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Testing procedures are considered for identifying the minimum effective dose (MED) in a dose–response
study with randomly right-censored survival data, where the MED is defined to be the smallest dose
level under study that has survival advantage over the zero dose control. The proposed testing procedures
are implemented in a step-down manner together with three different types of weighted Kaplan–Meier
statistics. Comparative results of a Monte Carlo error rate and power/bias study for a variety of survival
and censoring distributions are then presented and discussed. The application of the proposed procedures
is finally illustrated for identifying the MED of the diethylstilbestrol in the treatment of prostate cancer.

Keywords: closed test; dose–response study; minimum effective dose; Monte Carlo study; right-
censored data

1. Introduction

In animal experiments or clinical trials for drug development, dose–response studies are frequently
conducted to evaluate the treatment effects of the drug under study. In such studies, subjects or
patients are usually randomly allocated to different groups to receive either the placebo (or zero
dose) or a variety of dose levels of the drug. One factor of interest in such studies is to identify
the minimum effective dose (MED) of the drug, where the MED is defined to be the smallest
dose level producing a clinically important response that can be declared statistically significantly
more effective than the placebo response [1].

In animal experiments or clinical trials, randomly right-censored survival data are frequently
observed, since the study may be terminated at a preassigned time due to time limitation, some
events may be attributed to competing risks, which is not of interest in the present study, or
subjects may be randomly lost to follow-up. For testing the equality of two survival distributions
in the presence of randomly right censoring, the most commonly implemented test statistics are
the weighted logrank (WLR) statistics [2]. Therefore, Chen and Chang [3] suggested step-down
testing procedures based on different types of WLR statistics for identifying the MED. However,

*Correspondence author. Email: yumei0115@thu.edu.tw

ISSN 0094-9655 print/ISSN 1563-5163 online
© 2010 Taylor & Francis
DOI: 10.1080/00949650903451769
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
h
e
n
,
 
Y
u
h
-
I
n
g
]
 
A
t
:
 
1
0
:
3
9
 
2
 
D
e
c
e
m
b
e
r
 
2
0
1
0



2 Y.-M. Chang and Y.-I. Chen

the WLR statistic is a function of the difference of the Nelson–Aalen [4,5] cumulative hazard func-
tions, and it may not be sensitive against the stochastic ordering alternative, particularly when
the hazard functions of two groups are crossing. As a result, Pepe and Fleming [6,7] developed a
class of test statistics based on the sum of weighted differences in Kaplan–Meier [8] estimators
of survival functions. Moreover, they showed that the weighted Kaplan–Meier (WKM) test is
competitive with the logrank (LR) test under the proportional hazards alternative and may per-
form better under non-proportional hazards alternatives. Therefore, in this paper, we consider
identifying the MED using the step-down closed testing procedure as in [3], but based on the
contrast type of WKM statistics for randomly right-censored survival data.

In Section 2, we introduce the problem under study and review the step-down testing procedure
in Tamhane et al. [9]. In Section 3, the step-down testing procedures based on three different
types of WKM statistics, respectively, are then proposed for the MED identification. The results
of a Monte Carlo study investigation of the relative error rate and power/bias performances of
the competing procedures are presented and discussed in Section 4. The use of these testing
procedures is further illustrated in Section 5 with the numerical example involving the prostate
cancer data of [10]. Finally, Section 6 draws some conclusions and suggestions on the use of the
proposed testing procedures.

2. Data setting, problem and step-down testing procedure

Suppose that the zero population (i = 0) is the zero dose control and the other k populations
correspond to the increasing dose levels. For the ith sample (i = 0, 1, . . . , k), let Xi1, . . . , Xini

be independent and identically distributed (i.i.d.) random variables with a continuous survival
function Si , and Ci1, . . . , Cini

be i.i.d. random variables with a continuous survival function Fi ,
where Cij is the censoring time associated with the survival time Xij. Furthermore, assume that
the k + 1 samples are independent and the censoring time Cij is independent of the lifetime
Xij. In this setting, we actually observed only {min(Xij, Cij)} and the indicator of censorship
δij = I {Xij ≤ Cij}, j = 1, 2, . . . , ni , i = 0, 1, . . . , k. Let Si > S0 denote Si(t) ≥ S0(t) for all t

and Si(t) > S0(t) for some t . In this paper, we consider identifying the MED defined as

MED = min{i: Si > S0, i = 1, 2, . . . , k}.
To identify the MED with randomly right-censored survival data, we implement the step-down

procedure [9] for testing the null hypotheses H0i : (S0 = S1 = · · · = Si), i = 1, 2, . . . , k. The
family of null hypotheses H = {H0i} is closed under intersection in the sense that H0i ∈ H and
H0j ∈ H imply H0i ∩ H0j ∈ H [11]; hence, we use a level α step-down closed testing scheme for
identifying the MED based on adjusted p-values [12]. Suppose that T1, . . . , Tk are the statistics
involved.The step-down closed testing procedure begins at the first step testing forH0k based on the
statistic T(k) = max(T1, . . . , Tk) and computing the associated p-value pk = P {T(k) ≥ t(k)|H0k},
where t(k) is the observed value of T(k). If the test based on fails to reject H0k , then the MED is
identified to be MÊD = k + 1. In this case, the MED is declared to be beyond the dose levels
under study. Otherwise, the test proceeds to the next step testing for H0(k−1). In general, at
step i involving the zero dose control and the first ki = k − i + 1 non-zero dose groups, the
statistic for testing H0ki

is T(ki ) = max(T1, . . . , Tki
). Moreover, if the observed value of T(ki ) is

t(ki ), the adjusted p-value of the closed test at this step is given by p∗
ki

= max(pk1 , . . . , pki
), where

pki
= P {T(ki ) ≥ t(ki )|H0ki

} is the p-value of the individual test based on . Therefore, if p∗
ki

≤ α

and i<k, then the test proceeds with ki+1 = ki − 1, and if p∗
ki

> α or i = k, the test stops and the

MED is identified to be MÊD = ki + 1 or MÊD = 1. Finally, the associated adjusted p-value for
the closed testing procedure is p∗

MÊD
, which provides with the evidence of data for supporting
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Figure 1. Flowchart for identifying the MED based on the adjusted p-values.

the identified MED. The flowchart for the closed testing scheme based on the adjusted p-value is
shown in Figure 1.

3. Proposed testing procedures

3.1. Pairwise WKM statistics

The first type of test statistics under study is the two-sample WKM statistic [6,7] comparing the
ith dose level and the zero dose control,

U0i =
√

n0ni

N

∫ t0i

0
K̂0i (t){Ŝi(t) − Ŝ0(t)} dt, i = 1, 2, . . . , k,

where N = ∑k
i=0 ni , t0i = sup{t | minj∈{0,i}{F̂j (t)Ŝj (t)} > 0}, Ŝi(t) and F̂i(t) are the Kaplan–

Meier [8] estimators of the survival distributions of the lifetime and censoring time in group i,
respectively, and K̂0i (t) is a random weight function given by

K̂0i (t) = F̂−
0 (t)F̂−

i (t)

λ̂0F̂
−
0 (t) + λ̂i F̂

−
i (t)

, λ̂i = ni

N
, i = 0, 1, . . . , k,

where F̂−
i (t) is the estimated probability of not being censored before time t . Under the

null hypothesis H0k , a consistent estimator of the asymptotic (N → ∞) variance of U0i ,
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4 Y.-M. Chang and Y.-I. Chen

i = 1, 2, . . . , k, is obtained as

sU
ii = −

∫ t0i

0

(∫ t0i

t

K̂0i (v)Ŝ0i (v) dv

)2
λ̂0F̂

−
0 (t) + λ̂i F̂

−
i (t)

F̂−
0 (t)F̂−

i (t)

dŜ0i (t)

Ŝ0i (t)Ŝ
−
0i (t)

, (1)

where Ŝ0i is the Kaplan–Meier estimator computed from the combined samples of the control
iand dŜ0i (t) = Ŝ0i (t) − Ŝ−

0i (t).

Let U ∗
0i = U0i/

√
sU

ii , i = 1, 2, . . . , k. It can be shown [13] that, under the null hypothesis H0k ,
the asymptotic distribution of the random vector (U ∗

01, . . . , U
∗
0k) is the k-variate normal with mean

vector zero and its associated variance–covariance matrix �U
k can be consistently estimated by

�̂U
k = {sU

ij /

√
sU

ii sU
jj }, where sU

ii is stated in Equation (1) and for i 	= j ,

sU
ij = −√

λiλj

∫ t0ij

0

(∫ t0ij

t

K̂0i (v)Ŝ0ij(v) dv

) (∫ t0ij

t

K̂0j (v)Ŝ0ij(v) dv

)
dŜ0ij(t)

Ŝ0ij(t)Ŝ
−
0ij(t)F̂

−
0 (t)

,

where t0ij = sup{t | minm∈{0,i,j }{F̂m(t)Ŝm(t)} > 0}, and Ŝ0ij is the Kaplan–Meier [8] estimator
computed from the combined samples of the control, i and j . Notice that, under equal sam-
ple sizes and equal censoring distributions, the covariance of U ∗

0i and U ∗
0j is equal to 1/2 for all

i 	= j = 1, 2, . . . , k.
Suppose at the ith step in the closed testing scheme, the observed value of

U ∗
(ki )

= max(U ∗
01, . . . , U

∗
0ki

) (2)

is u(ki ), then the adjusted p-value of the test at the ith step is p∗
ki

= max(pk1 , . . . , pki
), where for

j = 1, 2, . . . , i,

pkj
= P {U ∗

(kj )
≥ u(kj )|H0kj

} ≈ P {max(Z1, . . . , Zkj
) ≥ u(kj )|H0kj

}
= 1 − P {Zl < u(kj ), l = 1, 2, . . . , kj |H0kj

}
and (Z1, . . . , Zkj

) is a normal random vector with mean vector zero and variance–covariance
matrix �U

kj
.

3.2. Combined-groups WKM statistics

To compare the ith dose level with the combined all lower dose levels including the zero dose
control, the second-type WKM statistic under consideration is

Gi =
i−1∑
m=0

Umi, i = 1, 2, . . . , k,

where

Umi =
√

nmni

N

∫ ti

0
K̂mi(t){Ŝi(t) − Ŝm(t)} dt, for m < i,

and ti = sup{t | minm∈{0,1,...,i}{F̂m(t)Ŝm(t)} > 0}. Let
∑k

i=1 Gi = ∑k
i=1

∑i=1
m=0 Umi = ∑ ∑

m<i

Umi. Since the asymptotic null distribution of the random vector (U01, …,U0k) is a k-variate
normal distribution, the asymptotic null distribution of

∑k
i=1 Gi is a normal distribution. There-

fore, the asymptotic null (H0k) distribution of the random vector (G1, . . . , Gk) is a k-variate
normal with mean vector zero and the related variance–covariance matrix can be consistently
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estimated, for i = 1, 2, . . . , k, by

sG
ii = −λ̂i

i−1∑
m=0

∫ ti

0

(∫ ti

t

K̂mi(v)Ŝ0+i (v) dv

)2 dŜ0+i (t)

Ŝ0+i (t)Ŝ
−
0+i (t)F̂

−
m (t)

−
∫ ti

0

(
i−1∑
m=0

√
λ̂m

∫ ti

t

K̂mi(v)Ŝ0+i (v) dv

)2
dŜ0+i (t)

Ŝ0+i (t)Ŝ
−
0+i (t)F̂

−
i (t)

,
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1.2 I(t ≤ 0.8) + 0.5 I(t > 0.8)
0.8 I(t ≤ 0.8) + 0.5 I(t > 0.8)
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+ 0.7 I(1.4<t ≤ 2.3)+ I(t>2.3)
+ 0.9 I(1.4<t ≤ 2.3)+ I(t>2.3)

Figure 2. Survival function configurations for simulation study: (I) exponential survival functions; (II) Lognormal
survival functions and (III)–(V) piecewise exponential survival functions corresponding to early, late and crossing hazard
differences.
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6 Y.-M. Chang and Y.-I. Chen

and for i 	= j = 1, 2, . . . , k, by

sG
ij = −√

λiλj

i−1∑
m=0

∫ tj

0

(∫ tj

t

K̂mi(v)Ŝ0+j (v) dv

) (∫ tj

t

K̂mj(v)Ŝ0+j (v) dv

)

× dŜ0+j (t)

Ŝ0+j (t)Ŝ
−
0+j (t)F̂

−
m (t)

−
∫ tj

0

(
i−1∑
m=0

√
λ̂m

∫ ti

t

K̂mi(v)Ŝ0+j (v) dv

)

×
(√

λ̂j

∫ tj

t

K̂ij(v)Ŝ0+j (v) dv

)
dŜ0+j (t)

Ŝ0+j (t)Ŝ
−
0+j (t)F̂

−
i (t)

,

where Ŝ0+i (t) is the Kaplan–Meier estimator based on the combined samples from 0 to i.

Table 1. Estimated EWEs for α = 0.05, n0 = n1 = n2 = n3 = n with uniform censoring distribution U (0, r).

LR WKM

r n UL GL V L U G V

Exponential
3.197 10 0.063 0.044 0.061 0.060 0.060 0.058

30 0.052 0.044 0.050 0.053 0.052 0.054
50 0.053 0.049 0.054 0.053 0.054 0.055

1.593 10 0.055 0.041 0.057 0.060 0.062 0.062
30 0.051 0.044 0.054 0.052 0.054 0.056
50 0.053 0.045 0.053 0.050 0.052 0.054

Lognormal
4.879 10 0.059 0.045 0.057 0.056 0.059 0.058

30 0.050 0.047 0.051 0.053 0.054 0.052
50 0.050 0.042 0.047 0.050 0.050 0.053

2.401 10 0.056 0.042 0.054 0.056 0.061 0.061
30 0.054 0.043 0.050 0.052 0.053 0.053
50 0.048 0.044 0.049 0.053 0.052 0.051

Piecewise exponential with θ = 1.2I (t ≤ 0.8) + 0.5I (t > 0.8)

3.655 10 0.058 0.043 0.059 0.057 0.058 0.057
30 0.051 0.046 0.053 0.051 0.054 0.054
50 0.052 0.046 0.051 0.051 0.052 0.053

1.457 10 0.056 0.042 0.056 0.061 0.064 0.062
30 0.050 0.044 0.054 0.053 0.055 0.057
50 0.051 0.046 0.054 0.050 0.051 0.054

Piecewise exponential with θ = 0.1I (t ≤ 0.8) + 2I (t > 0.8)

4.095 10 0.062 0.045 0.061 0.053 0.051 0.052
30 0.053 0.046 0.052 0.052 0.051 0.051
50 0.055 0.049 0.054 0.055 0.053 0.055

2.423 10 0.062 0.044 0.063 0.052 0.051 0.053
30 0.053 0.043 0.053 0.051 0.050 0.054
50 0.054 0.047 0.057 0.053 0.054 0.056

Piecewise exponential with θ = 1.2I (t ≤ 0.6) + 0.1I (0.6 < t ≤ 1.4) + 0.5I (1.4 < t ≤ 2.3) + I (t > 2.3)

4.618 10 0.060 0.044 0.060 0.056 0.056 0.056
30 0.053 0.046 0.053 0.055 0.055 0.055
50 0.054 0.049 0.051 0.054 0.054 0.054

2.182 10 0.054 0.042 0.058 0.057 0.060 0.060
30 0.052 0.042 0.051 0.051 0.052 0.056
50 0.051 0.047 0.043 0.052 0.055 0.054
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Let G∗
i = Gi/

√
sG

ii , i = 1, 2, . . . , k. Therefore, under the null hypothesis H0k , the distribution
of (G∗

1, . . . , G
∗
k) can be approximated by a k-variate normal with zero mean vector and the

associated variance–covariance matrix �G
k can be consistently estimated by = �̂G

k = {sG
ij /

√
sG

ii sG
jj },

i, j = 1, 2, . . . , k. Notice that, under equal censoring distributions, equal sample sizes and the
null hypothesis H0k , the statistics (G1, . . . , Gk) are uncorrelated.

Suppose that, at the ith step of the closed testing scheme, the observed value of

G∗
(ki )

= max(G∗
1, . . . , G

∗
ki
) (3)

is g(ki ), and the associated adjusted p-value of the test is p∗
ki

= max(pk1 , . . . , pki
), where, for

j = 1, 2, . . . , i,

pkj
= P {G∗

(kj )
≥ g(kj )|H0kj

} ≈ P {max(Z1, . . . , Zkj
) ≥ g(kj )|H0kj

}
= 1 − P {Zl < g(kj ), l = 1, 2, . . . , kj |H0kj

}

Table 2. Estimated FWE for α = 0.05, n0 = n1 = n2 = n3=50 with uniform censoring distribution U (0, r).

True LR WKM

θ0 θ1 θ2 θ3 MED UL GL V L U G V

(I) Exponential and r = 3.197
1 1 1 0.5 3 0.054 0.048 0.055 0.054 0.053 0.057
1 1 0.5 0.5 2 0.053 0.049 0.054 0.053 0.050 0.053
1 1 0.7 0.5 2 0.041 0.031 0.044 0.040 0.031 0.043
1 1 0.5 0.7 2 0.050 0.046 0.050 0.049 0.044 0.048
1 1 0.5 1 2 0.051 0.046 0.047 0.052 0.047 0.047

(II) Lognormal with r = 4.879
0 0 0 0.5 3 0.049 0.042 0.050 0.049 0.048 0.052
0 0 0.5 0.5 2 0.050 0.041 0.051 0.048 0.042 0.049
0 0 0.3 0.5 2 0.045 0.029 0.046 0.043 0.030 0.044
0 0 0.5 0.3 2 0.047 0.038 0.048 0.051 0.041 0.051
0 0 0.5 0 2 0.044 0.035 0.039 0.047 0.038 0.040

(III) Piecewise exponential and r = 3.655
1.2 1.2 1.2 0.5 3 0.053 0.048 0.053 0.051 0.051 0.053
1.2 1.2 0.5 0.5 2 0.051 0.043 0.052 0.051 0.045 0.052
1.2 1.2 0.8 0.5 2 0.043 0.030 0.045 0.043 0.031 0.045
1.2 1.2 0.5 0.8 2 0.053 0.045 0.054 0.053 0.046 0.052
1.2 1.2 0.5 1.2 2 0.044 0.036 0.040 0.046 0.039 0.040

(IV) Piecewise exponential and r = 4.095
2 2 2 1 3 0.054 0.048 0.054 0.051 0.046 0.052
2 2 1 1 2 0.053 0.048 0.054 0.049 0.042 0.051
2 2 1.5 1 2 0.040 0.030 0.041 0.037 0.027 0.037
2 2 1 1.5 2 0.049 0.043 0.049 0.048 0.041 0.047
2 2 1 2 2 0.046 0.041 0.042 0.044 0.038 0.038

(V) Piecewise exponential and r = 4.618
1.2 1.2 1.2 0.4a 3 0.046 0.040 0.051 0.048 0.048 0.051
0.5 0.5 0.5 0.9
1.2 1.2 0.4 0.4a 2 0.049 0.035 0.052 0.050 0.044 0.051
0.5 0.5 0.9 0.9
1.2 1.2 0.7 0.4a 2 0.041 0.026 0.043 0.045 0.034 0.047
0.5 0.5 0.7 0.9
1.2 1.2 0.4 0.7a 2 0.047 0.032 0.049 0.052 0.043 0.052
0.5 0.5 0.9 0.7
1.2 1.2 0.4 1.2a 2 0.048 0.034 0.042 0.049 0.043 0.043
0.5 0.5 0.9 0.5

aThe first row is θ1i and the second row is θ2i .
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8 Y.-M. Chang and Y.-I. Chen

and (Z1, . . . , Zkj
) is a normal random vector with mean vector zero and variance–covariance

matrix �G
kj

.

3.3. Step-type WKM statistics

For 1 ≤ j ≤ i ≤ k, the third test considered is the step-type WKM statistic, which compares the
involved higher (i − j + 1) dose levels with all the lower j dose levels including the zero dose
control and is given by

V
(i)
j =

j−1∑
m=0

i∑
l=j

Uml, 1 ≤ j ≤ i ≤ k.

Notice that V
(i)
j = Gi if j = i. Based on the asymptotic result [13] of the two-sample WKM

statistic, the variance and covariance of V
(i)
j can be consistently estimated, for 1 ≤ m 	= l ≤ i, by

sV (i)

mm = −
m−1∑
j=0

∫ ti

0

(
i∑

h=m

√
λ̂h

∫ ti

t

K̂jh(v)Ŝ0+i (v) dv

)2
dŜ0+i (t)

Ŝ0+i (t)Ŝ
−
0+i (t)F̂

−
j (t)

−
i∑

j=m

∫ ti

0

(
m−1∑
h=0

√
λ̂h

∫ ti

t

K̂jh(v)Ŝ0+i (v) dv

)2
dŜ0+i (t)

Ŝ0+i (t)Ŝ
−
0+i (t)F̂

−
j (t)

Table 3. Estimated power for α = 0.05, n0 = n1 = n2 = n3 = 50 with uniform censoring distribution U (0, r).

True LR WKM

θ0 θ1 θ2 θ3 MED UL GL V L U G V

(I) Exponential and r = 3.197
1 1 1 0.5 3 0.669 0.814 0.834 0.653 0.816 0.837
1 1 0.5 0.5 2 0.695 0.786 0.816 0.680 0.788 0.811
1 0.5 0.5 0.5 1 0.806 0.744 0.800 0.792 0.735 0.782
1 1 0.7 0.5 2 0.264 0.322 0.374 0.259 0.336 0.380
1 0.7 0.7 0.5 1 0.339 0.281 0.325 0.335 0.279 0.311
Average (ordered) 0.555 0.589 0.630 0.544 0.591 0.624

1 1 0.5 0.7 2 0.680 0.779 0.745 0.665 0.780 0.735
1 1 0.5 1 2 0.673 0.774 0.440 0.657 0.773 0.429
1 0.5 0.5 0.7 1 0.792 0.734 0.734 0.780 0.723 0.706
1 0.5 0.7 1 1 0.728 0.698 0.370 0.716 0.679 0.344
1 0.5 1 1 1 0.724 0.702 0.188 0.705 0.682 0.172
Average (umbrella) 0.719 0.737 0.495 0.705 0.727 0.477
Average (overall) 0.637 0.663 0.563 0.624 0.659 0.551

(II) Lognormal with r = 4.879
0 0 0 0.5 3 0.469 0.613 0.658 0.486 0.665 0.703
0 0 0.5 0.5 2 0.505 0.591 0.643 0.520 0.639 0.679
0 0.5 0.5 0.5 1 0.608 0.528 0.600 0.624 0.552 0.609
0 0 0.3 0.5 2 0.220 0.258 0.312 0.221 0.288 0.334
0 0.3 0.3 0.5 1 0.279 0.222 0.272 0.289 0.232 0.271
Average (ordered) 0.416 0.442 0.497 0.428 0.475 0.519

0 0 0.5 0.3 2 0.485 0.579 0.563 0.501 0.622 0.585
0 0 0.5 0 2 0.474 0.568 0.294 0.498 0.620 0.306
0 0.5 0.5 0.3 1 0.588 0.519 0.536 0.616 0.546 0.544
0 0.5 0.3 0 1 0.531 0.492 0.275 0.561 0.518 0.275
0 0.5 0 0 1 0.529 0.504 0.136 0.532 0.505 0.127
Average (umbrella) 0.521 0.532 0.361 0.542 0.562 0.367
Average (overall) 0.469 0.487 0.429 0.485 0.519 0.443
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and

sV (i)

ml = −
m−1∑
j=0

∫ ti

0

(
i∑

h=m

√
λ̂h

∫ ti

t

K̂jh(v)Ŝ0+i (v) dv

) ⎛
⎝ i∑

q=l

√
λ̂q

∫ ti

t

K̂jq(v)Ŝ0+i (v) dv

⎞
⎠

× dŜ0+i (t)

Ŝ0+i (t)Ŝ
−
0+i (t)F̂

−
j (t)

+
l−1∑
j=m

∫ ti

0

(
m−1∑
h=0

√
λ̂h

∫ ti

t

K̂jh(v)Ŝ0+i (v) dv

)

×
⎛
⎝ i∑

q=l

√
λ̂q

∫ ti

t

K̂jq(v)Ŝ0+i (v) dv

⎞
⎠ dŜ0+i (t)

Ŝ0+i (t)Ŝ
−
0+i (t)F̂

−
j (t)

−
i∑

j=l

∫ ti

0

(
m−1∑
h=0

√
λ̂h

∫ ti

t

K̂jh(v)Ŝ0+i (v) dv

) ⎛
⎝ l−1∑

q=0

√
λ̂q

∫ ti

t

K̂jq(v)Ŝ0+i (v) dv

⎞
⎠

× dŜ0+i (t)

Ŝ0+i (t)Ŝ
−
0+i (t)F̂

−
j (t)

,

Table 4. Estimated power for α = 0.05, n0 = n1 = n2 = n3 = 50 with uniform censoring distribution U (0, r).

True LR WKM

θ0 θ1 θ2 θ3 MED UL GL V L U G V

(III) Piecewise exponential and r = 3.655
1.2 1.2 1.2 0.5 3 0.569 0.709 0.749 0.614 0.780 0.807
1.2 1.2 0.5 0.5 2 0.603 0.687 0.736 0.647 0.754 0.783
1.2 0.5 0.5 0.5 1 0.712 0.633 0.712 0.757 0.687 0.748
1.2 1.2 0.8 0.5 2 0.204 0.238 0.288 0.214 0.274 0.316
1.2 0.8 0.8 0.5 1 0.274 0.221 0.265 0.285 0.237 0.266
Average (ordered) 0.472 0.498 0.550 0.503 0.546 0.584

1.2 1.2 0.5 0.8 2 0.566 0.666 0.620 0.609 0.734 0.665
1.2 1.2 0.5 1.2 2 0.580 0.680 0.363 0.619 0.744 0.391
1.2 0.5 0.5 0.8 1 0.686 0.621 0.625 0.733 0.670 0.654
1.2 0.5 0.8 1.2 1 0.631 0.602 0.310 0.676 0.644 0.305
1.2 0.5 1.2 1.2 1 0.625 0.603 0.161 0.664 0.643 0.158
Average (umbrella) 0.618 0.634 0.416 0.660 0.687 0.435
Average (overall) 0.545 0.566 0.483 0.582 0.617 0.509

(IV) Piecewise exponential and r = 4.095
2 2 2 1 3 0.588 0.751 0.777 0.503 0.682 0.714
2 2 1 1 2 0.617 0.725 0.754 0.534 0.653 0.680
2 1 1 1 1 0.731 0.655 0.722 0.646 0.567 0.610
2 2 1.5 1 2 0.154 0.191 0.230 0.128 0.172 0.200
2 1.5 1.5 1 1 0.206 0.165 0.188 0.172 0.138 0.144
Average (ordered) 0.459 0.497 0.534 0.397 0.442 0.470

2 2 1 1.5 2 0.583 0.698 0.613 0.496 0.631 0.523
2 2 1 2 2 0.594 0.714 0.415 0.509 0.638 0.355
2 1 1 1.5 1 0.716 0.647 0.619 0.631 0.555 0.509
2 1 1.5 2 1 0.654 0.619 0.287 0.564 0.531 0.225
2 1 1.5 1.5 1 0.644 0.620 0.167 0.555 0.531 0.135
Average (umbrella) 0.638 0.660 0.420 0.551 0.577 0.349
Average (overall) 0.549 0.579 0.477 0.474 0.510 0.410
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10 Y.-M. Chang and Y.-I. Chen

where Ŝ0+i (t) is the pooled Kaplan–Meier survival estimator based on the combined samples
from 0 to i.

Let V
(i)∗
j = V

(i)
j /

√
s
V (i)
jj , 1 ≤ j ≤ i. Then, under the null hypothesis H0i , the distribution of

(V
(i)∗

1 , . . . , V
(i)∗
i ) is asymptotically normal with zero mean vector and the corresponding variance–

covariance matrix �V
i can be consistently estimated by �̂V

i = {sV (i)

ml /

√
sV (i)

mm sV (i)

ll }, 1 ≤ m 	= l ≤ i.
Notice that, under equal sample sizes and equal censoring distributions, the covariance between
V (i)∗

m and V
(i)∗
l is reduced to rV (i)

ml = √
m(i − l + 1)/ l(i − m + 1), for 1 ≤ m 	= l ≤ i.

At step i of the step-down testing procedure, the test statistic involved is

V ∗
(ki )

= max(V
(ki )∗

1 , . . . , V
(ki )∗
ki

). (4)

Suppose that the observed value of V ∗
(ki )

is v(ki ), then the associated adjusted p-value of the test is
given by p∗

ki
= max(pk1 , . . . , pki

), where for j = 1, 2, . . . , i,

pkj
= P {V ∗

(kj )
≥ v(kj )|H0kj

} ≈ P {max(Z1, . . . , Zkj
) ≥ v(kj )|H0kj

}
= 1 − P {Zm < v(kj ), m = 1, 2, . . . , kj |H0kj

},
and (Z1, . . . , Zkj

) is a normal random vector with mean vector zero and variance–covariance
matrix �V

kj
.

Hence, the MED can be identified using the step-down testing procedure described in Section 2
or the flowchart in Figure 1, based on the proposed adjusted p-values [12]. Notice that all the p-
values of the proposed testing procedures stated above can be computed by using the programme
in Gassmann et al. [14]. The mvtnorm package of Genz and Bretz [15] in R [16] software also
provides the required integration technique for free and is easily accessible.

Table 5. Estimated power for α = 0.05, n0 = n1 = n2 = n3 = 50 with uniform censoring distribution U (0, r).

True LR WKM

θ0 θ1 θ2 θ3 MED UL GL V L U G V

(V) Piecewise exponential and r = 4.618
1.2 1.2 1.2 0.4a 3 0.322 0.411 0.473 0.548 0.727 0.763
0.5 0.5 0.5 0.9
1.2 1.2 0.4 0.4a 2 0.344 0.391 0.460 0.574 0.687 0.729
0.5 0.5 0.9 0.9
1.2 0.4 0.4 0.4a 1 0.432 0.361 0.428 0.684 0.618 0.678
0.5 0.9 0.9 0.9
1.2 1.2 0.7 0.4a 2 0.158 0.173 0.229 0.233 0.303 0.351
0.5 0.5 0.7 0.9
1.2 0.7 0.7 0.4a 1 0.216 0.168 0.210 0.303 0.252 0.291
0.5 0.7 0.7 0.9
Average (ordered) 0.294 0.301 0.360 0.468 0.517 0.562

1.2 1.2 0.4 0.7a 2 0.329 0.388 0.389 0.561 0.677 0.636
0.5 0.5 0.9 0.7
1.2 1.2 0.4 1.2a 2 0.323 0.378 0.201 0.546 0.667 0.314
0.5 0.5 0.9 0.5
1.2 0.4 0.4 0.7a 1 0.424 0.358 0.384 0.665 0.601 0.597
0.5 0.9 0.9 0.7
1.2 0.4 0.7 1.2a 1 0.381 0.343 0.206 0.616 0.579 0.284
0.5 0.9 0.7 0.5
1.2 0.4 1.2 1.2a 1 0.362 0.341 0.077 0.597 0.573 0.106
0.5 0.9 0.9 0.5
Average (umbrella) 0.364 0.362 0.251 0.597 0.619 0.387
Average (overall) 0.329 0.332 0.306 0.533 0.568 0.475

aThe first row is θ1i and the second row is θ2i .
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4. A simulation study

We conduct a simulation study to investigate the relative error rate and power/bias performances of
the proposed testing procedures based on the pairwise WKM statistics in Equation (2), combined-
groups WKM statistics in Equation (3) and the step-type WKM statistics in Equation (4), denoted
by U , G and V , respectively, as well as the three LR statistics proposed in Chen and Chang
[3], denoted by UL, GL and V L. The error rate properties of the tests are evaluated by the
experimentwise error rate (EWE, the probability of incorrectly declaring MED under the global
null hypothesis H0k) and familywise error rate (FWE, the probability of underestimating the
MED). The power and bias performances of the tests are assessed by the probability of correctly
identifying the MED and E(MÊD)–MED. In this study, we consider k = 3 dose levels (excluding
control) with sample size n0 = n1 = n2 = n3 = 10, 30 and 50 in the EWE study and n = 50 in the
FWE and power/bias study. The exponential, lognormal and piecewise exponential distributions
are considered as survival time distributions and the uniform distribution over (0, r) is used as the
censoring distribution.

In the EWE study, the common survival distribution for each group is exponential distribu-
tion with scale parameter θ = 1 and lognormal survival distribution with zero normal mean and
standard deviation 1.0. Moreover, the piecewise exponential distributions with different hazards
at different time periods are also investigated. Thus, various values of r , which correspond to

Table 6. Estimated bias for α = 0.05, n0 = n1 = n2 = n3=50 with uniform censoring distribution U (0, r).

True LR WKM

θ0 θ1 θ2 θ3 MED UL GL V L U G V

(I) Exponential and r = 3.197
1 1 1 0.5 3 0.189 0.063 0.033 0.206 0.051 0.028
1 1 0.5 0.5 2 0.341 0.212 0.113 0.365 0.200 0.126
1 0.5 0.5 0.5 1 0.396 0.660 0.416 0.432 0.673 0.468
1 1 0.7 0.5 2 0.915 0.843 0.653 0.935 0.811 0.654
1 0.7 0.7 0.5 1 1.448 1.745 1.461 1.475 1.726 1.505
Average (ordered) 0.658 0.705 0.535 0.683 0.692 0.556

1 1 0.5 0.7 2 0.473 0.298 0.332 0.507 0.296 0.360
1 1 0.5 1 2 0.502 0.313 0.977 0.531 0.314 0.999
1 0.5 0.5 0.7 1 0.474 0.709 0.709 0.505 0.732 0.803
1 0.5 0.7 1 1 0.798 0.901 1.888 0.834 0.958 1.965
1 0.5 1 1 1 0.827 0.895 2.435 0.886 0.953 2.483
Average (umbrella) 0.615 0.623 1.268 0.653 0.651 1.322
Average (overall) 0.636 0.664 0.902 0.668 0.671 0.939

(II) Lognormal with r = 4.879
0 0 0 0.5 3 0.404 0.281 0.221 0.384 0.213 0.169
0 0 0.5 0.5 2 0.712 0.602 0.402 0.687 0.498 0.349
0 0.5 0.5 0.5 1 0.933 1.277 0.962 0.892 1.195 0.95
0 0 0.3 0.5 2 1.123 1.101 0.855 1.113 1.012 0.808
0 0.3 0.3 0.5 1 1.753 2.067 1.749 1.725 1.995 1.744
Average (ordered) 0.985 1.066 0.838 0.960 0.983 0.804

0 0 0.5 0.3 2 0.856 0.709 0.667 0.811 0.607 0.621
0 0 0.5 0 2 0.919 0.760 1.290 0.864 0.645 1.263
0 0.5 0.5 0.3 1 1.041 1.333 1.261 0.969 1.249 1.252
0 0.5 0.3 0 1 1.363 1.505 2.168 1.276 1.428 2.169
0 0.5 0 0 1 1.411 1.488 2.587 1.403 1.483 2.614
Average (umbrella) 1.118 1.159 1.595 1.065 1.082 1.584
Average (overall) 1.052 1.112 1.216 1.012 1.033 1.194

Note: The average bias is the mean absolute bias.
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12 Y.-M. Chang and Y.-I. Chen

the probability of censorship as 0.3 or 0.5, are considered in the EWE study. As shown in
Figure 2, the solid line in each panel represents the common survival function under the null
hypothesis. Appropriate uniform, exponential and lognormal variates were generated by using the
IMSL (International Mathematical and Statistical Library) routines RNUN, ENEXP and RNLNL,
respectively [17].

In the FWE and power/bias study, we use the (I) exponential distributions with various values of
scale parameters θi , i = 0, 1, . . . , k and the (II) lognormal distributions with same standard devi-
ation 1.0 and various mean values θi , i = 0, 1, . . . , k. Notice that exponential distributions have
the proportional hazards, but the hazards of lognormal distributions differ in early time. In addi-
tion, a variety of piecewise exponential distributions with different values of θi , i = 0, 1, . . . , k,
at different time periods corresponding to early, late and crossing hazard differences alternatives,
respectively, are also considered as follows:

(III) θiI (t ≤ 0.8) + 0.5I (t > 0.8),
(IV) 0.1I (t ≤ 0.8) + θiI (t > 0.8),
(V) θ1iI (t ≤ 0.6) + 0.1I (0.6 < t ≤ 1.4) + θ2iI (1.4 < t ≤ 2.3) + I (t > 2.3).

Notice that the dose–response configurations under study include both the ordered and umbrella
patterns of treatment effects with either step or linear type of increments or decrements. Also
notice that, under different survival distributions, the related value of r corresponding to the
probability of censorship as 0.3 in the EWE study was used in the FWE and power/bias study.

Table 7. Estimated bias for α = 0.05, n0 = n1 = n2 = n3 = 50 with uniform censoring distribution U (0, r).

True LR WKM

θ0 θ1 θ2 θ3 MED UL GL V L U G V

(III) Piecewise exponential and r = 3.655
1.2 1.2 1.2 0.5 3 0.290 0.167 0.120 0.249 0.091 0.064
1.2 1.2 0.5 0.5 2 0.525 0.415 0.246 0.440 0.278 0.174
1.2 0.5 0.5 0.5 1 0.666 0.995 0.667 0.540 0.821 0.574
1.2 1.2 0.8 0.5 2 1.065 1.039 0.822 1.017 0.919 0.750
1.2 0.8 0.8 0.5 1 1.704 1.989 1.707 1.641 1.871 1.651
Average (ordered) 0.850 0.921 0.712 0.777 0.796 0.643

1.2 1.2 0.5 0.8 2 0.690 0.522 0.564 0.611 0.382 0.483
1.2 1.2 0.5 1.2 2 0.707 0.530 1.152 0.625 0.394 1.097
1.2 0.5 0.5 0.8 1 0.791 1.047 1.035 0.656 0.893 0.960
1.2 0.5 0.8 1.2 1 1.089 1.187 2.065 0.957 1.063 2.082
1.2 0.5 1.2 1.2 1 1.126 1.192 2.513 1.007 1.071 2.522
Average (umbrella) 0.881 0.896 1.466 0.771 0.761 1.429
Average (overall) 0.865 0.908 1.089 0.774 0.778 1.036

(IV) Piecewise exponential and r = 4.095
2 2 2 1 3 0.270 0.126 0.090 0.366 0.202 0.163
2 2 1 1 2 0.474 0.321 0.205 0.632 0.457 0.336
2 1 1 1 1 0.566 0.901 0.611 0.771 1.128 0.915
2 2 1.5 1 2 1.111 1.030 0.868 1.222 1.107 0.971
2 1.5 1.5 1 1 1.831 2.029 1.826 1.979 2.130 1.998
Average (ordered) 0.850 0.881 0.720 0.994 1.005 0.877

2 2 1 1.5 2 0.671 0.467 0.602 0.844 0.605 0.780
2 2 1 2 2 0.673 0.450 1.041 0.850 0.607 1.171
2 1 1 1.5 1 0.666 0.950 1.049 0.897 1.207 1.376
2 1 1.5 2 1 1.024 1.139 2.134 1.281 1.399 2.322
2 1 1.5 1.5 1 1.066 1.139 2.494 1.332 1.407 2.590
Average (umbrella) 0.820 0.829 1.464 1.041 1.045 1.648
Average (overall) 0.835 0.855 1.092 1.017 1.025 1.262
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Therefore, the (k + 1) groups under study may suffer different probabilities of censorship ranging
from 0.3 to 0.5.

For each of these settings, 10,000 replicates are used to obtain the estimated EWE, FWE,
power and bias under the nominal level α = 0.05. Therefore, the standard deviation of the error
rate estimator is about 0.002(≈ √

(0.05)(0.95)/10, 000) and the maximum standard error for the
power estimator is about 0.005(≈ √

(0.5)(0.5)/10, 000). The estimated EWE for the group of
LR tests and the group of WKM tests are presented in Table 1, and the estimates of FWE, power
and bias for k = 3 and n = 50 are reported in Tables 2–8. Notice that, when the true MED is
one, the FWE is zero since no type I error is involved. Therefore, we leave the FWE blank for
the situation with MED = 1 in Table 2. Also notice that, in the power/bias study, we estimate the
MED to be four if the MED is identified to be beyond k = 3.

Upon examination of the results in Table 1, it is evident that all the tests maintain or exceed
their EWE only insubstantially when the sample size is 30 or larger. When the sample size is 10,
the combined-groups LR tests tend to be conservative, while the pairwise LR, step-type LR and
WKM tests do not maintain their EWE. Moreover, the results in Table 2 confirm that the FWE of
all the tests are controlled.

The power and bias estimates presented in Tables 3–5 and 6–8, respectively, reveal that under
exponential proportional hazards alternative, the WKM and LR tests are competitive, while the
WKM test performs better than the LR test under early and crossing hazards difference alternatives
but worse than the LR test under late hazards difference alternatives. Moreover, the step-type test
outperforms the pairwise and combined-groups tests in power and bias performances for ordered
dose–response, but it performs poorly for umbrella-patterned dose–response, especially for the
case with a dramatic down turn. In general, when the true MED is the first dose level, the power
or bias performance of the pairwise test is better than that of the combined-groups test. When the

Table 8. Estimated bias for α = 0.05, n0 = n1 = n2 = n3 = 50 with uniform censoring distribution U (0, r).

True LR WKM

θ0 θ1 θ2 θ3 MED UL GL V L U G V

(V) Piecewise exponential and r = 4.618
1.2 1.2 1.2 0.4a 3 0.322 0.411 0.473 0.326 0.153 0.113
0.5 0.5 0.5 0.9
1.2 1.2 0.4 0.4a 2 0.556 0.487 0.401 0.586 0.410 0.269
0.5 0.5 0.9 0.9
1.2 0.4 0.4 0.4a 1 1.060 1.033 0.759 0.742 1.020 0.762
0.5 0.9 0.9 0.9
1.2 1.2 0.7 0.4a 2 1.483 1.803 1.505 1.059 0.942 0.750
0.5 0.5 0.7 0.9
1.2 0.7 0.7 0.4a 1 1.357 1.388 1.113 1.658 1.918 1.663
0.5 0.7 0.7 0.9
Average (ordered) 0.956 1.024 0.850 0.874 0.889 0.711

1.2 1.2 0.4 0.7a 2 1.166 1.107 1.005 0.700 0.501 0.531
0.5 0.5 0.9 0.7
1.2 1.2 0.4 1.2a 2 1.210 1.141 1.466 0.759 0.539 1.243
0.5 0.5 0.9 0.5
1.2 0.4 0.4 0.7a 1 1.558 1.831 1.727 0.855 1.096 1.120
0.5 0.9 0.9 0.7
1.2 0.4 0.7 1.2a 1 1.814 1.952 2.367 1.129 1.251 2.145
0.5 0.9 0.7 0.5
1.2 0.4 1.2 1.2a 1 1.912 1.976 2.763 1.208 1.279 2.679
0.5 0.9 0.9 0.5
Average (umbrella) 1.532 1.601 1.866 0.930 0.933 1.544
Average (overall) 1.244 1.313 1.358 0.902 0.911 1.128

aThe first row is θ1i and the second row is θ2i .
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true MED is higher than the first dose level, however, the combined-groups test is superior to the
pairwise test.

5. An example

The data from a randomized and double-blinded clinical trial involving patients aged greater
than 60 with stage IV prostate cancer having evidence of distant metastasis [10] are used for
illustration. Among the 176 patients, 47 took the placebo pill as the control group, 43 received
0.2 mg of diethylstilbestrol (DES), 40 were treated with 1.0 mg of DES and 46 took 5.0 mg of
DES. All drugs were administered daily orally and the survival times until death were recorded.
For patients who had not yet died or were dead due to causes other than the prostate cancer, the
observed times were regarded as censored data. Herein, we are concerned with the minimum
dosage of DES under which the survival rate of the involved patients is larger than that of the
patients taking the placebo pill. The Kaplan–Meier [8] estimates for the survival functions of the
four groups are shown in Figure 3. The relevant summary statistics, the identified MED and the
associated adjusted p-values are then given in Table 9.

To apply the step-down closed testing procedure based on the WKM statistics, we have
k1 = 3 in this case. We first compute u(3) = 1.437 and find its p-value as p3 = P {U ∗

(3) ≥
1.437|H03} = 0.171. Since it is greater than the predetermined nominal level α = 0.05, we
identify the MED to be higher than 5.0 mg of DES. The combined-groups WKM statistic is
obtained as g(3) = 1.620 together with the p-value p3 = P {G∗

(3) ≥ 1.620|H03} = 0.149. Hence,
the combined-groups WKM statistics identify the MED to be larger than 5.0 mg of DES. Finally,
to identify the MED based on the step-type WKM statistics, we observe v(3) = 2.115 and
p3 = P {V ∗

(3) ≥ 2.115|H03} = 0.043, which leads to the next step with k2 = 2. Since v(2) = 1.440
with p2 = P {V ∗

(2) ≥ 1.440|H02} = 0.130, we stop the procedure and identify the MED to be
5.0 mg of DES with the adjusted p-value as 0.043.

Notice that the adjusted p-values of the corresponding LR statistics are 0.251, 0.263 and
0.080, respectively. This would lead to the conclusion that under the significance level 0.05,
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Figure 3. Kaplan–Meier estimate of survival functions for the prostate cancer data.
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Table 9. Summary statistics for the stage IV prostate cancer data.

i LR WKM

U∗
i (Ui , s

U
ii ) 1 −0.667 −0.459

2 0.932 0.966
3 1.178 1.437

MÊD 4 4

Adjusted p-value 0.251 0.171

G∗
i (Gi, s

G
ii ) 1 −0.667 −0.459

2 1.300 1.440
3 1.278 1.620

MÊD 4 4

Adjusted p-value 0.263 0.149

V
(3)∗
i (V

(3)
i , sV (3)

ii ) 1 0.446 0.726
2 1.823 2.115
3 1.278 1.620

V
(2)∗
i (V

(2)
i , sV (2)

ii ) 1 0.011 0.235
2 1.300 1.440

V
(1)∗
i (V

(1)
i , sV (1)

ii ) 1 −0.667 −0.459

MÊD 4 3

Adjusted p-value 0.080 0.043
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Figure 4. Log cumulative hazard functions for the prostate cancer data.

the MED of the DES in the treatment of the prostatic patients is beyond the largest dosage
under study. In fact, the log cumulative hazard functions in Figure 4 cross each other. There-
fore, it is not surprising that the LR tests produce the larger p-values than the associated WKM
tests.
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6. Conclusions

To sum up, both the group ofWKM tests and the group of LR tests are recommended for identifying
the MED in a dose–response study with proportional hazards. However, theWKM test is suggested
when hazards are crossing or different at early times, while the LR test is suggested when hazards
are different at late times. For the choice of types of testing procedures, the step-type test is
recommended for ordered dose–responses. For umbrella pattern dose–responses, however, the
pairwise or the combined-groups test is recommended. In this case, the pairwise test is preferred
if the true MED is assumed to be relatively close to the first dose level, otherwise the combined-
groups test is suggested.

Notice that, the weight function in this paper, K̂(t), in the WKM statistic is essentially used to
down weigh the variance of the difference between two estimated survival functions over later time
periods, especially, for heavy censoring. If some specific types of alternatives can be expected,
different weight functions such as the ones in [18], K̂(t)Ŝ

−ρ

(t) {1 − Ŝ−
(t)}γ , can be employed for each

individual comparison to gain better power. However, if these weight functions are not favoured,
the difference between two restricted mean lifetimes [19] can also be considered.
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