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Abstract

In this paper the problem of comparing several treatments with a control in a one-way repeated
measures design is considered. Multiple testing procedures based on rank transformation data are
proposed for determining which treatments are more effective than the control. The results of a Monte
Carlo level and power study are presented.
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1. Introduction

Let X! = (X0, Xi1,..-»Xu), i = 1,..., n,be a random sample from a continuous
(k + 1)-variate distribution with distribution function F and covariance matrix
2 = (0y;). The setting in which the X; is the response for the ith experimental unit
receiving the jth treatment (j = 0 denotes the control) is generally referred to as the
one-way repeated measures design. When F is a normal distribution function and
the corresponding covariance matrix ¥ satisfies o;; = t2d;; + f; + f;, where ;; = 1,
if i = j, and 0 otherwise, which is commonly referred to be a spherical matrix (see,
for instance, Huynh and Feldt, 1970), the procedure based on the ANOVA F statis-
tic is usually employed for testing the equality of the (k + 1) treatments (see, for
example, Crowder and Hand, 1990). Note that, under the assumption of compound
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symmetry, that is, X = ¢?[(1 — n)] + n11'] with — 1/k < <1, where I is an
identy matrix and 1 is a vector of ones, these repeated measures can be expressed as
exchangeable random variables when the treatments and the control are equally
effective. From this point of view, Agresti and Pendergast (1986) considered rank
tests for detecting treatment effects based on a single ranking of the entire sample
which are related to the one proposed by Koch (1969) and the rank analog of the
ANOVA F statistic suggested by Iman et al. (1984), respectively. Kepner and
Robinson (1988) later provided a theoretic support for the use of these statistics in the
one-way repeated measures design. Ernst and Kepner (1993) further investigated the
performance of the rank tests for repeated measures designs via a Monte Carlo study.

In comparing several treatments with a control, however, procedures that are
able to decide which treatments (if any) are better than the control would be more
preferred. To this end, Wang (1992), based on the sample average vector of the
repeated measures, proposed a multiple comparison procedure for comparing
k treatments with a control when the normally distributed repeated measures
satisfy the sphericity condition. However, there are very limited practical situations
in which the normal assumptions is tenable. Moreover, the central limit theorem
assures that the mean vector is approximately normal only for sufficiently large
sample sizes. Sometimes there are technical or economic reasons for taking only
a few repeated observations and, hence, one cannot rely on the central limit
theorem for normality. In this case, non-parametric procedures which provide
practical alternatives for comparing several treatments with a control in the
one-way repeated measures design would be needed.

In Section 2 we discuss previously proposed testing procedures. In Section 3 we
consider rank-based multiple comparisons procedures for determining the treat-
ments which are more effective than the control. In Section 4 a numerical example
of studying the lens strength on the visual acuity presented in Crowder and Hand
(1990) is illustrated. In Section 5 we describe the method of conducting the Monte
Carlo study investigation of the relative level and power performances of the
competing multiple testing procedures considered in this paper. In Section 6 we
present and discuss the simulation results.

2. The previous work

Suppose that the independent random vectors X; are identically distributed to
a (k + 1)-variate normal distribution with the mean vector g = (yo, uy, ..., ) and
the covariance matrix X. Let
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Assume that X is spherical in the sense that Var(X;; — X;;-) remains constant for
and i and j # j'. Wang (1992) proposed to claim u; > po if

W: . /n(X.; — X o)/~ 2MSAB > t(x; k, k(n — 1), 0.5), (1)

where

MSAB =Y Y (Xy—Xi — X+ X.)%/[kn — 1),

i=1j=0

and t(x; k, k(n — 1), 0.5) is the upper ath percentile of the maximum component of
a k-variate equicorrelated t-distribution with k(n — 1) degrees of freedom and the
common correlation coefficient 0.5 which has been tabulated in Dunnett (1964).
When X is not spherical, however, the level performance of Wang’s procedure tends
to be anti-conservative. Let 4;, j=1,...,k+ 1, be the eigenvalues of
Z(I — 11'/(k + 1)), where, again, I is an identy matrix and 1 is a vector of ones.
Since the A’s being constant is the necessary and sufficient condition for X being
spherical, Greenhouse and Geisser (1959) defined a measured of departure from the
spherificity to be

()5

which is between (including) 1/k and 1. The estimation of the unknown constant
¢ has been extensively discussed by Greenhouse and Geisser (1959), Huynh and
Feldt (1970) among others. Since ¢ is less than 1 when X is not spherical, Wang fur-
ther suggested to replace the critical value t(a; k, k(n — 1), 0.5) by t(«; k, k(n — 1),
0.5) in the multiple comparison procedure, where £ is an estimate of e.

Let R;; be the rank of X;; among the N = n(k + 1) observations and set

M=

k
R; = Z R;;/(k + 1), R ;= Rij/n, R =(N+1)2
=0

i=1
Note that, under the assumption of compound symmetry that the components of
X; are equally correlated repeated measures on the ith experimental unit, the null

hypothesis, denoted by Hy, of no treatment effects can be expressed as
HE: F(X0, X1, > Xi) = F(Xnp X s er s Xn,)

for all x* = (xo, X;, ..., %) and all permutations (7, 7y, ..., m) of (0,1,...,k). Ag-
resti and Pendergast (1986) then obtained that, when Hg is true, Cov(R;;, R;j") = p
for all j # j’, and Cov(R;;, Ry j) = 4 for all j and j" with i # i’. Note that both p
and A depend on n, the number of observation vectors. Let ¢* = Var(R;;) =
(N2 — 1)/12. They also found

Var(R ;) =[1 + (n — 1)AJe?/n,
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and
Cov(R;,R;)=[p+ (n—1)A]c?/n

for j,j'=0,1,....k and j # . Since Var(Y{_,R ;) = 0 implies 1 = — (1 + kp)/
[(k + 1)(n — 1)], the two equations stated above can be rewritten respectively, as

Var(R ;) = ka*(1 — p)/N,

and
Cov(R;, R ;)= — a*(1 — p)/N.

Agresti and Pendergast then conjectured that the limiting distribution of the
random variable

k
n ;0 [R;— (N + 1)/2)*/[e*(1 ~ p)]

is a y2-distribution with k degrees of freedom, denoted by y2, provided that the
limiting distribution of the random vector R* = (R 4, ..., R ;) is a k-variate normal
distribution. Kepner and Robinson (1988) latter showed that this conjecture holds
when H§ is true and proved that the two estimators of ¢2(1 — p) raised by Agresti
and Pendergast are both consistent, namely,

RMSE= 3 S (Ry — R.)?/(nk) 3)
i=1 j=0
RMSAB = 3 ¥ [Ry — R: — R, + (N + 1)/21/Tk(n — 1. @
i=1j=0

Finally, for testing of H, Kepner and Robinson suggested to use either the Koch’s
(1969) statistic

n zk: [R_j——(N + 1)/2713/k
j=0

RT, = RMSE

or the rank transformation statistic proposed by Iman et al. (1984)

n ¥ IR, — (N + /21 k

j=0

Rz = RMSAB

compared to their limiting y2/k-distribution or to an F-distribution with k and
k(n — 1) degrees of freedom in the spirit of Iman and Davenport (1980). Ernst and
Kepner (1993) further conducted a Monte Carlo study to investigate the level and
power performances of some competing tests for detecting the treatment effects.
According to their simulation results, the test based on RT, compared to an
F-distribution maintains a reasonable level and has a nice power performance for
non-normal distributions.
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3. The proposed multiple test

Following the results in Kepner and Robinson (1988), we obtain that, under H §,

the limiting distribution of the random vector {\/ﬁ/« /26%(1 — p)}(Ry — R.q, ...,
R, — R ) is a k-variate normal distribution with mean 0 and covariance matrix

X =(0y;), where 6; =1 and 6;;=1/2 for i, j=1,...,k and i # j. Therefore, the
limiting distribution of the random variable

. [ﬁ(ﬁ.j - R.o):l
V20%(1 = p)

is the same as that of the maximum of k equally correlated standard normal
variates with common correlation 0.5, denoted by z(k, 0.5). For the form of the
distribution z(k, 0.5), see, for example, Gupta (1963).

It was observed, in Kepner and Robinson (1988), that both the estimators,
RMSE and RMSAB stated in (3) and (4), provide consistent estimators of 6%(1 — p).
Slutsky’s theorem then implies that the limiting distribution of the two statistics,

max |:\/’;(R—.j_ R.o)il
1=i<kL /2RMSE |

max [\/E(R.j - R.o)]
J2RMSAB [

is also the distribution z(k, 0.5). Hence, we consider to claim that the jth treatment
is better than the control if

1<j<k

1<j<k

RMT;: /n(R ; — R o)//2RMSE > z(0;k,0.5), j=1,...,k, (5)
RMT,: /n(R ; — R o)//2RMSAB > z(2k,0.5), j=1,...,k, (6)

where z(x; k, 0.5) is the upper ath percentile of z(k, 0.5) which has been extensively
tabulated in Gupta (1963). However, according to the simulation results in Ernst
and Kepner (1993), two more multiple testing procedures utilizing the statistics in
(5) and (6), respectively, but different critical value, namely, t(x k, k(n — 1), 0.5) as
stated in (1), are obtained which suggest to claim that the jth treatment is better
than the control if

RMT?: /n(R ; — R 0)/</2RMSE > t(a; k,k(n — 1),0.5), j=1,....k,  (7)
RMTS: \/n(R ; — R o)//2RMSAB > t(; k, k(n — 1),0.5), j=1,....,k, (8)

Note that, if the assumption of compound symmetry does not hold, the null
hypothesis H, may not be expressed as H§. In this case, as we will see from the
simulation results in Section 6, the proposed multiple procedure, RMT}%, tends to
be anti-conservative in the level performance. To determine which treatments are
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more effective than the control in such a setting, we consider a modified procedure
analogous to the parametric adjustment employed by Wang (1992). For simplicity,
however, we use the smallest value of ¢, 1/k, and then modify the procedure by
comparing its test statistic with t(a; k, n — 1).

4. An example

To investigate the effect of the lens strength on the visual acuity, the response
times of the eyes each through lenses of powers 6/6, 6/18, 6/36 and 6/60 to
a stimulus (a light flash) were measured, where, for example, the power 6/36
indicates that the magnification is such that the eye will perceive as being at 6 ft an
object actually positioned at a distance of 36 ft. The data in Table 1 is the time lag
(milliseconds) between the stimulus and the electrical response at the back of the
cortex. [These data correspond to the left eye visual acuity with varying lens
strength as given in Table 3.2 of Crowder and Hand (1990).]

We calculate the following statistics based on the original data:

X, =11875 X, =11225 X, =11875 X, =114, X5 = 11475,
Xe. =111, X, =11075, X ,=113.86, X =114.57,
X,=11114, X,=11771, X =11432.

It can be computed that MSAB = 23.16 and hence

V(X 1 — X.0)/</2MSAB = 0.276,

JnX 5, — X )/ /2MSAB = — 1.048,
(X 3 — X.0)//2MSAB = 1.489.

We observe, from Dunnett (1964), that £(0.10; 3, 18, 0.5) = 1.82. Therefore, Wang’s
procedure leads to claim that, under level a = 0.10, there is no effect of the lens
strength on the visual acuity. Now, we calculate the following statistics based on the
rank transformation data:

R, =21875 R, =85, R; =2375 R, =1175 Rs =13.125,
R, =1425 R, =825 R,=1236, R, =14.00,
R,=1185 R;3=1979 R_=14.50

It can be computed that RMSAB = 35.08 and thus

V(R y — R ,)//2RMSAB = 0.518,

V(R ; — R )/</2RMSAB = — 0.158,

V(R 3 — R )//2RMSAB = 2344,
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Table 1
Visual acuity with varying lens strength

Subject 6/6 6/18 6/36 6/60

116 119 116 124
110 110 114 115
117 118 120 120
112 116 115 113
113 114 114 118
119 115 94 116
110 110 105 118

NN AW N =

Hence, we conclude, at the 10% significance level, that the lens of power 6/60
results in less visual acuity than that of power 6/6. Note that, using the sample
covariance matrix in computing ¢ in (2), we obtain the Greenhouse and Geisser’s
estimator of ¢ which is 0.428. For simplicity, we use the smallest value of ¢, namely,
1 to obtain the modified critical value £(0.10; 3, 6, 0.5) = 2.02. (In fact, under the
sample correlation structure, the approximate level of the modified testing proced-
ure obtained from a simulation study based on 5000 replications is 0.0878.) It is
obvious that our conclusion still holds.

5. Methodology

We conducted a Monte Carlo study to examine the relative levels and powers of
Wang’s (1992) procedure and the multiple tests suggested in this paper for compar-
ing several treatments with a control in a one-way repeated measures design. We
considered k = 3 and 4 treatments with n = 10, 20 and 30 observations in the level
study and n = 10 and 20 in the power study. For each of these settings, multivariate
normal, multivariate ¢t with 10 degrees of freedom (d.f.), multivariate Cauchy (i.c.
multivariate ¢ with 1d.f) and multivariate exponential distributions were con-
sidered as the underlying distributions. For the definitions of multivariate normal,
multivariate t and multivariate Cauchy, see, for example, Fang et al. (1990). Note
that multivariate ¢ with 10 d.f. represents the symmetric and moderately heavy-
tailed distribution, multivariate Cauchy represents the symmetric and heavy-tailed
distribution and multivariate exponential represents the asymmetric distribution.

This Monte Carlo study was implemented on a VAX 9320 computer at National
Central University and all programmings were done in FORTRAN 77. The
International Mathematical and Statistical Libraries (IMSL) routine RNMVN was
used to generate multivariate normal with zero mean vector and covariance matrix
2, denoted by Z. The IMSL routine RNCHI was employed to generate the
chi-squared with v d.f. variates, denoted by U. The multivariate ¢ variates were then

formulated by Z/,/U/v. Moreover, the algorithm provided by Sim (1993) was
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employed to generate the appropriate multivariate exponential variates. Note that,
in generating multivariate normal, t and cauchy variates, the common correlation
pji- = 0.2 and 0.8 and unequal correlation p;; = 0.5 /! were considered for the Z.
The three different correlation structures were also used for the multivariate
exponential variates. In the level study, the multivariate normal (¢, Cauchy, ex-
ponential) distribution with standard normal (¢, Cauchy, exponential) marginal
distributions was considered. In the power study, we used the multivariate normal
(¢, Cauchy, exponential) distribution with various values of location parameters,
denoted by 0y, 04, ...,0,, and the designated treatment effects configurations cor-
respond to values of 6, =0, — Oy for i =1, ... k.

The experiment-wise error rate (proportion of experiments with at least one
treatment erroneously declared more effective than the control) was utilized to
evaluate the level performances of the multiple test procedures under consideration.
The experiment-wise power (probability of correctly detecting at least one treat-
ment which is better than the control) and the comparison-wise power (probability
of correctly detecting all the treatments which are better than the control) were
employed to assess the power performances of the testing procedures. The results of
the level study are presented in Table 3 and those of the power study are reported in

Table 2
Summary statistics for judging the adequacy of the simulation
(a) Multivariate normal

6,=0, j=0,1,23

=i

= o {1
ri 0.8, J¢jl

P = 1, Py = 1, ]=J/
1 0.2’ ]#jl JJ

O.SIJ—I'I, J ;(:j'

n=10 0;,=0, j=0,1,2,3

I ESE 0.995 0.194 0.200 0.193 0995 0.798 0.794 0.797  1.008 0.500 0.255 0.153
0.993 0.198 0.198 0.998 0.794 0.800 0.996 0.503 0.198
0.999 0.192 0.990 0.794 1.009 0.504
0.997 0.996 1.002

n=20
piinJ <J 0.992 0.200 0.204 0.203  1.005 0.806 0.807 0.807  0.993 0.495 0.247 0.125
0.991 0.196 0.198 1.007 0.808 0.808 0.995 0.497 0.249
1.003 0.202 1.007 0.808 0.998 0.497
1.001 1.008 0.996

n=30
piinJ <J' 1.001 0.194 0.201 0.201 0991 0.797 0.795 0.794  1.001 0.503 0.252 0.123

0.997 0.202 0.204
1.003 0.202
0.998

1.002 0.798 0.798
0.996 0.796
0.994

1.003 0.504 0.250
1.005 0.501
1.000
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(b} Multivariate exponential
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,=0, j=0,1,23

p =il =T
s 02, j#j

Py = Loj=J
H 08, j#j

_)L j=7
Pir = o507, j#j

n=20

pinJ <J

1.003 1.006 1.007 1.002

1.012 0.204 0.206 0.212
1.001 0.214 0.214

1.012 0.205

1.012

1.000 1.002 1.005 1.004

0.998 0.198 0.198 0.209
1.002 0.205 0.203

1.009 0.199

1.008

1.003 1.002 1.003 1002

0.999 0.201 0.197 0.203
1.006 0.203 0.208

1.008 0.199

1.007

1.004 1.003 1.008 1.010

1.013 0.809 0.806 0.800
1.009 0.815 0.806

1.012 0.811

1.003

1.000 0.996 1.005 1.008

1.004 0.802 0.806 0.808
0.998 0.807 0.807

1.006 0.812

1.008

1.000 1.000 1.007 1.003

1.007 0.809 0.808 0.804
1.009 0.805 0.808

1.004 0.806

1.006

1.003 1.005 1.005 1.011

1.000 0.497 0.253 0.117
1.008 0.504 0.248

1.015 0.509

1.013

0.999 0.996 0.998 1.012

0.994 0.491 0.247 0.120
0.992 0.498 0.254
0.996 0.506

1.009

0.998 0.999 0.998 1.005

0.995 0.497 0.247 0.126
0.997 0.500 0.259

0.998 0.495

1.000

Tables 4 and 5. Since, in each case, we used 5000 replications in obtaining the
estimated error rate or power under the nominal level « = 0.05, we are guaranteed
a standard error not greater than 0.0031 for estimating the experiment-wise error
rate. We then indicate, by + ( — ) signs, whenever the estimated error rate is two or
more standard errors above (below) 0.05.

6. Results

6.1. Adequacy of the data generation

To assess the adequacy of the data generation, we computed, based on 5000
replications, the average mean vector and average correlation coefficients of the
generated data from (k + 1)-dimensional normal or exponential distribution with
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Table 3
Experiment-wise error rate estimates for o = 0.05

k=3 k=4

Distribution v RMT,; RMT, RMT} RMT} W RMT,; RMT, RMT} RMT: W

Multivariate 10 02 0048 0060+ 0.036— 0.048 0.048 0.049 0059+ 0.038— 0049 0.048
normal 0.8 0.053 0065+ 0.041— 0.053 0053 0.047 0060+ 0.039— 0.050 0.052
0.5* 0056 0.068+ 0.046 0.059+ 0.057+ 0.055 0.065+ 0.047 0.059+ 0.057+
20 02 0050 0056 0045 0052 0048 0.049 0054 0045 0048 0.052
08 0.050 0056 0046 0.051 0056 0.050 0056 0.047 0052 0.051
0.5* 0.060+ 0.064+ 0056 0.060+ 0.063+ 0.058+ 0.059+ 0.050 0.057+ 0.058+
30 02 0054 0057+ 0051 0054 0054 0053 0057+ 0050 0053 0.054
08 0050 0054 0045 0050 0046 0.047 0050 0.044 0.048 0.047
0.5* 0.062+ 0.065+ 0.0574+ 0.061+ 0.061+ 0.058+ 0.062+ 0.057+ 0.059+ 0.060+

Multivariate 10 0.2 0050 0.061+ 0.038— 0.053 0054 0050 0.060+ 0.040— 0.052 0.051
t with 10 d.f. 0.8 0.048 0.060+ 0.037— 0.048 0052 0.055 0065+ 0.045 0056 0.057+
0.5* 0.059+ 0072+ 0.049 0.061+ 0061+ 0.063+ 0.073+ 0.051 0.061+ 0.060+

20 02 0049 0054 0.044 0049 0050 0047 0.052 0.041— 0.047 0.047

08 0053 0.059+ 0047 0.056 0050 0.048 0052 0.043— 0048 0.047
0.5* 0.058+ 0.064+ 0.055 0.059+ 0058+ 0.058+ 0.063+ 0.051 0.059+ 0.057+

30 02 0052 0055 0048 0052 0052 0049 0.052 0045 0.048 0.049

0.8 0.054 0057+ 0.050 0054 0051 0051 0054 0048 0.050 0.047
0.5* 0.058+ 0.062+ 0.053 0.058+ 0.060+ 0.063+ 0.066+ 0.060+ 0.063+ 0.064+

Multivariate 10 02 0046 0.055 0.036— 0.047 0.031— 0.046 0060+ 0.037— 0.049 0.030 —
Cauchy 0.8 0.047 0057+ 0.034— 0046 0.034 — 0.044 0057+ 0.035— 0.046 0.033—
0.5* 0.058+ 0.069+ 0.045 0057+ 0.033— 0.055 0.064+ 0045 0.058+ 0.036—

20 02 0050 0055 0044 0049 0029— 0045 0050 0.038— 0.045 0.031 —

08 0053 0.059+ 0048 0.054 0.034— 0.049 0053 0.047 0049 0.030—

0.5* 0.058+ 0.063+ 0.051 0.057+ 0.036— 0.061+ 0.066+ 0.055 0.062+ 0.036—

30 02 0051 0048 0053 0051 0032— 0049 0053 0047 0049 0.030—

0.8 0050 0047 0.053 0050 0032— 0.044 0046 0.040— 0.044 0.031—

0.5* 0.059+ 0055 0063+ 0.059+ 0.040— 0.057+ 0.058+ 0.053 0.057+ 0.038-—

Muitivariate 10 0.2 0.045 0.060+ 0.035— 0.047 0047 0048 0.060+ 0.038— 0.051 0.056
exponential 0.8 0.046 0058+ 0.036— 0.045 0.036— 0.045 0.057+ 0.037— 0.045 0.040—
0.5 0061+ 0072+ 0050 0062+ 0.060+ 0.062+ 0074+ 0.051 0.064+ 0.067+

20 0.2 0044 0049 0.039— 0.044 0046 0.049 0053 0.043- 0.049 0.050
0.8 0.045 0050 0.041— 0045 0.042— 0046 0049 0.041— 0045 0.043—~
0.5* 0060+ 0.064+ 0054 0.060+ 0.059+ 0071+ 0077+ 0.068+ 0.072+ 0.067+

30 02 0048 0053 0.046 0048 0.050 0048 0052 0045 0.049 0.050

0.8 0053 005 0048 0053 0.050 0052 0054 0049 0.052 0.047
0.5* 0.062 + 0.065 + 0.058 + 0.062+ 0.059 + 0.076+ 0.080+ 0.073+ 0.076+ 0.075+

2pj = 05071,
+ (—): At least two standard error above (below) o = 0.05.

sample sizes n = 10, 20 and 30, respectively. The adequacy of the data generation
for k = 3 and k = 4 is quite similar. Therefore, we only summarized the results for
k = 3 in Table 2. By comparing these summarized statistics with their theoretical
counterparts, the simulated data seem to possess approximately the desired distri-
butional properties.
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6.2. Comparison of testing procedures

When the repeated measures have a common intervariable correlation coeffic-
ient, it is evident, upon examination of Table 3, that both the testing procedures,
RMT;, (Eq. (5)) and RMT} (Eq. (8)), reasonably maintain their levels. In this case,
the testing procedure, RMTT (Eq. (7)) tends to be conservative in holding its level,
while the level performance of RMT, (Eq. (6)) is anti-conservative, especially, for
the case of small sample size corresponding to n = 10. When the intervariable
correlation coefficients are unequal, however, all the testing procedures mentioned
above tend to be anti-conservative. Therefore, in the power comparison, we simply
considered the testing procedures, RMT; and RMT? for the case of equal correla-
tion.

Wang’s procedure, W (Eq. (1)), holds its level quite well when the repeated
measures are distributed to the equally correlated multivariate ¢ with 10 d.f. or

Table 4(a)
Experiment-wise power estimates for « = 0.05 and k = 3
n=10 n=20
Distribution 0106 020 030 RMT, RMT} W RMT, RMT: W
Multivariate 0.2 00 00 04 0.138  0.148 0.151 0.230 0.241 0.255
normal 00 02 04 0.161  0.163  0.168 0.260 0.269 0.283
02 04 04 0221 0224 0230 0.378 0380 0.397
08 00 00 04 0359 0393 0451 0.692 0715 0.782
00 02 04 0395 0423 0478 0720 0736 0.797
02 04 04 0.553  0.557  0.606 0.851 0.854 0.900
Multivariate 02 00 00 04 0.128 0.136  0.141 0209 0216 0.215
t with 10 d.f. 00 02 04 0.146  0.150  0.157 0237 0242 0.241
02 04 04 0211 0214 0212 0.290 0296 0.300
08 00 00 04 0.327 0355 0.386 0.615 0.640 0.665
00 02 04 0365 0390 0413 0.646 0.663 0.686
02 04 04 0514 0521  0.549 0.792 0794 0.812
Multivariate 0.2 00 00 04 0.082  0.086 0.044 0.116 0.120 0.046
Cauchy 00 02 04 0.093  0.097 0.050 0.137 0.140 0.052
02 04 04 0.129  0.133  0.063 0.189 0.191 0.068
08 00 00 04 0.178 0.189  0.086 0.276 0285 0.089
00 02 04 0204 0212  0.097 0.309 0304 0.101
02 04 04 0292 0292 0130 0415 0417 0.139
Multivariate 02 00 00 04 0237 0254 0.176 0472 0494 0.287
exponential 00 02 04 0279 0.293  0.200 0516 0531 0.321
02 04 04 0398 0400 0.277 0.651 0.653 0.440
08 00 00 04 0.697 0.750  0.598 0933 0946 0.804
00 02 04 0.753  0.786  0.609 0947 0955 0.815

02 04 04 0852  0.857 0.705 0981 0981 0.893
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Table 4(b)
Experiment-wise power estimates for « = 0.05 and k = 4
n=10 n=20
Distribution T 010 920 030 940 RMT1 RMT; w RMT1 RMT;‘ W

Multivariate 02 00 00 00 04 0123 0133 0139 0226 0235 0248
normal 00 00 04 04 0175 0.190 0.198 0332 0344 0.356
02 02 04 04 0205 0207 0224 0365 0367 0.380

08 00 00 00 04 0346 0379 0433 0644 0.667 0735

00 00 04 04 0479 0529 0582 0.788 0.819 0.865

02 02 04 04 0546 0556 0600 0.827 0830 0.870

Multivariate 02 00 00 00 04 0110 O.116 0120 018 0195 0.193
¢t with 10 d.f. 00 00 04 04 0163 0176 0174 0279 029  0.290
02 02 04 04 0195 0198 0193 0315 0317 0313

08 00 00 00 04 0312 0341 0362 0592 0.614 0.642

00 00 04 04 0428 0475 0498 0747 0778  0.789

02 02 04 04 0486 0492 0521 0789 0792  0.797

Multivariate 02 00 00 00 04 0073 0078 0042 0102 0102 0.044
Cauchy 00 00 04 04 0100 0105 0052 0148 0152 0.055
02 02 04 04 0119 0121 0061 0171 0173  0.063

08 00 00 00 04 0156 0.165 0074 0249 0257 0.079

00 00 04 04 0222 0244 0108 0357 0372 0.110

02 02 04 04 0263 0267 0123 0393 039 0.123

Multivariate 02 00 00 00 04 0229 0246 0178 0469 0486 0288
exponential 00 00 04 04 0318 0346 0252 0577 0607 0.388
02 02 04 04 0393 0399 0278 0.641 0.643 0418

08 0.0 00 00 04 0689 0730 0571 0929 0940 0.783

00 00 04 04 0775 0835 0692 0963 0973 0.879

02 02 04 04 0855 0865 0.69% 0976 0978 0881

multivariate normal. For the setting where the repeated measures are distributed to
the multivariate exponential with common correlation 0.8, the level performance of
W tends to be conservative unless the sample size is large about 30. Wang’s
procedure also has an inflated error rate when the intervariable correlation coeffic-
ients are unequal for all distributions except the case of multivariate cauchy where
the error rate is already relatively conservative when the coefficients are equal.
The power estimates in Tables 4 and 5 show that RMT}3 is slightly better than
RMT, in comparing several treatments with a control in one-way repeated
measures designs. When the multivariate distribution is normal or ¢t with 10 d.f,
RMT}Y is slightly less powerful than the Wang’s procedure W. When the multivari-
ate distribution is exponential, however, Wang’s procedure performs poorly. In this
case, both the procedures, RMT; and RMT%, have better power performances than
W. Moreover, for the multivariate Cauchy distribution, although it does not seem
to be fair to compare directly the power performances of RMT% and Wang’s
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procedure since the estimated level of RMT3 is roughly 1.5 (less than 2, anyway)
times of that of W, the estimated power of RMT? is 2 to 3 times of that of W. The
increase in power compared to the favored level indicates, however, that the power
performance of RMT} is better than that of Wang’s procedure.

As a direct consequence of simulation results, we recommend to use the rank-
based multiple testing procedure RMT% when the assumption of compound sym-
metry is tenable for two reasons. First, the procedure RMT?% has a reasonable level
performance across a variety of distributions, while the Wang’s procedure W does
not hold its level for either a symmetric and heavy-tailed distribution or an
asymmetric distribution with small sample size about 20. Second, the procedure
RMT? performs better in power than the Wang’s procedure W for an asymmetric
or a symmetric and heavy-tailed distribution and it can be regarded as a valid
competitor to W for a normal or a symmetric and moderately heavy-tailed
distribution.

Table 5(a)
Comparison-wise power estimates for « = 0.05 and k = 3
n=10 n =20
Distribution T 010 020 030 RMT; RMT} W RMT,; RMT} W
Multivariate 02 00 00 04 0.052 0.058 0.058 0.086 0.091 0.095
normal 00 02 04 0.063  0.068 0.070 0.106 0.113 0.118
02 04 04 0096 0.104 0.107 0.178 0.187 0.195
08 00 00 04 0.127 0.144 0.163 0.239 0252 0275
00 02 04 0.157 0.180  0.203 0302 0326 0.356
02 04 04 0276 0304 0.340 0.524 0551  0.602
Multivariate 02 00 00 04 0.049  0.055 0.056 0.077 0.082 0.081
t with 10 d.f. 00 02 04 0.059 0065 0.057 0.099 0.104 0.106
02 04 04 0.090 0.100  0.098 0.159 0.165 0.164
08 00 00 04 0.117 0131 0.142 0214 0227 0235
00 02 04 0.145 0165 0.176 0.268 0.289 0.300
02 04 04 0250 0277 0.298 0474 0499 0516
Multivariate 02 00 00 04 0.031 0.036 0.017 0.043 0046 0.017
Cauchy 00 02 04 0.035 0.039 0.019 0.054 0056 0.020
02 04 04 0.052 0.058 0.025 0.081 0.085 0.027
08 00 00 04 0.064 0.071 0.032 0.099 0.105 0033
00 02 04 0.080 0.088  0.039 0122  0.129 0.038
02 04 04 0.130 0.141  0.059 0206 0218 0.060
Multivariate 02 00 00 04 0.087  0.097 0.064 0.168 0.180 0.104
exponential 00 02 04 0.116 0.131 0.078 0220 0237 0.130
02 04 04 0201 0219 0.125 0376 0.393 0215
08 00 00 04 0236 0264 0211 0.316 0330 0.280
00 02 04 0319 0385 0.281 0458 0509 0.391

02 04 04 0.544 0.613 0467 0.741 0.790 0.642
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Table 5(b)
Comparison-wise power estimates for « = 0.05 and k = 4
n=10 n =20
Distribution T B0 Oz 030 040 RMT; RMTF W RMT,; RMT} W

Multivariate 02 00 00 00 04 0036 0041 0041 0064 0067 0072
normal 00 00 04 04 0055 0063 0066 0110 0118 0.123
02 02 04 04 0070 0076 0082 0138 0145 0150

08 00 00 00 04 0093 0105 0119 0169 0178  0.195

00 00 04 04 0164 0195 0219 0316 0345 0.376

02 02 04 04 0218 0242 0271 0411 0438 0482

Multivariate 02 00 00 00 04 0032 0037 0037 0053 0056 0.056
t with 10 d.f. 00 00 04 04 0052 0060 0058 0092 0099 0.098
02 02 04 04 0066 0073 0072 0118 0122 0121

08 00 00 00 04 0085 0097 0103 0155 0164 0171

00 00 04 04 0146 0176 0186 029 0317 0.329

02 02 04 04 0195 0217 0213 0374 0395 0415

Multivariate 02 00 00 00 04 0022 0025 0012 0030 0031 0.013
Cauchy 00 00 04 04 0032 0035 0016 0.046 0049 0.017
02 02 04 04 0040 0043 0020 0.058 0.061 0.021

08 00 00 00 04 0043 0047 0021 0068 0072 0023

00 00 04 04 0071 0083 0033 0121 0131 0.035

02 02 04 04 0093 0102 0041 0155 0163 0.043

Multivariate 02 00 00 00 04 0065 0073 0050 0128 0135 0.078
exponential 00 00 04 04 0.113 0.133 008 0226 0248 0.133
02 02 04 04 0162 0181 0098 0305 0321 0.165

08 00 00 00 04 0175 0195 0154 0237 0248  0.208

00 00 04 04 0325 0377 0293 0457 0478 0396

02 02 04 04 0462 0539 0391 0651 0707 0541
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