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Abstract 

In this paper the problem of comparing several treatments with a control in a one-way repeated 
measures design is considered. Multiple testing procedures based on rank transformation data are 
proposed for determining which treatments are more effective than the control. The results of a Monte 
Carlo level and power study are presented. 
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1. Introduction 

Let X~ = (Xio, X i l , . . . ,  X ik ) ,  i = 1 . . . .  , n, be a random sample from a cont inuous 
(k + 1)-variate distribution with distribution function F and covariance matrix 
S = (oij). The setting in which the Xij is the response for the ith experimental unit 
receiving the j t h  treatment ( j  = 0 denotes the control) is generally referred to as the 
one-way repeated measures design. When F is a normal distribution function and 
the corresponding covariance matrix Z satisfies a,j = z26ij + fli -[- ~j, where 6~j = 1, 
if i = j, and 0 otherwise, which is commonly  referred to be a spherical matrix (see, 
for instance, Huynh  and Feldt, 1970), the procedure based on the A N O V A  F statis- 
tic is usually employed for testing the equality of the (k + 1) treatments (see, for 
example, Crowder  and Hand,  1990). Note  that, under the assumption of compound  
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symmetry, that is, Z = a 2 [(1 - n)I + roll ']  with - 1/k < rc < 1, where I is an 
identy matrix and 1 is a vector of ones, these repeated measures can be expressed as 
exchangeable random variables when the treatments and the control are equally 
effective. From this point of view, Agresti and Pendergast (1986) considered rank 
tests for detecting treatment effects based on a single ranking of the entire sample 
which are related to the one proposed by Koch (1969) and the rank analog of the 
ANOVA F statistic suggested by Iman et al. (1984), respectively. Kepner and 
Robinson (1988) later provided a theoretic support for the use of these statistics in the 
one-way repeated measures design. Ernst and Kepner (1993) further investigated the 
performance of the rank tests for repeated measures designs via a Monte Carlo study. 

In comparing several treatments with a control, however, procedures that are 
able to decide which treatments (if any) are better than the control would be more 
preferred. To this end, Wang (1992), based on the sample average vector of the 
repeated measures, proposed a multiple comparison procedure for comparing 
k treatments with a control when the normally distributed repeated measures 
satisfy the sphericity condition. However, there are very limited practical situations 
in which the normal assumptions is tenable. Moreover, the central limit theorem 
assures that the mean vector is approximately normal only for sufficiently large 
sample sizes. Sometimes there are technical or economic reasons for taking only 
a few repeated observations and, hence, one cannot rely on the central limit 
theorem for normality. In this case, non-parametric procedures which provide 
practical alternatives for comparing several treatments with a control in the 
one-way repeated measures design would be needed. 

In Section 2 we discuss previously proposed testing procedures. In Section 3 we 
consider rank-based multiple comparisons procedures for determining the treat- 
ments which are more effective than the control. In Section 4 a numerical example 
of studying the lens strength on the visual acuity presented in Crowder and Hand 
(1990) is illustrated. In Section 5 we describe the method of conducting the Monte 
Carlo study investigation of the relative level and power performances of the 
competing multiple testing procedures considered in this paper. In Section 6 we 
present and discuss the simulation results. 

2. The previous work 

Suppose that the independent random vectors Xi are identically distributed to 
a (k + 1)-variate normal distribution with the mean vector/~t = (/~o,/~1, ..., Pk) and 
the covariance matrix 2;. Let 

k 

Xi. = ~ Xij/(k + 1), 
j = 0  

/~ . j  = ~ X i j / n ,  
i=l 

X . . =  ~ X~j/[n(k + 1)]. 
i = l j = O  
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Assume that 2; is spherical in the sense that V ar (X i j  - -  X i j ,  ) remains constant for 
and i and j ~ j ' .  Wang (1992) proposed to claim/~j >/~o if 

w :  ,fn( .j - >- k , k ( n  - 1), o.5), tl)  

where 

k 

MSAB = 
i = l  j = 0  

( X i j  - X i .  - Y x . j  -~- X . ) 2 / [ k ( n  - 1)] ,  

and t(a; k, k(n - 1), 0.5) is the upper ~th percentile of the maximum component  of 
a k-variate equicorrelated t-distribution with k(n - 1) degrees of freedom and the 
common correlation coefficient 0.5 which has been tabulated in Dunnet t  (1964). 
When S is not spherical, however, the level performance of Wang's procedure tends 
to be anti-conservative. Let 2j, j =  1 , . . . , k +  1, be the eigenvalues of 
S ( I  - 1 l t / (k  + 1)), where, again, I is an identy matrix and 1 is a vector of ones. 
Since the 2's being constant is the necessary and sufficient condition for S being 
spherical, Greenhouse and Geisser (1959) defined a measured of departure from the 
spherificity to be 

which is between (including) 1/k and 1. The estimation of the unknown constant 
e has been extensively discussed by Greenhouse and Geisser (1959), Huynh and 
Feldt (1970) among others. Since e is less than 1 when 2; is not spherical, Wang fur- 
ther suggested to replace the critical value t(~; k, k(n - 1), 0.5) by t(ct; k, k(n - 1)g, 
0.5) in the multiple comparison procedure, where g is an estimate of e. 

Let R~j be the rank of X~j among the N = n(k + 1) observations and set 

R~. = ~ R U ( k  + 1), /~.j = Rij/n,  R.. = (N + 1)/2. 
j=o i=1 

Note that, under the assumption of compound symmetry that the components of 
X~ are equally correlated repeated measures on the ith experimental unit, the null 
hypothesis, denoted by Ho, of no treatment effects can be expressed as 

H~: F(Xo, Xl ,  ... ,Xk) = F(X~o,X~ . . . . .  ,x~k) 

for all x t = (Xo, xl . . . .  , Xk) and all permutations (~Zo, n l , . . . ,  ~Zk) of (0, 1 . . . .  , k). Ag- 
resti and Pendergast (1986) then obtained that, when H~ is true, Cov(R~j, Rgj,) = p 
for a l l j  # j ' ,  and Cov(Ri j ,  Ri,j,) = 2 for all j and j '  with i # i'. Note that both p 
and 2 depend on n, the number  of observation vectors. Let t r z=  V a r ( R i j ) =  
(N 2 - 1)/12. They also found 

Var(/~.j) = [1 + (n - 1)2]o'2/n, 
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and 
Cov(R.~, Rj,) = [p + (n - 1)2] 0-2/n 

for j , j '  0, 1, ... ,k and j :~j ' .  Since Var = (Yq=oEj)  = 0 implies 2 = - (1 + kp)/ 
[(k + 1)(n - 1)], the two equations stated above can be rewritten respectively, as 

Var(R.~) = k 0 - 2 ( 1  - p)/N, 

and 
Cov(/~.j, /~.j,) = - o-2(1 - p)/N. 

Agresti and Pendergast then conjectured that the limiting distribution of the 
random variable 

k 

n ~ E/~.j - (N + 1)/232/[0-2(1 - P)3 
j = 0  

is a zZ-distribution with k degrees of freedom, denoted by Z 2, provided that the 
limiting distribution of the random vector R t = (R. 1, ...,/~.k) is a k-variate normal 
distribution. Kepner  and Robinson (1988) latter showed that this conjecture holds 
when H* is true and proved that the two estimators of 0 - 2 ( 1  - -  p )  raised by Agresti 
and Pendergast are both consistent, namely, 

k 

RMSE = ~ ~ (R , j -g , . )E / (nk) ,  (3) 
i = 1  j=O 

n k 

RMSAB = ~ ~ [Rij - R,. - R.j + (N + 1)/212/[k(n - 1)]. (4) 
i = l j = O  

Finally, for testing of H ~, Kepner  and Robinson suggested to use either the Koch's 
(1969) statistic 

k 

n ~ [ R . j  - -  (N + 1)/212/k 
RTI = j=o 

RMSE 

or the rank transformation statistic proposed by Iman et al. (1984) 
k 

n ~ [R.j - (N + 1)/212/k 

RT2 = j=0 
RMSAB 

compared to their limiting z2/k-distribution or to an F-distribution with k and 
k(n - 1) degrees of freedom in the spirit of Iman and Davenport  (1980). Ernst and 
Kepner  (1993) further conducted a Monte  Carlo study to investigate the level and 
power performances of some competing tests for detecting the treatment effects. 
According to their simulation results, the test based on RT2 compared to an 
F-distribution maintains a reasonable level and has a nice power performance for 
non-normal  distributions. 
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3. The proposed multiple test 

Following the results in Kepner and Robinson (1988), we obtain that, under HE, 
the limiting distribution of the random vector {x/~/v/2o-2(1 - p)}(/~.~ - /~ .o , . - . ,  
/~.k --/~.0) is a k-variate normal distribution with mean 0 and covariance matrix 
~' = ( a / j ) ,  where ffii  = 1 and o'i~ = 1/2 for i, j = 1,..., k and i ¢ j. Therefore, the 
limiting distribution of the random variable 

max F x/n (/~ L ---- -R-" -°) l 
,_<)___kL w/2a= (1-- p) J 

is the same as that of the maximum of k equally correlated standard normal 
variates with common correlation 0.5, denoted by z (k ,  0.5). For the form of the 
distribution z ( k ,  0.5), see, for example, Gupta (1963). 

It was observed, in Kepner and Robinson (1988), that both the estimators, 
RMSE and RMSAB stated in (3) and (4), provide consistent estimators oftr2(1 - p). 
Slutsky's theorem then implies that the limiting distribution of the two statistics, 

max L 1' 
1 <_j<_k 

max[_ x/2RMSAB 3' 1 <.j<.k 

is also the distribution z (k ,  0.5). Hence, we consider to claim that the j th  treatment 
is better than the control if 

RMTI" x/~(/~.j - / ~ . o ) / ~  -> z(a; k, 0.5), j = 1 . . . . .  k, (5) 

RMT2: x/~(/~.j - /~ .0) /v /2RMSAB >_ z(~; k, 0.5), j = 1 .... ,k, (6) 

where z(~; k, 0.5) is the upper ath percentile of z (k ,  0.5) which has been extensively 
tabulated in Gupta (1963). However, according to the simulation results in Ernst 
and Kepner (1993), two more multiple testing procedures utilizing the statistics in 
(5) and (6), respectively, but different critical value, namely, t(~; k, k (n  - 1), 0.5) as 
stated in (1), are obtained which suggest to claim that the j th  treatment is better 
than the control if 

RMT*: w/-n(/~.j - / ~ . o ) / ~  > t ( a ; k , k ( n  - 1),0.5), j = 1, ... ,k, (7) 

RMT*: x/~(/~.; - /~ .o) /x /2RMSAB > t ( ~ ; k , k ( n  - 1),0.5), j --- 1 .... ,k, (8) 

Note that, if the assumption of compound symmetry does not hold, the null 
hypothesis Ho may not be expressed as H~. In this case, as we will see from the 
simulation results in Section 6, the proposed multiple procedure, RMT~, tends to 
be anti-conservative in the level performance. To determine which treatments are 
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more  effective than the control  in such a setting, we consider a modified procedure 
analogous  to the parametr ic  adjus tment  employed by Wang (1992). For  simplicity, 
however,  we use the smallest value of e, 1/k, and then modify the procedure by 
compar ing  its test statistic with t(7; k, n - 1). 

4. An example 

To investigate the effect of the lens strength on the visual acuity, the response 
times of the eyes each th rough  lenses of powers 6/6, 6/18, 6/36 and 6/60 to 
a stimulus (a light flash) were measured,  where, for example, the power 6/36 
indicates that  the magnificat ion is such that  the eye will perceive as being at 6 ft an 
object actually posi t ioned at a distance of 36 ft. The data  in Table 1 is the time lag 
(milliseconds) between the st imulus and the electrical response at the back of the 
cortex. [These data  correspond to the left eye visual acuity with varying lens 
strength as given in Table 3.2 of Crowder  and Hand  (1990).] 
We calculate the following statistics based on the original data: 

X1. = 118.75, ~r2 .  = 112.25, X3. = 118.75, X4. = 114, Xs. = 114.75, 

X6. = I l l ,  X'7. = 110.75, X.o = 113.86, X.x = 114.57, 

X.2 = 111.14, X 3  = 117.71, X .  = 114.32. 

It can be compu ted  that  MSAB = 23.16 and hence 

x / ~ ( X 1 - X . o ) / 2 ~ A B = 0 . 2 7 6 ,  

x /~(X 2 - X . o ) / x / 2 M S A B  = - 1.048, 

x/~(X.3 - X . o ) / x / 2 M S A B  = 1.489. 

We observe, f rom Dunne t t  (1964), that  t(0.10; 3, 18, 0.5) = 1.82. Therefore, Wang's  
procedure  leads to claim that, under  level ~ = 0.10, there is no effect of the lens 
strength on the visual acuity. Now, we calculate the following statistics based on the 
rank t ransformat ion data: 

/~1. = 21.875, /~2 .  = 8.5, /~3. = 23.75, 

/~6. = 14.25, /~7. = 8.25, /~.0 = 12.36, 

/~.z = 11.85, R.3 = 19.79 /~.. = 14.50 

/~,. = 11.75, 

/~.1 = 14.00, 

/~5. = 13.125, 

It can be compu ted  that  RMSAB = 35.08 and thus 

x/~(/~. 1 - / ~ . o ) / x / Z R M S A B  = 0.518, 

x/~(/~.z - / ~ . o ) / x / Z R M S A B  = -- 0.158, 

x//-n(R. 3 -- R .o ) /x /ZRMSAB = 2.344. 
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Table 1 
Visual acuity with varying lens strength 

Subject 6/6 6/18 6/36 6/60 

1 116 119 116 124 
2 110 110 114 115 
3 117 118 120 120 
4 112 116 115 113 
5 113 114 114 118 
6 119 115 94 116 
7 110 110 105 118 

Hence, we conclude, at the 10% significance level, that the lens of power 6/60 
results in less visual acuity than that of power 6/6. Note that, using the sample 
covariance matrix in computing e in (2), we obtain the Greenhouse and Geisser's 
estimator of e which is 0.428. For simplicity, we use the smallest value of e, namely, 
1 7, to obtain the modified critical value t(0.10; 3, 6, 0.5) = 2.02. (In fact, under the 
sample correlation structure, the approximate level of the modified testing proced- 
ure obtained from a simulation study based on 5000 replications is 0.0878.) It is 
obvious that our conclusion still holds. 

5. Methodology 

We conducted a Monte  Carlo study to examine the relative levels and powers of 
Wang's (1992) procedure and the multiple tests suggested in this paper for compar- 
ing several treatments with a control in a one-way repeated measures design. We 
considered k = 3 and 4 treatments with n = 10, 20 and 30 observations in the level 
study and n = 10 and 20 in the power study. For each of these settings, multivariate 
normal, multivariate t with 10 degrees of freedom (d.f.), multivariate Cauchy (i.e. 
multivariate t with 1 d.f.) and multivariate exponential distributions were con- 
sidered as the underlying distributions. For the definitions of multivariate normal, 
multivariate t and multivariate Cauchy, see, for example, Fang et al. (1990). Note 
that multivariate t with 10 d.f. represents the symmetric and moderately heavy- 
tailed distribution, multivariate Cauchy represents the symmetric and heavy-tailed 
distribution and multivariate exponential represents the asymmetric distribution. 

This Monte Carlo study was implemented on a VAX 9320 computer at National 
Central University and all programmings were done in F O R T R A N  77. The 
International Mathematical and Statistical Libraries (IMSL) routine R N M V N  was 
used to generate multivariate normal with zero mean vector and covariance matrix 
S, denoted by Z. The IMSL routine RNCHI  was employed to generate the 
chi-squared with v d.f. variates, denoted by U. The multivariate t variates were then 

formulated by Z/x//-U-/v. Moreover, the algorithm provided by Sim (1993) was 
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employed to generate the appropriate multivariate exponential variates. Note that, 
in generating multivariate normal, t and cauchy variates, the common correlation 
p#, = 0.2 and 0.8 and unequal correlation pjj, = 0.5 Ij-j'l were considered for the Z. 
The three different correlation structures were also used for the multivariate 
exponential variates. In the level study, the multivariate normal (t, Cauchy, ex- 
ponential) distribution with standard normal (t, Cauchy, exponential) marginal 
distributions was considered. In the power study, we used the multivariate normal 
(t, Cauchy, exponential) distribution with various values of location parameters, 
denoted by 0o, 01, . . . ,  Ok, and the designated treatment effects configurations cor- 
respond to values of Oio = Oi - Oo for i = 1, . . . ,  k. 

The experiment-wise error rate (proportion of experiments with at least one 
treatment erroneously declared more effective than the control) was utilized to 
evaluate the level performances of the multiple test procedures under consideration. 
The experiment-wise power (probability of correctly detecting at least one treat- 
ment which is better than the control) and the comparison-wise power (probability 
of correctly detecting all the treatments which are better than the control) were 
employed to assess the power performances of the testing procedures. The results of 
the level study are presented in Table 3 and those of the power study are reported in 

Table 2 
Summary statistics for judging the adequacy of  the s imulation 
(a) Multivariate normal 

0 r=0 ,  j = 0 ,  1,2, 3 

PJr' = 0.2, j g:j '  Prr' = 0.8, j :/:j ' Prr' = 0.51~_~,1, j :/:j, 

n =  10 

PJr',J <-J' 

n = 20 

Pir',J <J'  

n = 30 

pjj,,j <_j' 

0 j = 0 ,  j = 0 ,  1,2, 3 

0.995 0.194 0.200 0.193 0.995 0.798 0.794 0.797 1.008 0.500 0.255 0.153 

0.993 0.198 0.198 0.998 0.794 0.800 0.996 0.503 0.198 

0.999 0.192 0.990 0.794 1.009 0.504 

0.997 0.996 1.002 

0.992 0.200 0.204 0.203 1.005 0.806 0.807 0.807 0.993 0.495 0.247 0.125 

0.991 0.196 0.198 1.007 0.808 0.808 0.995 0.497 0.249 

1.003 0.202 1.007 0.808 0.998 0.497 

1.001 1.008 0.996 

1.001 0.194 0.201 0.201 0.991 0.797 0.795 0.794 1.001 0.503 0.252 0.123 

0.997 0.202 0.204 1.002 0.798 0.798 1.003 0.504 0.250 

1.003 0.202 0.996 0.796 1.005 0.501 

0.998 0.994 1.000 
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(b) Multivariate exponential 

243 

Oi=O, j=O,  1, 2, 3 

PJJ" = 0.2, j # j '  flJJ' -- 0.8, j # j '  flJJ' = 0.5 Ii-j'l, j :~j' 

n =  10 

0j 
pjj,,j <j '  

n = 20 

0j 
pjj,,j <j '  

n = 30 

0j 

Pjj', J _<j' 

1.003 1.006 1.007 1.002 

1.012 0.204 0.206 0.212 

1.001 0.214 0.214 

1.012 0.205 

1.012 

1.000 1.002 1.005 1.004 

0.998 0.198 0.198 0.209 

1,002 0.205 0.203 

1.009 0.199 

1.008 

1.003 1.002 1.003 1002 

0.999 0.201 0.197 0.203 

1.006 0.203 0.208 

1.008 0.199 

1.007 

1.004 1.003 1.008 1.010 

1.013 0.809 0.806 0.800 

1.009 0.815 0.806 

1.012 0.811 

1.003 

1.000 0.996 1.005 1.008 

1.004 0.802 0.806 0.808 

0.998 0.807 0.807 

1.006 0.812 

1.008 

1.000 1.000 1.007 1.003 

1.007 0.809 0.808 0.804 

1.009 0.805 0.808 

1.004 0.806 

1.006 

1.003 1.005 1.005 1.011 

1.000 0.497 0.253 0.117 

1.008 0.504 0.248 

1.015 0.509 

1.013 

0.999 0.996 0.998 1.012 

0.994 0.491 0.247 0.120 

0.992 0,498 0.254 

0,996 0.506 

1.009 

0.998 0.999 0.998 1.005 

0.995 0.497 0.247 0.126 

0.997 0.500 0.259 

0.998 0.495 

1.000 

Tables  4 and  5. Since, in each case, we used 5000 repl icat ions in ob ta in ing  the 

es t imated er ror  rate or  power  under  the nomina l  level ~ = 0.05, we are gua ran teed  

a s t anda rd  e r ror  no t  greater  t han  0.0031 for es t imat ing the experiment-wise  e r ror  

rate. We then indicate,  by  + ( - ) signs, whenever  the es t imated er ror  rate is two or  

m o r e  s t anda rd  errors  above  (below) 0.05. 

6. Results 

6.1. A d e q u a c y  o f  the data generat ion  

To  assess the a d e q u a c y  of  the da t a  generat ion,  we compu ted ,  based on 5000 

replications,  the average  m e a n  vec tor  and  average  cor re la t ion  coefficients of  the 

genera ted  da ta  f rom (k + 1)-dimensional  no rma l  or  exponent ia l  d is t r ibut ion with 
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Table 3 
Experiment-wise error rate estimates for c~ = 0.05 

k = 3  k = 4  

Distribution n z RMTI RMT2 RMT* RMT* W RMT~ RMT2 RMT* RMT* W 

Multivariate 10 0,2 0.048 0.060+ 0.036- 0.048 0.048 0.049 0.059+ 0.038- 0.049 0.048 
normal 0,8 0.053 0.065+ 0.041- 0.053 0.053 0.047 0.060+ 0.039- 0.050 0.052 

0.5" 0.056 0.068+ 0.046 0.059+ 0.057+ 0.055 0.065+ 0.047 0.059+ 0.057+ 
20 0.2 0.050 0.056 0.045 0.052 0.048 0.049 0.054 0.045 0.048 0.052 

0.8 0.050 0.056 0.046 0 . 0 5 1  0.056 0.050 0.056 0.047 0.052 0.051 
0.5" 0.060+ 0.064+ 0.056 0.060+ 0.063+ 0.058+ 0.059+ 0.050 0.057+ 0.058+ 

30 0.2 0.054 0.057+ 0.051 0.054 0.054 0.053 0.057+ 0.050 0.053 0.054 
0.8 0.050 0.054 0.045 0.050 0.046 0.047 0.050 0.044 0.048 0.047 
0.5" 0.062+ 0.065+ 0.057+ 0.061+ 0.061+ 0.058+ 0.062+ 0.057+ 0.059+ 0.060+ 

Multivariate 10 0.2 0.050 0.061+ 0.038- 0.053 0.054 0.050 0.060+ 0.040- 0.052 0.051 
t with 10d.f. 0.8 0.048 0.060+ 0.037- 0.048 0.052 0.055 0.065+ 0.045 0.056 0.057+ 

0.5" 0.059+ 0.072+ 0.049 0.061+ 0.061+ 0.063+ 0.073+ 0.051 0.061+ 0.060+ 
20 0.2 0.049 0.054 0.044 0.049 0.050 0.047 0.052 0.041- 0.047 0.047 

0.8 0.053 0.059+ 0.047 0.056 0.050 0.048 0.052 0.043- 0.048 0.047 
0.5" 0.058+ 0.064+ 0.055 0.059+ 0.058+ 0.058+ 0.063+ 0.051 0.059+ 0.057+ 

30 0.2 0.052 0.055 0.048 0.052 0.052 0.049 0.052 0.045 0.048 0.049 
0.8 0.054 0.057 + 0.050 0.054 0 . 0 5 1  0 . 0 5 1  0.054 0.048 0.050 0.047 
0.5 a 0.058+ 0.062+ 0.053 0.058+ 0.060+ 0.063+ 0.066+ 0.060+ 0.063+ 0.064+ 

Multivariate 10 0.2 0.046 0.055 0.036- 0.047 0.031- 0.046 0.060+ 0.037- 0.049 0 .030-  
Cauchy 0.8 0.047 0.057+ 0.034- 0.046 0 .034-0 .044  0.057+ 0.035- 0.046 0.033- 

0.5" 0.058+ 0.069+ 0.045 0.057+ 0.033- 0.055 0.064+ 0.045 0.058+ 0.036- 
20 0.2 0.050 0.055 0.044 0.049 0.029- 0.045 0.050 0.038- 0.045 0 .031-  

0.8 0.053 0.059+ 0.048 0.054 0.034- 0.049 0.053 0.047 0.049 0.030- 
0.5" 0.058+ 0.063+ 0.051 0.057+ 0.036- 0.061+ 0.066+ 0.055 0.062+ 0.036- 

30 0.2 0 .051  0.048 0.053 0.051 0.032- 0.049 0.053 0.047 0.049 0.030- 
0.8 0.050 0.047 0.053 0.050 0.032- 0.044 0.046 0.040- 0.044 0.031- 
0.5 a 0.059+ 0.055 0.063+ 0.059+ 0.040- 0.057+ 0.058+ 0.053 0.057+ 0.038- 

Multivariate 10 0.2 0.045 0.060+ 0.035- 0.047 0.047 0.048 0.060+ 0.038- 0.051 0.056 
exponential 0.8 0.046 0.058+ 0.036- 0.045 0.036- 0.045 0.057+ 0.037- 0.045 0.040- 

0.5" 0.061+ 0.072+ 0.050 0.062+ 0.060+ 0.062+ 0.074+ 0.051 0.064+ 0.067+ 
20 0.2 0.044 0.049 0.039- 0.044 0.046 0.049 0.053 0.043- 0.049 0.050 

0.8 0.045 0.050 0.041- 0.045 0.042- 0.046 0.049 0.041- 0.045 0.043- 
0.5" 0.060+ 0.064+ 0.054 0.060+ 0.059+ 0.071+ 0.077+ 0.068+ 0.072+ 0.067+ 

30 0.2 0.048 0.053 0.046 0.048 0.050 0.048 0.052 0.045 0.049 0.050 
0.8 0.053 0.056 0.048 0.053 0.050 0.052 0.054 0.049 0.052 0.047 
0.5" 0.062+ 0.065 + 0.058 + 0.062+ 0.059+ 0.076+ 0.080+ 0.073+ 0.076+ 0.075+ 

.pjj, = 0.5 u-j't 
+ ( - ) :  At least two standard error above (below) ~ = 0.05. 

sample sizes n = 10, 20 and 30, respectively. The adequacy of the data generation 
for k = 3 and k = 4 is quite similar. Therefore, we only summarized the results for 
k = 3 in Table 2. By comparing these summarized statistics with their theoretical 
counterparts, the simulated data seem to possess approximately the desired distri- 
butional properties. 
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6.2. C o m p a r i s o n  o f  tes t ing  p r o c e d u r e s  

W h e n  the r epea t ed  m e a s u r e s  have  a c o m m o n  in te rva r i ab le  co r re l a t ion  coeffic- 

ient, it is evident ,  u p o n  e x a m i n a t i o n  of  T a b l e  3, tha t  b o t h  the tes t ing procedures ,  
R M T 1  (Eq. (5)) a n d  R M T ~  (Eq. (8)), r e a s o n a b l y  m a i n t a i n  their  levels. In  this case, 

the tes t ing p rocedure ,  R M T *  (Eq. (7)) tends  to be conse rva t ive  in ho ld ing  its level, 
while the level p e r f o r m a n c e  of  R M T 2  (Eq. (6)) is an t i -conserva t ive ,  especially,  for 
the case of  smal l  s am p l e  size c o r r e s p o n d i n g  to n = 10. W h e n  the in te rva r i ab le  
co r r e l a t i on  coefficients are  unequa l ,  however ,  all the tes t ing p r o c e d u r e s  m e n t i o n e d  
a b o v e  tend  to  be  an t i -conserva t ive .  Therefore ,  in the p o w e r  c o m p a r i s o n ,  we s imply  

cons ide red  the tes t ing p rocedures ,  R M T 1  and  R M T ~  for  the case of  equa l  cor re la -  

t ion.  
W a n g ' s  p rocedure ,  W (Eq. (1)), ho lds  its level qui te  well when  the r epea ted  

m e a s u r e s  are  d i s t r ibu ted  to the equa l ly  co r re l a t ed  mu l t i va r i a t e  t wi th  10 d.f. or  

Table 4(a) 
Experiment-wise power estimates for ct = 0.05 and k = 3 

n = 10 n = 20 

Distribution z 010 020 030 RMT1 RMT* W RMT1 RMT~ W 

Multivariate 0.2 0.0 0.0 0.4 0.138 0 . 1 4 8  0.151 0.230 0.241 0.255 
normal 0.0 0.2 0.4 0.161 0 . 1 6 3  0.168 0.260 0 .269  0.283 

0.2 0.4 0.4 0.221 0.224 0.230 0.378 0.380 0.397 
0.8 0.0 0.0 0.4 0.359 0 . 3 9 3  0.451 0.692 0 .715 0.782 

0.0 0.2 0.4 0.395 0 . 4 2 3  0.478 0.720 0.736 0.797 
0.2 0.4 0.4 0.553 0 . 5 5 7  0.606 0.851 0.854 0.900 

Multivariate 0.2 0.0 0.0 0.4 0.128 0 . 1 3 6  0.141 0.209 0 .216  0.215 
t with 10 d.f. 0.0 0.2 0.4 0.146 0.150 0.157 0.237 0.242 0.241 

0.2 0.4 0.4 0.211 0 . 2 1 4  0.212 0.290 0 .296  0.300 
0.8 0.0 0.0 0.4 0.327 0 . 3 5 5  0.386 0.615 0.640 0.665 

0.0 0.2 0.4 0.365 0.390 0.413 0.646 0 .663 0.686 
0.2 0.4 0.4 0.514 0 . 5 2 1  0.549 0.792 0.794 0.812 

Multivariate 0.2 0.0 0.0 0.4 0.082 0 . 0 8 6  0.044 0.116 0.120 0.046 
Cauchy 0.0 0.2 0.4 0.093 0 . 0 9 7  0.050 0.137 0 .140  0.052 

0.2 0.4 0.4 0.129 0 . 1 3 3  0.063 0.189 0 ,191 0.068 
0.8 0.0 0.0 0.4 0.178 0 . 1 8 9  0.086 0.276 0 .285 0.089 

0.0 0.2 0.4 0.204 0 . 2 1 2  0.097 0.309 0.304 0.101 
0.2 0.4 0.4 0.292 0.292 0.130 0.415 0 .417  0.139 

Multivariate 0.2 0.0 0.0 0.4 0.237 0 . 2 5 4  0.176 0.472 0 .494  0.287 
exponential 0.0 0.2 0.4 0.279 0 . 2 9 3  0.200 0.516 0 .531 0.321 

0.2 0.4 0.4 0.398 0.400 0.277 0.651 0 .653  0.440 
0.8 0.0 0.0 0.4 0.697 0 . 7 5 0  0.598 0.933 0 .946  0.804 

0.0 0.2 0.4 0.753 0.786 0.609 0.947 0 .955  0.815 
0.2 0.4 0.4 0.852 0 . 8 5 7  0.705 0.981 0 .981 0.893 
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Table 4(b) 
Experiment-wise power estimates for ~ = 0.05 and k = 4 

Distribution 

n = 10 n = 20 

-c 01o 020 030 040 RMT1 RMT~ W RMT1 RMT~ W 

Multivariate 0.2 0.0 0.0 0.0 0.4 0 .123 0 . 1 3 3  0 . 1 3 9  0.226 0 . 2 3 5  0.248 
normal 0.0 0.0 0.4 0.4 0 .175 0.190 0 . 1 9 8  0.332 0.344 0.356 

0.2 0.2 0.4 0.4 0 .205 0 . 2 0 7  0.224 0 . 3 6 5  0 . 3 6 7  0.380 
0.8 0.0 0.0 0.0 0.4 0 .346 0.379 0 . 4 3 3  0.644 0 . 6 6 7  0.735 

0.0 0.0 0.4 0.4 0 .479 0 . 5 2 9  0.582 0 . 7 8 8  0 . 8 1 9  0.865 
0.2 0.2 0.4 0.4 0.546 0 . 5 5 6  0.600 0 . 8 2 7  0.830 0.870 

Multivariate 0.2 0.0 0.0 0.0 0.4 0.110 0.116 0.120 0 . 1 8 8  0 . 1 9 5  0.193 
t with 10d.f. 0.0 0.0 0.4 0.4 0.163 0 . 1 7 6  0.174 0 . 2 7 9  0 . 2 9 0  0.290 

0.2 0.2 0.4 0.4 0 .195 0 . 1 9 8  0 . 1 9 3  0 . 3 1 5  0 . 3 1 7  0.313 
0.8 0.0 0.0 0.0 0.4 0 .312 0 . 3 4 1  0.362 0.592 0.614 0.642 

0.0 0.0 0.4 0.4 0 .428 0 . 4 7 5  0 . 4 9 8  0 . 7 4 7  0 . 7 7 8  0.789 
0.2 0.2 0.4 0.4 0.486 0 . 4 9 2  0 . 5 2 1  0 . 7 8 9  0 . 7 9 2  0.797 

Multivariate 0.2 0.0 0.0 0.0 0.4 0 .073 0 . 0 7 8  0.042 0 . 1 0 2  0 . 1 0 2  0.044 
Cauchy 0.0 0.0 0.4 0.4 0.100 0 . 1 0 5  0.052 0 . 1 4 8  0 . 1 5 2  0.055 

0.2 0.2 0.4 0.4 0 .119 0 . 1 2 1  0 . 0 6 1  0 . 1 7 1  0 . 1 7 3  0.063 
0.8 0.0 0.0 0.0 0.4 0.156 0 . 1 6 5  0.074 0 . 2 4 9  0 . 2 5 7  0.079 

0.0 0.0 0.4 0.4 0.222 0.244 0 . 1 0 8  0 . 3 5 7  0.372 0.110 
0.2 0.2 0.4 0.4 0.263 0 . 2 6 7  0 . 1 2 3  0 . 3 9 3  0 . 3 9 6  0.123 

Multivariate 0.2 0.0 0.0 0.0 0.4 0 .229 0.246 0 . 1 7 8  0 . 4 6 9  0 . 4 8 6  0.288 
exponential 0.0 0.0 0.4 0.4 0 .318 0 . 3 4 6  0 . 2 5 2  0 . 5 7 7  0 . 6 0 7  0.388 

0.2 0.2 0.4 0.4 0 .393 0 . 3 9 9  0 . 2 7 8  0 . 6 4 1  0 . 6 4 3  0.418 
0.8 0.0 0.0 0.0 0.4 0.689 0.730 0 . 5 7 1  0 . 9 2 9  0.940 0.783 

0.0 0.0 0.4 0.4 0 .775 0 . 8 3 5  0.692 0 . 9 6 3  0 . 9 7 3  0.879 
0.2 0.2 0.4 0.4 0 .855 0 . 8 6 5  0 . 6 9 6  0.976 0 . 9 7 8  0.881 

m u l t i v a r i a t e  no rm a l .  F o r  the se t t ing where  the  r epea t ed  m e a s u r e s  are  d i s t r ibu ted  to 
the mu l t i va r i a t e  exponen t i a l  wi th  c o m m o n  co r r e l a t i on  0.8, the level p e r f o r m a n c e  of  

W tends  to be  conse rva t ive  unless the s amp le  size is large a b o u t  30. W a n g ' s  
p r o c e d u r e  also has  an  inf la ted e r ro r  ra te  when  the in te rva r i ab le  co r r e l a t i on  coeffic- 
ients are  un equa l  for  all d i s t r ibu t ions  except  the case of  mu l t i va r i a t e  c a u c h y  where  
the e r ro r  ra te  is a l r e ady  re la t ively  conse rva t ive  w h e n  the coefficients are equal.  

T h e  p o w e r  es t imates  in Tab le s  4 a n d  5 show tha t  R M T ~  is sl ightly be t te r  t h a n  
R M T 1  in c o m p a r i n g  several  t r e a t m e n t s  wi th  a con t ro l  in o n e - w a y  r epea t ed  
m e a s u r e s  designs.  W h e n  the  m u l t i v a r i a t e  d i s t r ibu t ion  is n o r m a l  or  t with 10 d.f., 
R M T ~  is slightly less power fu l  t h a n  the W a n g ' s  p r o c e d u r e  W. W h e n  the mul t iva r i -  

a te  d i s t r ibu t ion  is exponen t i a l ,  however ,  W a n g ' s  p r o c e d u r e  p e r f o r m s  poor ly .  In  this 
case, b o t h  the p rocedures ,  R M T 1  and  R M T * ,  have  be t t e r  p o w e r  p e r f o r m a n c e s  t h a n  
W. M o r e o v e r ,  for  the  m u l t i v a r i a t e  C a u c h y  d is t r ibu t ion ,  a l t h o u g h  it does  no t  seem 
to  be  fair  to c o m p a r e  di rect ly  the p o w e r  p e r f o r m a n c e s  of  R M T ~  a n d  W a n g ' s  
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procedure since the estimated level of RMT~ is roughly 1.5 (less than 2, anyway) 
times of that of W, the estimated power of RMT* is 2 to 3 times of that of W. The 
increase in power compared to the favored level indicates, however, that the power 
performance of RMT~ is better than that of Wang's procedure. 

As a direct consequence of simulation results, we recommend to use the rank- 
based multiple testing procedure RMT* when the assumption of compound sym- 
metry is tenable for two reasons. First, the procedure RMT~' has a reasonable level 
performance across a variety of distributions, while the Wang's procedure W does 
not hold its level for either a symmetric and heavy-tailed distribution or an 
asymmetric distribution with small sample size about 20. Second, the procedure 
RMT~ performs better in power than the Wang's procedure W for an asymmetric 
or a symmetric and heavy-tailed distribution and it can be regarded as a valid 
competitor to W for a normal or a symmetric and moderately heavy-tailed 
distribution. 

Table 5(a) 
Comparison-wise power estimates for c~ = 0.05 and k = 3 

n = 10 n = 20 

Distribution r 01o 020 030 RMT1 RMT* W RMT1 RMT* W 

Multivariate 0.2 0.0 0.0 0.4 0.052 0.058 0.058 0.086 0.091 
normal 0.0 0.2 0.4 0.063 0.068 0.070 0.106 0.113 

0.2 0.4 0.4 0.096 0.104 0.107 0.178 0.187 
0.8 0.0 0.0 0.4 0.127 0.144 0.163 0.239 0.252 

0.0 0.2 0.4 0.157 0.180 0.203 0.302 0.326 
0.2 0.4 0.4 0.276 0.304 0.340 0.524 0.551 

Multivariate 0.2 0.0 0.0 0.4 0.049 0.055 0.056 0.077 0.082 
t with 10 d.f. 0.0 0.2 0.4 0.059 0.065 0.057 0.099 0.104 

0.2 0.4 0.4 0.090 0.100 0.098 0.159 0.165 
0.8 0.0 0.0 0.4 0.117 0.131 0.142 0.214 0.227 

0.0 0.2 0.4 0.145 0.165 0.176 0.268 0.289 
0.2 0.4 0.4 0.250 0.277 0.298 0.474 0.499 

Multivariate 0.2 0.0 0.0 0.4 0.031 0.036 0.017 0.043 0.046 
Cauchy 0.0 0.2 0.4 0.035 0.039 0.019 0.054 0.056 

0.2 0.4 0.4 0.052 0.058 0.025 0.081 0.085 
0.8 0.0 0.0 0.4 0.064 0 . 0 7 1  0.032 0.099 0.105 

0.0 0.2 0.4 0.080 0.088 0.039 0.122 0.129 
0.2 0.4 0.4 0.130 0.141 0.059 0.206 0.218 

Multivariate 0.2 0.0 0.0 0.4 0.087 0.097 0.064 0.168 0.180 
exponential 0.0 0.2 0.4 0.116 0 . 1 3 1  0.078 0.220 0.237 

0.2 0.4 0.4 0.201 0.219 0.125 0.376 0.393 
0.8 0.0 0.0 0.4 0.236 0.264 0.211 0.316 0.330 

0.0 0.2 0.4 0.319 0.385 0.281 0.458 0.509 
0.2 0.4 0.4 0.544 0.613 0.467 0.741 0.790 

0.095 
0.118 
0.195 
0.275 
0.356 
0.602 

0.081 
0.106 
0.164 
0.235 
0.300 
0.516 

0.017 
0.020 
0.027 
0.033 
0.038 
0.060 

0.104 
0.130 
0.215 
0.280 
0.391 
0.642 
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Table 5(b) 
Comparison-wise power estimates for ~ = 0.05 and k = 4 

Distribution 

n - :  1 0  n = 20 

01o Ozo 03o 04o RMT1 RMT* W RMT1 RMT* W 

Multivariate 0.2 0.0 0.0 0.0 0.4 0.036 0.041 0.041 0.064 0.067 0.072 
normal 0.0 0.0 0.4 0.4 0.055 0.063 0.066 0,110 0.118 0.123 

0.2 0.2 0.4 0.4 0.070 0.076 0.082 0.138 0.145 0.150 
0.8 0.0 0.0 0.0 0.4 0.093 0.105 0.119 0.169 0.178 0.195 

0.0 0.0 0.4 0.4 0.164 0.195 0.219 0.316 0.345 0.376 
0.2 0.2 0.4 0.4 0.218 0.242 0.271 0.411 0.438 0.482 

Multivariate 0.2 0.0 0.0 0.0 0.4 0.032 0.037 0.037 0.053 0.056 0.056 
t with 10 d.f. 0.0 0.0 0.4 0.4 0.052 0.060 0.058 0.092 0.099 0.098 

0.2 0.2 0.4 0.4 0.066 0.073 0.072 0.118 0.122 0.121 
0.8 0.0 0.0 0.0 0.4 0.085 0.097 0.103 0.155 0.164 0.171 

0.0 0.0 0.4 0.4 0.146 0.176 0.186 0.290 0.317 0.329 
0.2 0.2 0.4 0.4 0.195 0.217 0.213 0.374 0.395 0.415 

Multivariate 0.2 0.0 0.0 0.0 0.4 0.022 0.025 0.012 0.030 0.031 0.013 
Cauchy 0.0 0.0 0.4 0.4 0.032 0.035 0.016 0.046 0.049 0.017 

0.2 0.2 0.4 0.4 0.040 0.043 0.020 0.058 0.061 0.021 
0.8 0.0 0.0 0.0 0.4 0.043 0.047 0.021 0.068 0.072 0.023 

0.0 0.0 0.4 0.4 0.071 0.083 0.033 0.121 0 . 1 3 1  0.035 
0.2 0.2 0.4 0.4 0.093 0.102 0.041 0.155 0.163 0.043 

Multivariate 0.2 0.0 0.0 0.0 0.4 0.065 0.073 0.050 0.128 0.135 0.078 
exponential 0.0 0.0 0.4 0.4 0.113 0.133 0,080 0.226 0.248 0.133 

0.2 0.2 0.4 0.4 0.162 0.181 0.098 0.305 0 . 3 2 1  0.165 
0.8 0.0 0.0 0.0 0.4 0.175 0.195 0.154 0.237 0.248 0.208 

0.0 0.0 0.4 0.4 0.325 0.377 0.293 0.457 0.478 0.396 
0.2 0.2 0.4 0.4 0.462 0.539 0.391 0.651 0.707 0.541 
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