1}^{CS}(t)$$

Marginal hazard <=> Sub-hazard

$$\lambda_1^{Sub}(t) = \lambda_1(t) \frac{\exp\{-\Lambda_1(t) - \Lambda_2(t)\}}{1 - \int_0^t \lambda_1(s) \exp\{-\Lambda_1(s) - \Lambda_2(s)\} dx}$$

Assumed copula $Pr(X > x, Y > y) = C_{\theta} \{ S_1(x), S_2(y) \}$

Theorem 1: The marginal hazard and sub-hazard are

connected through the equation

$$\lambda_{1}^{Sub}(t) = \lambda_{1}(t) \frac{D_{\theta}^{[1,0]} \{\Lambda_{1}(t), \Lambda_{2}(t)\}}{1 - \int_{0}^{t} \lambda_{1}(s) D_{\theta}^{[1,0]} \{\Lambda_{1}(s), \Lambda_{2}(s)\} ds},$$

$$\lambda_{2}^{Sub}(t) = \lambda_{2}(t) \frac{D_{\theta}^{[0,1]}\{\Lambda_{1}(t),\Lambda_{2}(t)\}}{1 - \int_{0}^{t} \lambda_{2}(s) D_{\theta}^{[0,1]}\{\Lambda_{1}(s),\Lambda_{2}(s)\} ds}$$

where $D_{\theta}(s,t) = C_{\theta}\{\exp(-s), \exp(-t)\},\$

$$D_{\theta}^{[1,0]}(s,t) = -\frac{\partial}{\partial s} D_{\theta}(s,t), \text{ and } D_{\theta}^{[0,1]}(s,t) = -\frac{\partial}{\partial t} D_{\theta}(s,t)$$

Example 1 (Clayton copula)

By Theorem 1,

$$\lambda_1^{Sub}(t) = \lambda(t) \frac{2\exp\{\theta\Lambda(t)\}[2\exp\{\theta\Lambda(t)\}-1]^{-1/\theta-1}}{1+[2\exp\{\theta\Lambda(t)\}-1]^{-1/\theta}}$$

Under the Weibull model of $\Lambda(t) = \lambda t^{\nu}$,

$$\lambda_1^{Sub}(t) = \lambda v t^{v-1} \frac{2 \exp(\lambda \theta t^v) \{2 \exp(\lambda \theta t^v) - 1\}^{-1/\theta - 1}}{1 + \{2 \exp(\lambda \theta t^v) - 1\}^{-1/\theta}}$$

Under the log-logistic (or Pareto type II) model of $\Lambda(t) = \gamma \log(1 + \lambda t)$,

٠

٠

٠

$$\lambda_1^{Sub}(t) = \frac{\gamma \lambda}{1+\lambda t} \frac{2(1+\lambda t)^{\theta \gamma} [2(1+\lambda t)^{\theta \gamma} - 1]^{-1/\theta - 1}}{1+[2(1+\lambda t)^{\theta \gamma} - 1]^{-1/\theta}}$$

Example: Clayton copula

Figure 1. The marginal hazard and sub hazard under the Clayton copula.

The exponential model ($\nu = 1$) for the left, and log-logistic model ($\gamma = 1$) for the right.

How covariates affect hazards ?

Assume a marginal Cox model for Cause 1:

 $\lambda_1(t \mid \mathbf{Z}) = \lambda_{10}(t) \exp(\beta_1' \mathbf{Z})$

By Theorem 1,

$$\lambda_{1}^{Sub}(t \mid \mathbf{Z}) = \lambda_{10}(t) \exp(\boldsymbol{\beta}_{1}^{\prime} \mathbf{Z}) \frac{D_{\theta}^{[1,0]} \{\Lambda_{10}(t) \exp(\boldsymbol{\beta}_{1}^{\prime} \mathbf{Z}), \Lambda_{2}(t)\}}{1 - \int_{0}^{t} \lambda_{10}(s) \exp(\boldsymbol{\beta}_{1}^{\prime} \mathbf{Z}) D_{\theta}^{[1,0]} \{\Lambda_{10}(s) \exp(\boldsymbol{\beta}_{1}^{\prime} \mathbf{Z}), \Lambda_{2}(s)\} ds$$

A non-proportional sub-distribution hazard in ${\bf Z}$

⇒ The proportional sub-distribution model (Fine and Gray 1999)

 $\lambda_1^{Sub}(t \mid \mathbf{Z}) = \lambda_{10}^{Sub}(t) \exp(\beta_1^{Sub} \mathbf{Z})$ does not hold !.

Statistical Inference

- X_i : time to Event 1
- Y_j : time to Event 2
- C_i : independent censoring time
- \mathbf{Z}_{j} : covariates

Observed data: $(T_{j}, \delta_{1j}, \delta_{2j}, \mathbf{Z}_{j}), \quad j = 1, 2, ..., n$.

$$T_j = \min(X_j, Y_j, C_j), \ \delta_{1j} = \mathbf{I}(T_j = X_j), \ \delta_{2j} = \mathbf{I}(T_j = Y_j)$$

Inference

The Cox model on the sub hazards (Fine and Gray 1999)

 $\lambda_{1j}^{Sub}(t \mid \mathbf{Z}_j) = \lambda_{10}^{Sub}(t) \exp(\beta_1^{Sub} \mathbf{Z}_j)$

 $\hat{\boldsymbol{\beta}}_{1}^{Sub}$ = the *cmprsk* R package (Gray 2014)

The Cox model on the marginal hazards (Chen 2010)

$$\lambda_{1j}(t \mid \mathbf{Z}_j) = \lambda_{10}(t) \exp(\beta_1' \mathbf{Z}_j), \qquad \lambda_{2j}(t \mid \mathbf{Z}_j) = \lambda_{20}(t) \exp(\beta_2' \mathbf{Z}_j).$$

 $\Pr(X_{j} > x, Y_{j} > y | \mathbf{Z}_{j}) = C_{\theta}[\exp\{-\Lambda_{1j}(x | \mathbf{Z}_{j})\}, \exp\{-\Lambda_{2j}(y | \mathbf{Z}_{j})\}],$

 $(\hat{\boldsymbol{\beta}}_1, \hat{\boldsymbol{\beta}}_2, \hat{\boldsymbol{\Lambda}}_{10}, \hat{\boldsymbol{\Lambda}}_{20}) = a$ semi-parametric MLE (Chen 2010).

 θ must be pre-specified (assumed) to avoid nonidentifiability

Data: 125 lung cancer patients (Chen et al 2007)

- X_i = time-to-death (Cause 1)
- Y_i = time-to-dropout (Cause 2)
- Covariate = gene expression of ZNF264

The sub hazard model for Cause 1 (death)

$$\lambda_{1j}^{Sub}(t) = \lambda_{10}^{Sub}(t) \exp(\beta_1^{Sub} \times ZNF264_j),$$

The sub hazard model for Cause 2 (dropout)

$$\lambda_{2j}^{Sub}(t) = \lambda_{20}^{Sub}(t) \exp(\beta_2^{Sub} \times ZNF264_j).$$

The Cox model on the marginal hazards for Cause 1 and Cause 2 are specified as

$$\begin{cases} \lambda_{1j}(t) = \lambda_{10}(t) \exp(\beta_1 \times ZNF264_j) \\ \lambda_{2j}(t) = \lambda_{20}(t) \exp(\beta_2 \times ZNF264_j) \\ \Pr(X_j > x, Y_j > y) = [\exp\{\theta \Lambda_{1j}(x)\} + \exp\{\theta \Lambda_{2j}(y)\} - 1]^{-1/\theta} \end{cases}$$

where we specified $\theta = 0, 0.5, 2, \text{ or } 8 \ (\tau = 0, 0.2, 0.5, \text{ or } 0.8)$

		Cause 1 (death)	Cause 2 (censoring)
Sub hazard	$\hat{oldsymbol{eta}}^{Sub}$	0.547	0.258
	(95%CI)	(0.200, 0.895)	(-0.179, 0.696)
Marginal ($\theta = 0, \tau = 0$)	$\hat{oldsymbol{eta}}$	0.548	0.259
	(95%CI)	(0.144, 0.952)	(-0.176, 0.693)
Marginal (θ =0.5, τ =0.2)	β	0.570	0.280
	(95%CI)	(0.162, 0.979)	(-0.143, 0.704)
Marginal (θ =2, τ =0.5)	$\hat{oldsymbol{eta}}$	0.593	0.349
	(95%CI)	(0.198, 0.987)	(-0.051, 0.748)
Marginal (θ =8, τ =0.8)	$\hat{oldsymbol{eta}}$	0.561	0.453
	(95%CI)	(0.251, 0.872)	(0.156, 0.751)

Table 1. Analysis of the lung cancer data using the sub hazard and the marginal hazard models

Extension to clustered data

Shared frailty models

Gamma frailty :

$$u_{i} \sim f_{\eta}(u) = \frac{1}{\Gamma(1/\eta)\eta^{1/\eta}} u^{\frac{1}{\eta}-1} \exp\left(-\frac{u}{\eta}\right),$$

$$\begin{cases} E[u_{i}] = 1\\ Var[u_{i}] = \eta \end{cases}$$

Ref:(Burzykowski et al. 2001; Duchateau and Janssen 2007 Rondeau et al. 2011; Ha et al. 2018) X_{ij} : time to Event 1

- Y_{ij} : time to Event 2
- u_i : frailty for group *i*.

for i = 1, 2, ..., G and $j = 1, 2, ..., N_i$.

• Sub-distribution hazards

$$\begin{cases} \lambda_1^{Sub}(t \mid u_i) = \Pr(t \le T < t + dt, \, \delta = 1 \mid \{T \ge t\} \cup \{T < t, \, \delta = 0\} \mid u_i) / dt, \\ \lambda_2^{Sub}(t \mid u_i) = \Pr(t \le T < t + dt, \, \delta = 0 \mid \{T \ge t\} \cup \{T < t, \, \delta = 1\} \mid u_i) / dt. \end{cases}$$

• Marginal hazards

$$\begin{cases} \lambda_{1ij}(t \mid u_i) = \Pr(t \le X_{ij} \le t + dt \mid X_{ij} \ge t, u_i) / dt \\ \lambda_{2ij}(t \mid u_i) = \Pr(t \le Y_{ij} \le t + dt \mid Y_{ij} \ge t, u_i) / dt \end{cases}$$

Assumed copula: $\Pr(X_{ij} > x, Y_{ij} > y | u_i) = C_{\theta} \{ S_{1ij}(x | u_i), S_{2ij}(y | u_i) \}$ $\square Patient-level dependence$ **Theorem 2**: Under the assumed copula moel,

$$\Pr(X_{ij} > x, Y_{ij} > y | u_i) = C_{\theta} \{ S_{1ij}(x | u_i), S_{2ij}(y | u_i) \},\$$

the marginal hazard and sub hazard are connected through

$$\begin{split} \lambda_{1ij}^{Sub}(t \mid u_{i}) &= \lambda_{1ij}(t \mid u_{i}) \frac{D_{\theta}^{[1,0]} \{\Lambda_{1ij}(t \mid u_{i}), \Lambda_{2ij}(t \mid u_{i})\}}{1 - \int_{0}^{t} \lambda_{1ij}(x \mid u_{i}) D_{\theta}^{[1,0]} \{\Lambda_{1ij}(x \mid u_{i}), \Lambda_{2ij}(x \mid u_{i})\} dx}, \\ \lambda_{2ij}^{Sub}(t \mid u_{i}) &= \lambda_{2ij}(t \mid u_{i}) \frac{D_{\theta}^{[0,1]} \{\Lambda_{1ij}(t \mid u_{i}), \Lambda_{2ij}(t \mid u_{i})\}}{1 - \int_{0}^{t} \lambda_{2ij}(x \mid u_{i}) D_{\theta}^{[0,1]} \{\Lambda_{1ij}(x \mid u_{i}), \Lambda_{2ij}(x \mid u_{i})\} dx} \end{split}$$

Statistical Inference

Sub hazard Cox models (separate models)

Marginal Cox models (joint model)

$$\begin{cases} \lambda_{1ij}(t \mid u_i, \mathbf{Z}_{ij}) = u_i \lambda_{10}(t) \exp(\boldsymbol{\beta}_1' \mathbf{Z}_{ij}) \\ \lambda_{2ij}(t \mid u_i, \mathbf{Z}_{ij}) = u_i^{\alpha} \lambda_{20}(t) \exp(\boldsymbol{\beta}_2' \mathbf{Z}_{ij}) \end{cases}$$

cmrskCox.reg()
in joint.Cox package
$$(\hat{\boldsymbol{\beta}}_1, \hat{\boldsymbol{\beta}}_2)$$

$$\Pr(X_{ij} > x, Y_{ij} > y | u_i) = C_{\theta} \{ S_{1ij}(x | u_i), S_{2ij}(y | u_i) \}$$

 θ must be pre-specified (assumed) to avoid nonidentifiability

Data example (bladder cancer Sylvester et al. 2006)

396 patients collected from G=21 centers

- X_{ii} : time to Event 1 (cancer recurrence)
- Y_{ij} : time to Event 2 (death prior to recurrence)
- u_i : frailty for a center *i*.

for i = 1, 2, ..., G and $j = 1, 2, ..., N_i$.

Covariates:

- *Chemotherapy* (0 = No vs. 1 = Yes)
- Age (≤ 65 years vs. >65 years).

The sub hazard Cox models

$$\lambda_{1ij}^{Sub}(t \mid u_i) = u_i \lambda_{10}(t) \exp(\beta_{11}^{Sub} \times Chemo_{ij} + \beta_{12}^{Sub} \times Age_{ij}),$$

$$\lambda_{2ij}^{Sub}(t \mid u_i) = u_i \lambda_{20}(t) \exp(\beta_{21}^{Sub} \times Chemo_{ij} + \beta_{22}^{Sub} \times Age_{ij}).$$

The two sub hazard models are fitted separately.

The marginal Cox model on Cause 1 and Cause 2 are specified as

$$\begin{cases} \lambda_{1ij}(t \mid u_i) = u_i \lambda_{10}(t) \exp(\beta_{11} \times Chemo_{ij} + \beta_{12} \times Age_{ij}) \\ \lambda_{2ij}(t \mid u_i) = u_i^{\alpha} \lambda_{20}(t) \exp(\beta_{21} \times Chemo_{ij} + \beta_{22} \times Age_{ij}) \\ \Pr(X_{ij} > x, Y_{ij} > y \mid u_i) = [\exp\{\theta \Lambda_{1j}(x \mid u_i)\} + \exp\{\theta \Lambda_{2j}(y \mid u_i)\} - 1]^{-1/\theta} \end{cases}$$

We set $\theta = 0, 0.5, 2, \text{ or } 8$, which correspond to $\tau = 0, 0.2, 0.5, \text{ or } 0.8$

			Cause 1 (recurrence)	Cause 2 (death)
		â Sub	-0.70	0.64
Chemo	no Sub-hazard		(-1.04, -0.36)	(-0.09, 1.37)
	Marginal $(\theta - 0, \tau - 0)$	ô	-0.55	0.34
	Warginal ($\theta = 0, \tau = 0$)		(-0.91, -0.20)	(-0.38, 1.06)
	Marginal $(\theta = 0.5, \tau = 0.2)$	â	-0.52	0.19
	Marginal ($\theta = 0.3, t = 0.2$)	ρ	(-0.87, -0.17)	(-0.48, 0.86)
	Marginal $(\theta - 2 - \tau - 0.5)$	â	-0.51	-0.27
	$Wargmar(\theta = 2, \ \ell = 0.3)$	ρ	(-0.86, -0.16)	(-0.77, 0.23)
	Marginal $(\theta - 8 - \tau - 0.8)$	$\hat{oldsymbol{eta}}$	-0.30	-0.18
	Marginar $(0-8, t=0.8)$		(-0.63, 0.04)	(-0.53, 0.18)
Δge	Sub-hazard	\hat{B}^{Sub}	-0.22	0.93
nge	Sub hazard		(-0.50, 0.06)	(0.43, 1.43)
	Marginal $(\theta - 0, \tau - 0)$	ê	-0.10	0.73
	Warginar $(\theta = 0, t = 0)$	ρ	(-0.39, 0.18)	(0.21, 1.26)
	Marginal ($\theta = 0.5$, $\tau = 0.2$)		-0.07	0.66
	Warginar ($0 = 0.3, t = 0.2$)	ρ	(-0.36, 0.21)	(0.16, 1.17)
	Marginal $(\theta - 2 - \tau - 0.5)$	Â	-0.04	0.37
	$Wargmar(\theta = 2, \ \ell = 0.3)$	ρ	(-0.31, 0.23)	(-0.02, 0.76)
	Marginal $(\theta - 8 - \tau - 0.8)$	Â	-0.05	0.08
	1 1 1 1 1 1 1 1 1 1	ρ	(-0.30, 0.20)	(-0.20, 0.36)

|--|

Conclusions

- Establish a mathematical relationship between sub-hazard and marginal hazard (key: an assumed copula)
- Two Cox models (sub-hazard & marginal hazard)
 - The fitted values of β 's are numerically similar
 - The interpretation of β 's are qualitatively different
- Extend to clustered data

(via a frailty-copula model)

- marginal semiparametric MLE *cmrskCox.reg()* in *joint.Cox* R package
- Selection of θ is a concern in marginal hazard model
 adopt a sensitivity analysis