INSERM, Biostatistique at Bordeaux, FRANCE 2014 / 11 / 5

A joint frailty-copula model between disease progression and death for meta-analysis

> Takeshi Emura Graduate Institute of Statistics National Central University, TAIWAN

Part I (Review)

- Meta-analysis & survival analysis
- Joint model & motivating example
- Spline & Penalized likelihood

Part II (Proposed)

- Proposed method -- Copula approach
- Simulation
- Data analysis:

-- Meta-analysis of ovarian cancer data

Meta-Analysis

• Synthesize multiple independent studies

- Useful to detect small (but consistent) effect
 - Treatment effect of chemotherapy on survival in head & neck cancer (Pignon et al. 2009)
 - ✓ The effect of CXCL12 gene on survival in ovarian cancer (Ganzfried et al. 2013)
 - ✓ The effect of ECRG 4 gene on survival in breast cancer (Sabatier et al. 2011)

Choice of endpoints

- Time-to-progression (TTP)

 (e.g., recurrence, metastasis)
- Death (OS)

Two endpoints of interest

(Death from any cause)

Progression-free survival [PFS = min(TTP, OS)]

1) Head & neck cancer data (Pignon et al., 2000; 2009)

- → *Separate* survival analysis on PSF and OS
- 2) Ovarian cancer data (Ganzfried et al. 2013)
- → Survival analysis on OS
- 3) Breast cancer data (Sabatier et al. 2011)
- Separate survival analysis on PFS and OS

Joint model = a bivariate model for TTP and OS
 Time-to-progression (TTP)
 Bivariate survival models
 Death (OS)

In meta-analysis:

- Study specific (random) effect to explain the heterogeneity
- i) Bivariate survival analysis:

(TTP, OS) is jointly observed (Burzykowski et al. 2001)

ii) Competing risks analysis:

Only the first occurring event is observable: min(TTP, OS, Censoring) (Rondeau et al. 2011) Meta analysis with frailty (Random effect)

- Data structure:
- G independent clusters (i = 1, 2, ..., G)

each cluster contain N_i subjects ($j = 1, 2, ..., N_i$) Share the same u_i

Data structure

Joint frailty model (Rondeau et al., 2011)

 $\begin{cases} r_{ij}(t \mid u_i) = u_i r_0(t) \exp(\mathbf{\beta}'_1 \mathbf{Z}_{ij}) & (\text{ time - to - progression } X_{ij}) \\ \lambda_{ij}(t \mid u_i) = u_i^{\alpha} \lambda_0(t) \exp(\mathbf{\beta}'_2 \mathbf{Z}_{ij}) & (\text{ time - to - death } D_{ij}) \end{cases}$

Model Interpretation

Joint frailty model (Rondeau et al., 2011)

 $\begin{cases} r_{ij}(t \mid u_i) = u_i r_0(t) \exp(\boldsymbol{\beta}_1' \mathbf{Z}_{ij}) & (\text{ time - to - progression } X_{ij}) \\ \lambda_{ij}(t \mid u_i) = u_i^{\alpha} \lambda_0(t) \exp(\boldsymbol{\beta}_2' \mathbf{Z}_{ij}) & (\text{ time - to - death } D_{ij}) \end{cases}$

• Common effect across studies

All studies share common (true) effects

 β'_1 (on time - to - progression X_{ij}) β'_1 (on time - to - death D_{ij})

• Heterogeneous effect across studies

 u_i (on time - to - progression X_{ij}) u_i^{α} (on time - to - death D_{ij})

Patients backgrounds are different across studies but they cannot be adjusted by observed covariates

Fig. Case of $\delta_{ij} = 1$

Observation :

$$(T_{ij}, \delta_{ij}, \delta_{ij}^{*}, \mathbf{Z}_{ij}), \quad i = 1, 2, ..., G, \quad j = 1, 2, ..., N_{i}$$
$$T_{ij} = \min(X_{ij}, D_{ij}, C_{ij})$$
$$\delta_{ij} = \mathbf{I}\{T_{ij} = X_{ij}\}, \quad \delta_{ij}^{*} = \mathbf{I}\{T_{ij}^{*} = D_{ij}\}$$

Data set		The number of the first occurring events		
(GEO accession	Sample size	Relapse	Death	Censoring
number)		$\delta_{ij} = 1$	$\delta^{*}_{ij} = 1$	${\delta}_{_{ij}}={\delta}_{_{ij}}^*=0$
GSE17260	$N_1 = 110$	76	0	34
GSE30161	N ₂ = 58	48	2	8
GSE9891	$N_{3} = 278$	185	2	91
TCGA	N ₄ = 557	266	110	181
Total	$\sum_{i=1}^{4} N_i = 1003$			

Compiled from R Bioconductor curated0varianData package (Ganzfried et al. 2013)

Competing risks data:

First occurring event	T_{ij}	${\delta}_{ij}$	${\delta}_{ij}^{*}$	Likelihood
Progression	X_{ij}	1	0	Pr($X_{ij} = t, D_{ij} > t u_i$)
Death	D_{ij}	0	1	$\Pr(X_{ij} > t, D_{ij} = t u_i)$
Censoring	C_{ij}	0	0	$\Pr(X_{ij} > t, D_{ij} > t u_i)$

Log-likelihood of Rondeau et al. (2011):

$$\ell(\alpha, \eta, \beta_{1}, \beta_{2}, r_{0}, \lambda_{0}) = \sum_{i=1}^{G} \left[\sum_{j=1}^{N_{i}} \{ \delta_{ij} \log r_{ij}(T_{ij}) + \delta_{ij}^{*} \log \lambda_{ij}(T_{ij}) \} + \log \int_{0}^{\infty} \left\{ u_{i}^{m_{i} + \alpha m_{i}^{*}} \exp \left(-u_{i} \sum_{j=1}^{N_{i}} R_{ij}(T_{ij}) - u_{i}^{\alpha} \sum_{j=1}^{N_{i}} \Lambda_{ij}(T_{ij}) \right) \right\} f_{\eta}(u_{i}) du_{i} \right],$$

where $m_i = \sum_{j=1}^{N_i} \delta_{ij}$ and $m_i^* = \sum_{j=1}^{N_i} \delta_{ij}^*$.

Baseline hazard approximation via spline
 (O' Sullivan 1988; Joly, Commenges and Letenneur 1998)

$$\widetilde{r}_0(t) = \sum_{\ell=1}^{L_r} g_\ell M_\ell(t), \qquad \widetilde{\lambda}_0(t) = \sum_{\ell=1}^{L_\lambda} h_\ell M_\ell(t)$$

• Cubic M-spline bases (Ramsay 1988)

$$M_{1}(t) = -\frac{4I(\xi_{1} \le t < \xi_{2})}{\Delta} z_{2}(t)^{3}, \quad z_{i}(t) = \left(\frac{t - \xi_{i}}{\Delta}\right), \quad \xi_{i} = \text{knot}, \quad \Delta = \text{mesh}$$
$$M_{2}(t) = \frac{I(\xi_{1} \le t < \xi_{2})}{2\Delta} \{7z_{1}(t)^{3} - 18z_{1}(t)^{2} + 12z_{1}(t)\} + \frac{I(\xi_{2} \le t < \xi_{3})}{2\Delta} z_{3}(t)^{3},$$
$$M_{3}(t) = \cdots$$

• Easy to integrate & differentiate, e.g., $\widetilde{R}_0(t) = \int \widetilde{r}_0(u) du$ \rightarrow Established strategy for hazard estimation⁰ (see also Rondeau, Commenges and Joly 2003; Rondeau et al. 2011) 12

Cubic M-spline bases:

Equally spaced knots $\xi_1 = 1$, $\xi_2 = 2$, $\xi_3 = 3$ **> 5 bases** : $M_1(t), M_2(t), M_3(t), M_4(t), M_5(t)$

Baseline hazard via cubic M-spline:

$$\widetilde{r}_{0}(x) = 0.15 \times M_{1}(t) + 1 \times M_{2}(t) + 0.3 \times M_{3}(t) + 0.2 \times M_{4}(t) + 0.1 \times M_{5}(t)$$

Х

• Joint frailty model with penalized likelihood (Rondeau et al. 2011)

$$\ell(\alpha,\eta,\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,r_0,\lambda_0)-\kappa_1\int \ddot{\gamma}_0(t)^2 dt-\kappa_2\int \ddot{\lambda}_0(t)^2 dt$$

$$\int \ddot{r}_0(t)^2 dt = \sum_{k=1}^{L_r} \sum_{\ell=1}^{L_r} g_k g_\ell \int \ddot{M}_k(t) \ddot{M}_\ell(t) dt , \quad \int \ddot{\lambda}_0(t)^2 dt = \sum_{k=1}^{L_\lambda} \sum_{\ell=1}^{L_\lambda} h_k h_\ell \int \ddot{M}_k(t) \ddot{M}_\ell(t) dt$$

• Optimal smoothing parameters

AIC(
$$\kappa_1, \kappa_2$$
) = $-2\hat{\ell}(\kappa_1, \kappa_2) + 2\operatorname{tr}\{\hat{H}_{PL}^{-1}(\kappa_1, \kappa_2)\hat{H}\},\$

 $\hat{\ell}(\kappa_1,\kappa_2)$: the log-likelihood evaluated at the penalized MLE

 $\hat{H}_{PL}^{-1}(\kappa_1,\kappa_2)$: converged Hessian matrix of the penalized MLE

 \hat{H} : converged Hessian matrix of the un-penalized MLE (i.e., $\kappa_1 = \kappa_2 = 0$).

15

Part II: Proposed Methods

- We generalize the approach of Rondeau (2011) to account for the intra-subject dependence between TTP and OS
- Copula (Nelsen 2006) is used as a modeling tool
 (a flexible model for dependence)

Copula approach (Proposed)

• A Copula

$$C: [0,1] \times [0,1] \mapsto [0,1]$$

uniquely characterizes the dependence between two continuous random variables (Sklar's Theorem 1959):

Example 1: Independence copula: C[v, w] = vw

Example 2: Clayton copula (Clayton, 1978)

$$C_{\theta}(v,w) = (v^{-\theta} + w^{-\theta} - 1)^{-1/\theta}, \quad \begin{cases} \theta = 0 & \text{independence} \\ \theta > 0 & \text{positively dependece} \end{cases}$$

Proposed Idea

$$X_{ij} = \text{TTP}$$
 (Recurrence, Relapse, etc.) Dependence
 $D_{ij} = \text{OS}$ (Death from any cause) Induced by u_i

Joint frailty model (Rondeau et al., 2011)

 $\begin{cases} r_{ij}(t \mid u_i) = u_i r_0(t) \exp(\mathbf{\beta}'_1 \mathbf{Z}_{ij}) & (\text{ time - to - progression } X_{ij}) \\ \lambda_{ij}(t \mid u_i) = u_i^{\alpha} \lambda_0(t) \exp(\mathbf{\beta}'_2 \mathbf{Z}_{ij}) & (\text{ time - to - death } D_{ij}) \end{cases}$

- Still Independent censoring within a cluster $X_{ij} \perp D_{ij} \mid u_i$
 - Our proposed idea: Relax this independence assumption via Copulas

Joint frailty-copula model (Proposed)

Frailty model (Rondeau et al., 2011)

 $\begin{cases} r_{ij}(t \mid u_i) = u_i r_0(t) \exp(\mathbf{\beta}'_1 \mathbf{Z}_{ij}) & (\text{ time - to - progression } X_{ij}) \\ \lambda_{ij}(t \mid u_i) = u_i^{\alpha} \lambda_0(t) \exp(\mathbf{\beta}'_2 \mathbf{Z}_{ij}) & (\text{ time - to - death } D_{ij}) \end{cases}$

Copula model:

 $\Pr(X_{ij} > x, D_{ij} > y | u_i) = C_{\theta}[\exp\{-R_{ij}(x | u_i)\}, \exp\{-\Lambda_{ij}(y | u_i)\}]$

where C_{θ} is a copula (Nelsen, 2006), and

$$R_{ij}(x | u_i) = \int_0^x r_{ij}(v | u_i) dv, \qquad \Lambda_{ij}(y | u_i) = \int_0^y \lambda_{ij}(v | u_i) dv$$

3 dependence parameters

1. Copula parameter θ

→ Related to conditional Kendall's tau $\tau_{\theta}(X_{ij}, D_{ij} | u_i)$ e.g., Clayton copula: $\tau(X_{ij}, D_{ij} | u_i) = \theta / (\theta + 2)$ (Intra-subject dependence)

- 2. Frailty parameter $\eta = Var_{\eta}(u_i)$ (Intra-cluster dependence due to the heterogeneity of studies)
- 3. Parameter α $\alpha > 0 \Rightarrow$ positively dependent (Sign of the intracluster dependence) $\alpha < 0 \Rightarrow$ negatively dependent

 $\alpha = 0 \rightarrow$ independent.

Why such an elaborate model is necessary?

- Death immediately after progression.
 - Strong dependence between TTP and OS (Kendall's tau > 0.5)
- Only a few covariates consistently measured across studies in meta-analysis
 - Residual dependence between TTP and OS (unadjusted by covariates)

(Figure, Emura and Chen, 2014 SMMR)

• Survival (TTP) and censoring (OS) times usually cannot be conditionally independent given only x_1 regarding x_2 as unobserved covariate

Log-likelihood (proposed)

First occurring event	T_{ij}	${\delta}_{_{ij}}$	${\delta}_{\scriptscriptstyle ij}^{*}$	Likelihood
Progression	X_{ij}	1	0	$Pr(X_{ij} = t, D_{ij} > t u_i)$
Death	D_{ij}	0	1	Pr($X_{ij} > t, D_{ij} = t u_i$)
Censoring	C_{ij}	0	0	$\Pr(X_{ij} > t, D_{ij} > t u_i)$

 $\ell(\alpha,\eta,\mathbf{\beta}_1,\mathbf{\beta}_2,r_0,\lambda_0\,|\,\theta\,)$

$$= \sum_{i=1}^{G} \left[\sum_{j=1}^{N_{i}} \left\{ \delta_{ij} \log r_{ij}(T_{ij}) + \delta_{ij}^{*} \log \lambda_{ij}(T_{ij}) \right\} \right] \frac{\text{Dependence structure}}{(\theta, \eta, \alpha)} \\ + \log \int_{0}^{\infty} \left\{ \prod_{j=1}^{N_{i}} \eta_{\theta,\alpha} \left[R_{ij}(T_{ij}), \Lambda_{ij}(T_{ij}) | u_{i} \right]^{\delta_{ij}} \eta_{\theta,\alpha}^{*} \left[R_{ij}(T_{ij}), \Lambda_{ij}(T_{ij}) | u_{i} \right]^{\delta_{ij}^{*}} \\ \times \exp \left(- \sum_{i=1}^{N_{i}} \Psi_{\theta,\alpha} \left[R_{ij}(T_{ij}), \Lambda_{ij}(T_{ij}) | u_{i} \right] \right\} f_{\eta}(u_{i}) du_{i} \right],$$

Log-likelihood (proposed)

Dependence structure characterized by

$$\Psi_{\theta,\alpha}(s,t \mid u) = -\log C_{\theta}[\exp(-us), \exp(-u^{\alpha}t)]$$

$$\eta_{\theta,\alpha} = \partial \Psi_{\theta,\alpha} / \partial s$$
, and $\eta^*_{\theta,\alpha} = \partial \Psi_{\theta,\alpha} / \partial t$

• Independent copula $C_{\theta}(v, w) = vw$ $\Rightarrow \Psi_{\theta,\alpha}(s, t | u) = us + u^{\alpha}t$

Reduces to the log-likelihood of Rondeau et al. (2011):

$$\ell(\alpha, \eta, \beta_{1}, \beta_{2}, r_{0}, \lambda_{0}) = \sum_{i=1}^{G} \left[\sum_{j=1}^{N_{i}} \{ \delta_{ij} \log r_{ij}(T_{ij}) + \delta_{ij}^{*} \log \lambda_{ij}(T_{ij}) \} + \log_{0}^{\infty} \left\{ u_{i}^{m_{i} + \alpha m_{i}^{*}} \exp \left(-u_{i} \sum_{j=1}^{N_{i}} R_{ij}(T_{ij}) - u_{i}^{\alpha} \sum_{j=1}^{N_{i}} \Lambda_{ij}(T_{ij}) \right) \right\} f_{\eta}(u_{i}) du_{i} \right],$$

24

Extension to include left-truncation

Target lifetime : Age specific mortality

→ Age at onset is subject to left-truncation

Let-truncation variable $(L_{ij}) =$ Entry age

$$\ell(\alpha, \eta, \beta_{1}, \beta_{2}, r_{0}, \lambda_{0} | \theta) = \sum_{i=1}^{G} \left[\sum_{j=1}^{N_{i}} \{ \delta_{ij} \log r_{ij}(T_{ij}) + \delta_{ij}^{*} \log \lambda_{ij}(T_{ij}) \} + \log \int_{0}^{\infty} \left\{ \prod_{j=1}^{N_{i}} \eta_{\theta,\alpha} [R_{ij}(T_{ij}), \Lambda_{ij}(T_{ij}) | u_{i}]^{\delta_{ij}} \eta_{\theta,\alpha}^{*} [R_{ij}(T_{ij}), \Lambda_{ij}(T_{ij}) | u_{i}]^{\delta_{ij}^{*}} \right. \\ \left. \left. \times \exp(-\sum_{i=1}^{N_{i}} \Psi_{\theta,\alpha} [R_{ij}(T_{ij}), \Lambda_{ij}(T_{ij}) | u_{i}] \right) \right\} f_{\eta}(u_{i}) du_{i} \\ \left. - \log \int_{0}^{\infty} \exp\left(-\sum_{i=1}^{N_{i}} \Psi_{\theta,\alpha} [R_{ij}(L_{ij}), \Lambda_{ij}(L_{ij}) | u_{i}]\right) f_{\eta}(u_{i}) du_{i} \right] \right]$$

Penalized likelihood with cubic M-spline
 Directly follow Rondeau et al. (2011)

$$\ell(\alpha,\eta,\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,r_0,\lambda_0|\theta)-\kappa_1\int \ddot{\gamma}_0(t)^2 dt-\kappa_2\int \ddot{\lambda}_0(t)^2 dt$$

$$\int \ddot{r}_0(t)^2 dt = \sum_{k=1}^{L_r} \sum_{\ell=1}^{L_r} g_k g_\ell \int \ddot{M}_k(t) \ddot{M}_\ell(t) dt, \quad \int \ddot{\lambda}_0(t)^2 dt = \sum_{k=1}^{L_\lambda} \sum_{\ell=1}^{L_\lambda} h_k h_\ell \int \ddot{M}_k(t) \ddot{M}_\ell(t) dt$$

• Optimal smoothing parameters

,

AIC(
$$\kappa_1, \kappa_2$$
) = $-2\hat{\ell}(\kappa_1, \kappa_2) + 2tr\{\hat{H}_{PL}^{-1}(\kappa_1, \kappa_2)\hat{H}\},\$

 $\hat{\ell}(\kappa_1,\kappa_2)$: the log-likelihood evaluated at the penalized MLE

 $\hat{H}_{PL}^{-1}(\kappa_1,\kappa_2)$: converged Hessian matrix of the penalized MLE

 \hat{H} : converged Hessian matrix of the un-penalized MLE (i.e., $\kappa_1 = \kappa_2 = 0$).

26

Maximum of Penalized likelihood estimator

→ Newton-type algorithms (e.g., R nlm routine)

$$\begin{aligned} &(\hat{\alpha}, \hat{\eta}, \hat{\beta}_{1}, \hat{\beta}_{2}, \hat{r}_{0}, \hat{\lambda}_{0}) \\ &= \arg \max \Big[\ell(\alpha, \eta, \beta_{1}, \beta_{2}, r_{0}, \lambda_{0} \mid \theta) - \kappa_{1} \int \ddot{\gamma}_{0}(t)^{2} dt - \kappa_{2} \int \ddot{\lambda}_{0}(t)^{2} dt \Big] \\ &\text{given } (\theta, \hat{\kappa}_{1}, \hat{\kappa}_{2}) \end{aligned}$$

• Unidentifiability (Tsiatis, 1975) for the copula parameter θ

Sensitivity analysis: try a few
$$\theta$$

 $\theta = 2 \rightarrow \tau(X_{ij}, D_{ij} | u_i) = 0.5$
 $\theta = 8 \rightarrow \tau(X_{ij}, D_{ij} | u_i) = 0.8$

Standard error (SE)

= the converged Hessian of the penalized log-likelihood (O' Sullivan 1988)

(Bayesian derivation: regard penalty as prior)

• 95% confidence interval for β_1

$$\hat{\beta}_{1} \pm 1.96 \times \text{SE}(\beta_{1}) = \hat{\beta}_{1} \pm 1.96 \times \sqrt{-\{\hat{H}_{PL}^{-1}(\kappa_{1},\kappa_{2})\}_{\beta_{1}}}$$

• 95% confidence interval for the baseline hazard $r_0(t)$ is

$$\hat{r}_0(x) \pm 1.96 \times \text{SE}\{\hat{r}_0(x)\} = \mathbf{M}'(x)\hat{\mathbf{g}} \pm 1.96 \times \sqrt{-\mathbf{M}'(x)\{\hat{H}_{PL}^{-1}(\kappa_1,\kappa_2)\}_{\mathbf{g}}\mathbf{M}(x)},$$

where $\mathbf{M}(t) = (M_1(x), \dots, M_{L_r}(x))'.$

Simulations: G=5, N=100 or 200

Simulation settings:

- Frailty: $u_i \sim \text{Gamma } (1/\eta, \eta)$ where $\eta = 0.5$
- Covariate: $Z_{ii} \sim \text{Unif}(0, 1)$
- Joint frailty-copula model

 $\Pr(X_{ij} > x, D_{ij} > y | u_i) = [\exp\{\theta R_{ij}(x | u_i)\} + \exp\{\theta \Lambda_{ij}(y | u_i)\} - 1]^{-1/\theta},$

at
$$\theta = 2 \rightarrow \tau(X_{ij}, D_{ij} | u_i) = 0.5$$
.

• Marginals: $R_{ij}(x | u_i) = u_i r_0 x \exp(\beta_1 Z_{ij}), \quad \Lambda_{ij}(y | u_i) = u_i^{\alpha} \lambda_0 y \exp(\beta_2 Z_{ij})$

where $r_0 = 1$ and $\lambda_0 = 1$

• $C_{ij} \sim \text{Unif}(0, 5)$ \rightarrow 15~31% censored subjects

Simulations: 500 runs, G=5

		$N_{i} = 100$				$N_i = 200$			
		Mean	SD	SE	CP%	Mean	SD	SE	CP%
CEN	$\beta_1 = 1$	1.014	0.173	0.163	0.93	1.017	0.127	0.114	0.94
=15%	$\beta_2 = 1$	1.030	0.170	0.164	0.95	1.007	0.122	0.114	0.95
	η=0.5	0.492	0.305	0.292	0.89	0.476	0.306	0.279	0.87
	$\alpha = 1$	1.008	0.109	0.096	0.94	0.995	0.097	0.065	0.90
	К	30.850	13.886			22.310	15.495		
		Mean	SD	SDE	CP%	Mean	SD	SDE	CP%
CEN	$\beta_1 = 0$	-0.005	0.151	0.144	0.94	0.012	0.098	0.099	0.96
=23%	$\beta_2 = 0$	0.012	0.147	0.145	0.96	0.002	0.099	0.100	0.95
	η=0.5	0.474	0.312	0.282	0.87	0.485	0.300	0.284	0.91
	$\alpha = 1$	1.009	0.115	0.098	0.93	0.998	0.087	0.066	0.91
	К	32.810	12.485			32.940	12.217		

Simulations: 20 runs, G=5

Setting (a): $\beta_1 = 1$, $\beta_2 = 1$, $r_0(x) = 1$ and $\lambda_0(y) = 1$

Data set		The number of the first occurring events		
(GEO accession	Sample size	Relapse	Death	Censoring
number)		$\delta_{ij} = 1$	$\delta_{ij}^* = 1$	$\delta_{ij} = \delta^{*}_{ij} = 0$
GSE17260	$N_1 = 110$	76	0	34
GSE30161	N ₂ = 58	48	2	8
GSE9891	N ₃ = 278	185	2	91
TCGA	N ₄ = 557	266	110	181
Total	$\sum_{i=1}^{4} N_i = 1003$			
Complied from R Bioconductor curatedOvarianData				

package (Ganzfried et al. 2013)

		$\theta = 2$	$\theta = 8$
		Kendall's $\tau = 0.5$	Kendall's $\tau = 0.8$
$\exp(\beta_1)$	RR for TTP (95%CI)	1.26 (1.16-1.36)	1.20 (1.11-1.29)
$\exp(\beta_2)$	RR for OS (95%CI)	1.17 (1.02-1.35)	1.19 (1.09-1.31)
	$\eta = Var_{\eta}(u_i)$ (SE)	0.099 (0.069)	0.106 (0.075)
	ML	-5654.184	-5643.798

* Ganzfried et al. (2013) reported RR=1.15 (1.09-1.23) for OS based on 14 studies

Summary

We proposed a frailty-copula model for dependence between TTP and OS

- Extend the joint frailty model of Rondeau et al. (2011)
- More elaborate model for dependence

→ allow intra-cluster dependence via copulas

Future work

• Unidentifiable problem of copula parameter θ

Sensitivity analysis (try $\theta = 2$, $\theta = 8$)

 We (with Dr. Nakatochi and Murotani) are searching the meta-analysis data of Sabatier et al. (2011 PLoS ONE)
 Merci Beaucoup !