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Summary

This paper i1s concerned with testing for umbrella alternatives in a k-sample location problem when
the underlying populations have possibly different shapes. Following CHeN and WOLFE (1990b),
rank-based modifications of the HETTMANSPERGER-NORTON (1987) tests are considered for both the
settings where the peak of the umbrella is known and where it is unknown. The proposed procedures
are exactly distribution-free when the continuous populations are identical with any shape. Moreover,
the modified test for peak-known umbrella alternatives remains asymptotically distribution-free when
the continuous populations are assumed to be symmetric, even if they differ in shapes. Comparative
results of a Monte Carlo study are presented.

Key words Distribution-free test; Generalized Behrens-Fisher problem; Hett-
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I. Introduction

Suppose that X;,,..., X;,., i=1,..., k, are k independent random samples from
populations with continuous distribution functions F,(x),..., F,(x), respectively.
For each i=1,..., k, let 6, be the unique median of the ith population. In this
paper we consider the problem of testing the null hypothesis Hy: [0, =---=0,]
against the umbrella alternatives H,: [0, <---<0,=--- 2 0, for some p, with at
least one strict inequality] without making the assumption that the k& populations
have the same shape. Since the location parameters are of interest, while the
populations have possibly different shapes, this problem is usually referred to as
a generalized Behrens-Fisher problem.

A variety of nonparametric tests have been developed for umbrella alternatives
in a k-sample location problem. In particular, MACk and WOLFE (1981) first
provided a general solution to this problem. HETTMANSPERGER and NORTON
(1987) also considered a general approach to testing for various restricted alter-
natives. Note that these nonparametric tests are distribution-free when the
underlying populations are identical. However, the levels of these tests will not
necessarily be preserved when the populations have the same median but
different shapes or scale parameters. Therefore, test procedures which maintain
the designated level for this more general problem are needed.
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CHEN and WoLFE (1990b) suggested modifications of the Mack-Wolfe umbrella
tests for this generalized Behrens-Fisher setting. However, motivated by the
results of CHEN (1990) and CHEN and WOLFE (1990a) that the Hettmansperger-
Norton tests perform better than do the corresponding Mack-Wolfe tests for
equal spacing umbrella pattern location parameters, we consider, in this article,
rank-based modifications of the Hettmansperger-Norton tests for the generalized
Behrens-Fisher problem. The proposed procedures are exactly distribution-free
when the continuous populations are identical with any shape. Moreover, the
modified test for peak-known umbrella alternatives remains asymptotically
distribution-free when the continuous populations are assumed to be symmetric,
even if they differ in shapes.

In Section 2 we review the Hettmansperger-Norton umbrella tests for both the
settings where the peak of the umbrella is known and where it is unknown. In
Section 3 we modify the Hettmansperger-Norton statistics to obtain rank tests
for the generalized Behrens-Fisher problem. In Section 4 we present and discuss
the results of a small sample Monte Carlo level and power study.

2. Hettmansperger-Norton Tests

In a general approach to constructing tests designed for specific patterned alter-
natives, HETTMANSPERGER and NORTON (1987) proposed procedures for testing
H, agamst the umbrella alternatives H Let R;; be the rank of X;; among the

N = Z n; oberservations and let R, = Z R;;/n; be the average rank of the ith

sample Set Ay,=n;/N, i=1,..., k. For the case of known umbrella peak p and
equally spaced effects, correspondmg to 8;=0,+c,;0 with ¢, =i, fori=1,..., p,
and c,;=2p—i, fori=p+1,..., k, they proposed rejecting H, for large values of
the statistic

k —_—
= Z ’Q’Ni(cpi_c_\pw) Ri’ (21)
i=1

k
where C,,,= Y AyiCpi. Suppose that N — co in such a way that 1y; — 4, with

i=1
O<4;<1,i=1,..., k. Hettmansperger and Norton also noted that, under H,, the
statistic

VE=V,/oo(V,) (2.2)

has a limiting (N — o) distribution that is standard normal, where

BV = N+ 112} Y, A= Ep?. (2.3)

i=1
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For the same equally spaced alternative and unknown umbrella peak, they
suggested rejecting H, for large values of

VX =maximum {V*}, (2.4)

115k

where V;* is given by (2.2)fort=1,..., k.

3. Modifications of Hettmansperger-Norton Tests

When the underlying populations are symmetric, the problem of interest in this
paper is in fact to test the null hypothesis H§ : (m;; = 1/2 for all pairs of i and j)
against the class of alternatives Hf : (n;; £1/2, 1Si<j<p, and n; 21/2, pSi<j<k,
for some p, with a least one strict inequality), where n;; = Pr(X;; = Xj,) = { F;dF,
i+j=1,....,k Let U; be the usual Manp-Whitney statistic (MANN and
WHITNEY, 1947) corresponding to the number of observations in sample i that

exceed observations in sample j. Set Z,= ) Uj; for i=1,..., k. Since n,R,=Z, +
k jFi

m(n;+1)/2, i=1,..., k and ), nic,;—¢,,)=0, the statistic V, in equation (2.1)

i=1

can be expressed as

™M™~

V,=N"!

p

(Cpi = Cp) {Zi—ni(N —1n;)/2} .

]

i=]

The expected value of V,, is then given by

u(V,)=N"" Z (Cpi — Cpw) {; nn;(m;; —1/2)} .

It is obvious that the expected value of V, remains zero under Hff. However, the
variance of V, is not constant even under Hg when the underlying populations
have different shapes. To modify the Hettmansperger-Norton statistics for testing
umbrella location alternatives with fewer assumptions on the shapes of the
populations, we follow CHEN and WoOLFE (1990b) and find, in the following, the
variances of V,, p=1,..., k, under a general setting.

Let

¢5“ = .[ FSFdei — i Wiy S L, 1= 15 sy k.
From BIRNBAUM and KLOSE (1957), we have, for i+ j=1,..., k,

JZ(Uji) = n;n; {(nj_ 1) ¢jji+(ni—1) ¢iij+ nijnji} (3.1)
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From CHEN and WOLFE (1990b), we also have

n;njns(bisj for j=r, f=|=S
ninn, g, for jFri=s
cov(Uy, U )= —ninjnyd, for i=r, j*s (3.2)

—nnn, ., ; : .
i1ty $iry for ikr, j=s

0 if i, j, r, s are distinct,

and
0-2 (Zl) = Z n;ng {(ni - 1) Qsiis + (ns - l) ¢ssi + T Tsi
s¥*i
+2 )Y mnn by, i=1,..., k (3.3)
s<t,sFitFi

Using the results in (3.1) and (3.2) we obtain, after some algebraic manipulations,
that, for i<j=2,..., k,

cov(Z;, Z;)= Z nning(¢ijs — i — bis))

s¥i.s¥j

—nmm{(nj—=1) i+ (n; = 1) i+ 77y} (3.4)

Therefore, we have
k
a*(V,)=N"* {Z (Cpi—Cp) 02(Z)
i=1

+2 ZZ (Cpi_épw) (ij_épw) COV(Z,-, Z_])} 3 (35)
i<j
where ¢>(Z;) and cov(Z;, Z;) are given in equations (3.3) and (3.4), respectively.
Following the suggestions of FLIGNER and PoLiceLLO (1981), CHEN and WOLFE
(1990b) replaced the F;’s with their sample distribution function analogues F;’s in
the n;; and ¢,;, respectively, to obtain the consistent estimators

stis
ﬁij= _ij/ni
and
$sti=I AsAtdAi—_ﬁsiﬁu'= Z (P.svi_ﬁsi) (Pt!;_ﬁti)/ninsnn
v=1
where
Pi=nFi(X;)= Y Y(Xj,—Xu) o=L...,n,
v=1
and
nj .
Pu_ Z Pj/nj
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with
1 for a>0
w(a)={
0 for a<0.

By replacing the involved ;s and ¢g;’s with the #;;'s and d.,.’s, respectively, in
the N~'6?(V,), p=1,..., k, we obtain the corresponding consistent estimators.
To simplify the computation of the estimators, however, we set

Wei = Z (Psur_lzr)(P::_Ex)’ S, L, i=l;---a ks
v=1{

and replace the (n;—1)’s by n;s. (These changes will not affect the asymptotic
properties of the estimators.) The estimators of ¢?(Z;) and cov(Z;, Z;) are then
respectively obtained as

62(Zi) = Z (Wiis + Wosi + }_)_is ﬁst) + 2 zz ws{i (36)
s*i s<t,s%i,t*i
and
cov(Z;, Z;) = 4:'2'# _ (Wijs— Wisi — Wisj) — (Wii; + Wy + Isiiji)‘ (3.7)
s*i,s*j

Therefore, the estimator of ¢?(V,) is given by

k

¢*(V,)=N"* {Z (¢pi = Epu)” 6(Z3)

i=1

+2 5 (Cpi— Epy) ()= Cp) COV(Zi, zj)} , (3.8)

i<j

where 6%(Z,) and cov(Z,, Z;) are given 1n equations (3.6) and (3.7), respectively.
Consequently, for the case of known umbrella peak p and equally spaced effects,
we propose rejecting Hy in favor of the peak-known (p) umbrella alternative H%
for large values of

Vx=V [6(V,), (3.9)

where V, and 6%(V,) are given in equations (2.1) and (3.8), respectively. For the
same equally spaced umbrella alternative with unknown peak p, we then suggest
rejecting Hy for large values of

V* =maximum {V*}, (3.10)

115k

where V* is given by (3.9) for p=1,..., k.
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Note that the tests based on I7p* and V* are both exactly distribution-free
when the populations are identical since the &2(V,)’s involve ranks only.
Furthermore, suppose that N — oo in such a way that n;,/N — 4, with 0 < 4, <,
i=1,..., k. From the results of HETTMANSPERGER and NORTON (1987), we observe
that the random variable V,/o(V,) has an asymptotic (N — oco) null (Hg)
distribution that is standard normal, where V, and a*(V,) are given in equations
(2.1) and (3.5), respectively. It follows from the Glivenko-Cantelli Theorem (see,
for example, Theorem 2.1.4A of SerrLING (1980)) that F, converges uniformly
to F, with probability one for i=1,..., k. Using this result we obtain that

az(Vp)/éi(Vp) converges to one almost surely as N — oo. This implies that the
statistic V¥ (3.9) has an asymptotic (N — co) null (Hy) distribution that is
standard normal. Therefore, we observe that the test based on V;* is

asymptotically distribution-free under H§.

4. Monte Carlo Study
4.1 Description of the Study

To investigate the level and power performances of the tests based on the
modified Hettmansperger-Norton statistics I7p* (3.9) and V*_ (3.10) relative to
those based on the original Hettmansperger-Norton statistics V,* and V},, given
in (2.2) and (2.4), respectively, we conducted a Monte Carlo study. Three families
of distributions were selected for these simulations: the normal, contaminated
normal and Cauchy. The International Mathematical and Statistical Libraries
(IMSL) routines RNNOR and RNCHY were employed to generated appropriate
normal and Cauchy deviates. The contaminated normal distribution utilized was
a mixture of the standard normal distribution and a normal distribution having
mean zero and standard deviation 5 in proportions 0.9 and 0.1, respectively.

In studying the effect of different scale parameters on the significance levels
of the test procedures, we considered distribution functions F;(x)= F(x/o;),
i=1,...,k with F(0)=1/2, for several choices of ¢,/0,,...,06,/0, and F being
normal, contaminated normal or Cauchy. Since the level performance of the test
based on I7p* relative to that of the test based on V,* is similar for p=1,..., k, we
simply considered the case p =k in this study. The estimated levels are presented
in Table 1.

The power study, reported in Table 2, was designed to compare the powers of
the modified test with the original tests for testing against umbrella location
alternatives. For the power study to be meaningful, the original tests must main-
tain their levels. Therefore, we required the distributions to have the same shape.
Specifically, we considered Fi(x)=F(x—0;), i=1,...,k with 0, <---£0,=2--- 2 0,.
Several choices of 8, — 6, ,..., 6, — 0, in combination with the three distributions
stated above were studied.
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Furthermore, to compare the power performances of the modified Hettmans-
perger-Norton tests based on V* and V*_with the corrcsponding modifications
of Mack-Wolfe test and Chen-Wolfe test based on A* and A*,, for the more
general Behrens-Fisher setting, we considered F,(x)—F( x—0)/6;), i=1,..., k,
for several choices of ¢,/0,,...,0,/0, and 6,—6,,...,6,—6,, and F being
normal, contaminated normal or Cauchy. The simulation results are presented in
Table 4 and the relating level estimates are reported in Table 3 as a reference.

The level and power studies described above were conducted for k=4
populations with n;, =-.-=n, =10 observations per sample. We first generated
the level 0.10 critical points for the test statistics considered here. For each of
these settings we employed 10,000 replications in obtaining the level or power
estimate. Since we took 0.10 as the nominal level of the tests, the estimated levels
in Table | have standard deviation of 0.003 = {(0.10) (0.90)/10,000}'/>. We then
indicate, by + (—) signs, whenever the estimated level is more than two standard
deviations above (below) 0.01.

4.2 Discussion of the Results

It is evident, upon examination of Table 1, that the statistics V,* and V.¥,, do not
hold their levels when the undcrlying distributions have different scale para-
meters, while the modified statistics V* and V* maintain their levels well for all
situations considered. The fact that the tests based on V* and V*  are
exactly distribution-free when the populations are identical is also demonstrated
in Table 1.

[t can be seen from Table 2 that, for small sample sizes, the modified Hett-
mansperger-Norton tests exhibit slightly lower power for some situations than do
the associated original tests. However, these power differences do not seem too
costly a price to pay for the additional level holding properties of the modified
tests.

The simulation results in Table 3 indicate that, for 1 <p <k, 17* 1s still superior
to A* for equal spacing umbrella alternatives. However, when the alternatives are
not equally spaced, the test V* may not be as powerful as A* For the peak
unknown setting, we observe that V,;"“ provides in general a bettcr test than does

Ak, for the cases with different scale parameters.

To conclude, we consider the modified Hettmansperger-Norton tests improve-
ments over the corresponding original Hettmansperger-Norton tests because the
modified tests are insensitive to differences in the scale parameters of the
underlying symmetric distributions for holding their levels, and for small sample
sizes the modified tests do not surrender significant amount of power relative to
the associated unmodified tests. Moreover, when the umbrella patterned medians
are believed to be equally spaced, we recommend use of the modified
Hettmansperger-Norton tests instead of the modified Mack-Wollfe tests.
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Table 3

Estimated levels for nominal a =0.10 when k=4 amd n, =n,=ny;=n,=10

355

0)/0, a3foy aido, AY  AY W VX A, VA
1 1 1 00 100 099 095 00 103
Normal 1 2 3 101 104 099 (103 J00 105
2 l 3 095 108 0%  .102  .101 104
Contaminated | I 1 095 100 100 102 100  .105
Normal 1 2 3 096  .104 100 105 103 107
2 1 3 .093 105 093 104 104 102
I 1 { 098 102 101 103 101 104
Cauchy 1 2 3 098 105 101 103 105 103
2 1 3 091 105 094 095 105 .10t
Table 4
Estimated powers for nominal a=0.10 whep k=4, n,=n, =ny;=n, =10
(a) Normal
0,/0y,  Gy/6, g4/, 0,—6, 6, —6, 8, —6, f‘f: Vp* /I:m V::u
1.0 1.0 1.0
0.0 0.0 1.0 769 77 516 .546
0.0 0.5 1.0 866 859 .662 678
0.5 1.0 L5 982 984 925 939
0.0 1.0 0.0 .868 798 703 612
0.0 1.0 0.5 .764 .801 662 .654
0.5 1.0 0.5 762 792 633 628
1.0 2.0 30
0.0 0.0 1.0 321 337 151 175
0.0 0.5 1.0 418 418 238 276
0.5 1.0 1.5 630 629 484 .509
0.0 1.0 0.0 492 491 326 330
0.0 1.0 0.5 428 494 332 349
0.5 1.0 0.5 479 529 372 382
2.0 1.0 3.0
0.0 0.0 1.0 330 336 159 174
0.0 0.5 1.0 470 AS57 .301 346
0.5 10 1.5 701 687 605 703
0.0 1.0 0.0 769 796 592 661
0.0 1.0 0.5 694 797 .566 619
0.5 1.0 0.5 .694 .794 .552 617
(b) Contaminated Normal
0,/a, o3/0, o./o,  0,—0, 6, -6, 0,—0, /‘i: i7p"‘ A\;ax Vr:ux
1.0 1.0 1.0
0.0 0.0 1.0 .669 .664 402 423
0.0 0.5 1.0 765 769 533 555
0.5 1.0 1.5 938 934 808 824
0.0 1.0 0.0 764 691 569 492
0.0 1.0 0.5 655 687 535 531
0.5 1.0 0.5 654 695 510 525
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b) Contaminated Normal (continuation)

0,/0, ay/e, a4l 0,—0, 0,—0, 0,—6, /i\: Vp* ff:mx Vs
1.0 20 3.0
0.0 0.0 1.0 .288 292 132 157
0.0 0.5 1.0 374 371 203 231
0.5 1.0 1.5 583 576 406 427
0.0 1.0 0.0 420 421 277 281
0.0 1.0 0.5 374 418 275 294
0.5 1.0 0.5 411 467 314 326
2.0 1.0 3.0
0.0 0.0 1.0 .294 298 137 151
0.0 0.5 1.0 413 .399 247 282
0.5 [.0 1.5 610 .603 A87 .559
0.0 1.0 0.0 647 667 455 462
0.0 1.0 0.5 .574 .664 436 489
0.5 1.0 0.5 577 661 432 490
(c) Cauchy
a,/a, 030y dsfoy  6,—8, 656, 0,—06, /‘i: f)p* A‘\:sx Vn):zx
1.0 1.0 1.0
00 0.0 1.0 426 423 207 224
0.0 0.5 1.0 502 492 273 .290
0.5 1.0 1.5 .693 678 454 478
0.0 1.0 0.0 488 435 315 277
0.0 1.0 0.5 407 439 300 309
0.5 1.0 0.5 413 436 300 295
1.0 2.0 3.0
0.0 0.0 1.0 230 228 112 124
0.0 0.5 1.0 286 276 152 173
0.5 1.0 [.5 415 422 256 283
0.0 1.0 0.0 .288 287 .190 193
0.0 1.0 0.5 262 289 .190 201
0.5 1.0 0.5 284 314 214 223
2.0 1.0 3.0
0.0 0.0 1.0 233 228 11 121
0.0 0.5 1.0 295 288 167 186
0.5 1.0 1.5 431 415 285 330
0.0 1.0 0.0 .394 .407 258 265
0.0 1.0 0.5 351 398 245 271
0.5 1.0 0.5 354 408 251 278
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