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Multiple testing for bioequivalence with pharmacokinetic
data in 2×2 crossover designs
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SUMMARY

To evaluate globally the average bioequivalence of a test drug to a reference drug in a pharmacoki-
netic (PK) study under a 2×2 crossover design, we consider directly comparing the associated drug
concentration–time curves. Statistical models for the drug concentrations are suggested when the concen-
trations measured at different time points are distributed according to a generalized gamma distribution
and the mean concentrations over time is described by a one-compartment PK model. A multiple test
based on the supreme distance between the two curves over the time interval under study is then proposed
for testing the equivalence of the two drug concentration–time curves. The results of a Monte Carlo study
suggest that, comparative to the conventional univariate and bivariate tests, the proposed test is more
powerful for detecting the global bioequivalence and superior on maintaining its level when the global
bioequivalence is violated. The application of the proposed tests is finally illustrated by using the data in
a PK study involving two brands of benzbromarone tablets for reducing the uric acid. Copyright q 2009
John Wiley & Sons, Ltd.

KEY WORDS: bioequivalence test; crossover design; generalized gamma distribution; multiple test;
pharmacokinetic study

1. INTRODUCTION

In a pharmacokinetic (PK) study, to claim a test drug under study as a generic drug, proof of
the bioequivalence between the test drug and a comparative reference drug is needed. To do so,
some healthy volunteers are recruited and administered with the two drugs in a 2×2 crossover

∗Correspondence to: Yuh-Ing Chen, Institute of Statistics, National Central University, Jhongli 32054, Taiwan.
†E-mail: ychen@stat.ncu.edu.tw

Contract/grant sponsor: National Science Council of Taiwan; contract/grant number: NSC 97-2118-M-008-003-MY2

Received 11 August 2008
Copyright q 2009 John Wiley & Sons, Ltd. Accepted 4 August 2009



3568 Y.-I. CHEN AND C.-S. HUANG

design with a reasonable wash-out time period, where the volunteers in one sequence receive the
reference (R) drug and then the test (T ) drug in two different periods, while the volunteers in
the other sequence take the drugs in reverse order in the two periods. After the drug is admin-
istered to each volunteer, the drug concentrations in blood or plasma at different time points are
then measured, which is referred to as the drug concentration–time curve or profile. The average
bioavailability parameters such as the area under the drug concentration–time curve (AUC) and
the maximum drug concentration (Cmax) are conventionally of interest for assessing the bioequiv-
alence of the test drug to the reference drug [1, 2]. For example, Berger and Hsu [3] suggested
a nearly unbiased test for the equivalence of a certain bioavailability parameter. Multivariate
bioequivalence tests [3, 4] also received extensive attention for the equivalence of several bioavail-
ability parameters, simultaneously. In particular, Berger and Hsu [3] recommended an intersection–
union test in which nearly unbiased tests for the equivalence of both the AUC and Cmax are
incorporated.

However, it is well known that the equivalence of one or some bioavailability parameters does
not necessarily imply that the two drug concentration–time curves are equivalent [5]. Hence, Liao
[6] compared the drug concentration–time curves directly when the two curves satisfy a functional
linear model. Nevertheless, nonrejection of the null hypothesis in Liao [6] that the two curves
are equal does not provide any significant evidence for supporting the bioequivalence of the two
drugs. Therefore, testing procedures are still needed for testing the bioequivalence of the test and
reference drugs in terms of the concentration–time curves.

Note that all of the aforementioned tests are constructed under the assumption of lognormal
distribution for the drug concentrations or estimators of bioavailability parameters. However, it
has been well recognized that the lognormal distribution is of little practical use in the PK study.
Therefore, we consider herein the situation where the drug concentration is distributed according to
a generalized gamma distribution [7], which includes some well-known right-skewed distributions
such as gamma, Weibull and lognormal.

In fact, when the kinetics of the drug under study is fully understood, we may use some
suitable compartment models [8] to describe the mean drug concentrations over time. Therefore, to
make a parametric bioequivalence test, we consider, in this paper, a statistical model for the drug
concentrations where the mean drug concentrations follow a one-compartment PK model and the
error variable is distributed according to a generalized gamma distribution. Note that the statistical
model is actually an extension of the work in Lindsey et al. [9] and Salway and Wakefield [10].
Based on the statistical model, we then construct a multiple test searching for the evidence for the
equivalence of the two mean drug concentration–time curves over the time interval under study.

In Section 2, we propose a statistical model for the drug concentrations obtained from a 2×2
crossover study and show how to find the maximum likelihood estimators of the related param-
eters. We also discuss the goodness-of-fit test for the distributions and the associated problem
of model selection. In Section 3, a parametric test based on the supreme distance between the
two estimated drug concentration–time curves is then constructed for testing against the equiva-
lence of the two curves. The results of a Monte Carlo study investigation of the level and power
performances of the proposed test for a variety of PK models and generalized gamma distribu-
tions with different numbers of sampling time points and sample sizes are further presented and
discussed in Section 4. In Section 5, the proposed test is implemented for the bioequivalence of two
brands of benzbromarone tablets in the reduction of uric acid. Finally, in Section 6, conclusions
and discussions are made concerning the application of the proposed model and bioequivalence
test.
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2. STATISTICAL MODEL FOR DRUG CONCENTRATIONS

2.1. Statistical model

Let Yijk� be the logarithm of the drug concentration of the j th subject in the i th sequence during
period k at time t�, for i,k=1,2, j =1, . . . ,ni , �=1, . . . ,m, that are observed under a 2×2
crossover design. For oral administered drugs, in particular, we consider the one-compartment
model with first-order absorption and elimination:

�(ka,ke,V ; t)= dka
V (ka−ke)

(e−ket −e−kat ) (1)

where ka and ke are the absorption and elimination rate, V is the volume parameter, d is the
dose level applied and t is the time point. Note that most of the variability in subjects is due
to differences in the volume parameter, which can be regressed by some recorded covariates of
the subjects [9]. Let w j1, . . . ,w jr be the covariates of subject j, j =1, . . . ,ni , i=1,2. Then, we
propose a statistical model for the logarithm of the drug concentration as given by

Yijk� = log�(kah,keh,Vjh; t�)+�k+ logεijk�, i,k=1,2, j =1, . . . ,ni , �=1, . . . ,m (2)

where �k is the effect of kth period with usual condition �1+�2=0, the εijk� are the associated
error variables, and log(Vjh)= log(Vh)+∑r

q=1 �qw jq with h= R, if i=k, h=T, otherwise.
To make model (2) of wide application, we consider the error variables that are distributed

according to the generalized gamma distribution [7], including a variety of right-skewed distri-
butions such as gamma, Weibull and lognormal distributions. Note that the probability density
function of the generalized gamma distribution [7] is

f (ε;�,�,�)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|�|[�−2(e−�ε)�/�]�−2
exp[−�−2(e−�ε)�/�]

�ε�(�−2)
, � �=0

exp[−(logε−�)2/(2�2)]√
2��ε

, �=0

(3)

where �,� and � are the location, scale and shape parameters, respectively. The associated cumu-
lative distribution function is then obtained as

F(ε;�,�,�)=

⎧⎪⎪⎨
⎪⎪⎩

�[�−2(e−�ε)�/�;�−2], �>0

1−�[�−2(e−�ε)�/�;�−2], �<0

�[(logε−�)/�], �=0

(4)

where �(s;�)=∫ s
0 u

�−1e−udu/�(�) and �(·) is the distribution function of a standard normal
random variable. We denote, hereafter, GG(�,�,�) for such a distribution. As usual, the error
variable is assumed to have mean zero and, hence, we consider the situation with E(εijk�)=1.
Therefore, � is a function of � and � as given by

g(�,�)= log�(�−2)−2�(log�)/�− log�(�−2+�/�) (5)
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2.2. Estimation and goodness-of-fit test for the models

Because of the detection ability of the equipment or machine, it occurs often that the drug
concentration in blood or plasma below some level may not be detected or measured and, hence,
the associated concentration data are subject to left-censorship. Let yc be the detection limit and
	ijk� = I (yijk��yc) the censoring index, where I (A)=1 if A is true, =0, otherwise. Since the left-
censored data can have considerable impact on the estimation of the drug concentration–time curves
[9], the likelihood function of the parameters given the data set, {yijk�, i,k=1,2, j =1, . . . ,ni ,
�=1, . . . ,m}, is obtained as

L= L11×L12×L21×L22

where Lik , the likelihood function in sequence i during period k, for i,k=1,2, are given by

Lik =
n1∏
j=1

m∏
�=1

{ f (exp(yijk�− log�(kaR,keR,VRj ; t�)+(−1)k�1);g(�,�),�,�)}	ijk�

×{F(exp(yc− log�(kaR,keR,VRj ; t�)+(−1)k�1);g(�,�),�,�)}1−	ijk�

with f (ε;�,�,�) and F(ε;�,�,�) stated in (3) and (4), respectively. Note that the maximum
likelihood estimates (MLEs) of the corresponding parameters can be obtained by using the
general optimizing routine optim in R software and the variance–covariance matrix of the MLEs
can be found by taking the inverse of the observed Fisher information matrix. Moreover, the
MLEs in model (2) are, in fact, obtained based on all the 2m(n1+n2), in total, observations.
If this number is large enough, the approximated normal distributions for the MLEs would be
reasonable [11].

To investigate the goodness-of-fit of a specific distribution for the drug concentrations, we
consider the likelihood ratio test for the null hypothesis that the error variables in model (2) are
distributed according to such a distribution against an alternative hypothesis that the error variables
are distributed according to the generalized gamma distribution. Denote the associated maximum
likelihood functions as L0 and LGG , respectively. We then claim, at significance level �, that
the assumption of the specific distribution is invalid if −2{log L0− logLGG}�
21,�, where 
2d f,�
is the upper �th percentile of a chi-squared distribution with degrees of freedom df . To further
investigate the feasibility of the assumption of the generalized gamma distribution for the drug
concentrations, we then suggest that one draws the quantile–quantile plot for the residuals under
model (2). If the plot shows a tendency that is relatively close to the straight line with slope one
through the origin, then the generalized gamma distribution is employed for modeling the drug
concentrations.

To select covariates for use in model (2), we suggest that one fits the data with all possible
models since the number of covariates involved in the PK study is usually not so large. Let Mj
be the fitted model that involves v j unknown parameters and the associated maximum likelihood
functions are denoted by L(Mj ), j=1,2, . . . ,m. We then compute, for each model involved, the
Akaike Information Criterion (AIC) [12], that is, −2log L(Mj )+2v j , j =1,2, . . . ,m. Finally, the
model with the smallest AIC is recommended for fitting the data obtained from a 2×2 crossover
study.

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:3567–3579
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3. MULTIPLE TEST

To conduct a bioequivalent test for the test and reference drugs under model (2), we suggest
directly compare the two mean drug concentration–time curves. To this end, we consider testing
the null hypothesis of departure

H0 :
{

�(kaT ,keT ,VT ; t)/�(kaR,keR,VR; t)�0.80

or �(kaT ,keT ,VT ; t)/�(kaR,keR,VR; t)�1.25 for some t ∈[t1, tm]

}

against the alternative hypothesis of equivalence

H1 : {0.80<�(kaT ,keT ,VT j ; t)/�(kaR,keR,VRj ; t)<1.25 for all t ∈[t1, tm]}
where the mean drug concentration �(·) is given in (1) and the margins of relative efficiency
as 0.80 and 1.25 are currently employed in FDA [2]. To perform a multiple test for the above
hypotheses, we may construct the confidence set for the mean ratios over the time period under
study. However, the bioequivalence holds if the largest discrepancy between the two concentration
curves is equivalence. Let

D(t)= log�(kaT ,keT ,VT ; t)− log�(kaR,keR,VR; t) for t ∈[t1, tm]
Therefore, we suggest to find the 100(1−�) per cent upper confidence bound for supt∈[t1,tm ] |D(t)|,
denoted by DU�. We then reject H0 and claim the bioequivalence at significance level � if
DU�<0.223(= log1.25). We term 0.223 hereafter to be the bioequivalence margin.
To find DU�, the 100(1−�) upper confidence bound for supt∈[t1,tm ] |D(t)|, let

D̂(t)= log�(k̂aT , k̂eT , V̂T ; t)− log�(k̂aR, k̂eR, V̂R; t) for t ∈[t1, tm]
where k̂ah, k̂eh and V̂h are the MLEs of kah,keh and Vh , respectively, for h=T and R. Note that,
given the MLEs, supt∈[t1,tm ] |D̂(t)| is a function of t . Hence, we can numerically obtain the value

of t , say, tS , such that |D̂(tS)|=supt∈[t1,tm ] |D̂(t)|. We then suggest to use the parametric bootstrap
procedure [13] to find the upper �th percentile of the sampling distribution of supt∈[t1,tm ] |D(t)|−
|D̂(tS)|. The algorithm of the parametric bootstrap procedure is stated in the following:

1. Generate B random sets {εbijk�, i,k=1,2, j =1, . . . ,ni ,�=1, . . . ,m} from GG(g(�̂, �̂), �̂, �̂)

and let ybijk� =�(k̂ah, k̂eh, V̂h; t�)×εbijk� for h=T and R, b=1, . . . , B.

2. Compute the MLEs k̂baR, k̂beR, V̂ b
R, k̂baT , k̂beT , V̂ b

T under model (2) based on the bootstrapped data
{ybijk�, i,k=1,2, j =1, . . . ,ni ,�=1, . . . ,m} and find �b=|D̂(tS)|−|D̂b(tbS )|,b=1, . . . , B.

3. Let �� be B(1−�)th value in the ordered list of �b,b=1, . . . , B. Then DU� is |D̂(tS)|+��.

4. A SIMULATION STUDY

4.1. Design of the simulation study

We conducted a Monte Carlo study to investigate the level and power performances of the proposed
test, denoted by MT, relative to the nearly unbiased test for the equivalence of AUC and the

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:3567–3579
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Figure 1. The three patterns of drug concentration–time curves recorded (top), under null (middle) and
alternative (bottom) hypotheses.

bivariate test for the equivalence of both the AUC and Cmax suggested in Berger and Hsu [3],
denoted by UT and BT, respectively. Note that the BT is an intersection–union test incorporating
with two nearly unbiased tests for the equivalence of AUC and Cmax, respectively. In the simulation
study, we consider the situation where the two drugs are administered to n=16 or 24 volunteers
in 2×2 crossover designs and the drug concentrations are measured at (i) 0.5, 2, 4, 6, 10, 14 h
(m=6) or (ii) 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 14 h (m=14) after the volunteers started
to take the drug. Note that the former case is especially considered for the elderly persons whose
drug concentrations are usually sampled in a relative few time points.

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:3567–3579
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We choose in the simulation study three pairs of the drug concentration–time curves for the
reference and test drugs, which are found in the real data presented in the next section (Figure 1).
All the concentration–time curves under the null or alternative hypothesis are designed to have the
patterns that are similar to the three stated above. To study the level performance of the proposed
test, we consider the settings with nonbioequivalence of the two drugs where the curves have
(kaR,keR,VR)=(0.4,0.2,15) but different values of (kaT ,keT ,VT ):

N1. (kaT ,keT ,VT )=(0.4,0.2,12);
N2. (kaT ,keT ,VT )=(0.44,0.24,11.52);
N3. (kaT ,keT ,VT )=(0.38,0.18,19.13).

Note that the cases N1–N3 are the null hypotheses under consideration, which represent nonbioe-
quivalence. Therefore, the level of the test is the probability of claiming bioequivalence when the
two drugs are, in fact, not bioequivalent. Moreover, to study the power performance of the proposed
test, we consider the settings where the two drugs are actually bioequivalent with (kaR,keR,VR)=
(0.4,0.2,15), again, but with a variety of (kaT ,keT ,VT ):

A1. (kaT ,keT ,VT )=(0.4,0.2,13.57);
A2. (kaT ,keT ,VT )=(0.42,0.22,13.33);
A3. (kaT ,keT ,VT )=(0.39,0.19,16.73).

Therefore, in this simulation study, the power of the test is the probability of claiming bioe-
quivalence under cases A1–A3 where the two drug concentration–time curves are equivalent. In
particular, cases N1 and A1 indicate the situation that the curve of the test drug is higher and lower
than that of the reference drug in earlier and later time periods, respectively. Both the cases N2 and
A2 show that the two curves are depart in earlier time period but are close to each other in later
time period. On the other hand, cases N3 and A3 show that the curve of the test drug is higher
than the curve of the reference drug for whole time period. The mean drug concentration–time
curves under N1–N3 and A1–A3 are shown in Figure 1 and the associated logarithm of the ratio
of the mean drug concentrations are further given in Figure 2.

Note that the mean of the error variable εijk� is 1. Since the sample variance of the data under
study in next section is 0.2, we consider a variety of generalized gamma distributions with mean
1 and variance 0.2. Therefore, we take �=− log1.2/2 and �2= log1.2 for lognormal distribution.
The gamma distribution under study has shape parameter 5 and scale parameter 0.2 and the
Weibull distribution has shape parameter 2.4 and scale parameter 1.1, and the generalized gamma
distribution has �2=0.09 and �=2. For simplicity, we assume that there is no period effect and
subject variation.

For each of the settings under study, 2000 replicates were used to obtain the estimated level or
power under the nominal level �=0.10. The standard deviation of the level estimate can then be
approximated by 0.007 (≈√

0.1×0.9/2000). Note that we obtain the necessary upper confidence
bound in the proposed test based on the number of bootstrap samples B=2000. The estimated
levels and powers for the settings under study are finally given in Tables I and II, respectively.

4.2. Results of the simulation study

From the results in Table I, we find that the proposed test MT is generally superior to either the
UT or BT for maintaining its level when the global bioequivalence is violated. The type I error rate
of the test UT, testing for the bioequivalence in terms of AUC only, is far beyond its level under

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:3567–3579
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3574 Y.-I. CHEN AND C.-S. HUANG

Figure 2. Logarithm of the ratio of mean drug concentrations for level (top) and power (bottom) study.

the three null hypotheses considered in the simulation study. The test BT for the equivalence of
AUC and Cmax, simultaneously, is not able to maintain its level, especially, for the case when the
two drug concentration–time curves are crossing. This result is not surprising since both the AUC
and Cmax cannot successfully reflect the difference between the two crossing curves. In this case,
for the similar reason, the level of MT with six sampling time points (m=6) tends to be larger
than the specified nominal level, especially when the sample size is small as 16 under lognormal
distribution.

The results in Table II indicate that all the three tests are more powerful for sampling time points
m=14 than m=6. This is because that the AUC, Cmax and model (2) can be more accurately
estimated. Note that the UT test is not able to hold its level. Therefore, we simply compare the
power performance between the BT and MT tests. For n=16 volunteers involved, ST is more
powerful than BT under the three alternative hypotheses considered in the simulation study. When
the number of volunteers increases up to 24, both the MT and BT are competitive for lognormal or

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:3567–3579
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Table I. Estimated level for drug concentrations measured from n individuals
at m time points under �=0.10.

(i) m=6 (ii) m=14

Distribution n Null hypothesis UT BT MT UT BT MT

Lognormal 16 N1 0.495 0.150 0.138 0.528 0.085 0.082
N2 0.248 0.079 0.081 0.270 0.048 0.024
N3 0.113 0.049 0.058 0.075 0.024 0.044

24 N1 0.603 0.152 0.106 0.795 0.132 0.091
N2 0.313 0.098 0.093 0.465 0.104 0.042
N3 0.091 0.050 0.040 0.092 0.036 0.045

Gamma 16 N1 0.463 0.149 0.115 0.760 0.125 0.091
N2 0.274 0.094 0.102 0.387 0.079 0.035
N3 0.090 0.029 0.029 0.095 0.022 0.041

24 N1 0.581 0.169 0.107 0.872 0.147 0.073
N2 0.314 0.113 0.090 0.458 0.088 0.024
N3 0.112 0.054 0.024 0.097 0.017 0.038

Weibull 16 N1 0.467 0.120 0.109 0.727 0.123 0.089
N2 0.264 0.088 0.099 0.361 0.069 0.107
N3 0.092 0.039 0.040 0.104 0.026 0.082

24 N1 0.577 0.167 0.106 0.834 0.146 0.070
N2 0.312 0.112 0.103 0.450 0.091 0.099
N3 0.107 0.042 0.050 0.086 0.026 0.072

Generalized 16 N1 0.431 0.129 0.069 0.700 0.135 0.067
gamma N2 0.249 0.091 0.080 0.390 0.072 0.053

N3 0.095 0.047 0.065 0.107 0.031 0.059
24 N1 0.570 0.168 0.031 0.854 0.162 0.057

N2 0.330 0.105 0.071 0.495 0.108 0.047
N3 0.103 0.042 0.049 0.083 0.017 0.056

gamma distribution. However, for the Weibull and generalized gamma distributions under study,
the power of MT is higher than that of the BT.

5. DATA ANALYSIS

We illustrate the use of the proposed test for the bioequivalence between two brands of benzbro-
marone tablets, where the test drug Euricon and the reference drug Urinorm are manufactured by
two different pharmaceutical companies, respectively. Note that the benzbromarone, a well-known
uricosuric agent, reduces serum uric acid concentrations probably by blocking tubular reabsorption.
In this 2×2 crossover study [14], 16 healthy adult volunteers were randomly allocated to two
treatment sequences. In sequence 1, eight volunteers were orally administered with one tablet of
50mg of Urinorm and then, after one week, one tablet of 50mg of Euricon. On the other hand,
the other eight volunteers in sequence 2 receive the two drugs in reverse order in two periods.
The blood samples were taken and the benzbromarone concentration was measured 14 times at
0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 14 h after the drug been administered. Some covari-
ates associated with the volunteers are also recorded, including age (20–34 years), body weight

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:3567–3579
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Table II. Estimated power for drug concentrations measured from n individuals
at m time points under �=0.10.

(i) m=6 (ii) m=14

Distribution n Alternative hypothesis UT BT MT UT BT MT

Lognormal 16 A1 0.807 0.392 0.409 0.987 0.523 0.605
A2 0.727 0.347 0.424 0.900 0.460 0.515
A3 0.633 0.321 0.337 0.894 0.452 0.477

24 A1 0.931 0.566 0.533 0.928 0.634 0.662
A2 0.873 0.518 0.470 0.929 0.606 0.585
A3 0.779 0.487 0.424 0.906 0.573 0.538

Gamma 16 A1 0.834 0.415 0.495 0.980 0.577 0.663
A2 0.734 0.405 0.480 0.947 0.548 0.587
A3 0.632 0.366 0.382 0.882 0.531 0.563

24 A1 0.915 0.587 0.532 1.000 0.721 0.749
A2 0.839 0.559 0.562 0.989 0.686 0.612
A3 0.789 0.511 0.418 0.962 0.699 0.675

Weibull 16 A1 0.786 0.456 0.698 0.972 0.720 0.796
A2 0.735 0.447 0.679 0.937 0.689 0.828
A3 0.598 0.368 0.596 0.894 0.617 0.802

24 A1 0.903 0.622 0.785 0.997 0.860 0.873
A2 0.834 0.565 0.761 0.990 0.855 0.890
A3 0.765 0.537 0.684 0.953 0.778 0.862

Generalized 16 A1 0.765 0.502 0.726 0.974 0.861 0.851
gamma A2 0.680 0.459 0.756 0.941 0.806 0.936

A3 0.573 0.402 0.673 0.858 0.739 0.899
24 A1 0.885 0.699 0.756 0.997 0.948 0.901

A2 0.833 0.652 0.802 0.990 0.949 0.957
A3 0.727 0.576 0.781 0.954 0.899 0.960

(42–73 kg) and body height (155.5–173.5 cm). The recorded drug concentrations for volunteers
receiving Urinorm and Euricon, respectively, are shown in Figure 3.

To investigate whether the benzbromarone concentrations are distributed according to some
specific distribution, we fitted the data using model (2) with the three covariates and computed the
likelihood ratio statistics as 512.8, 58.7 and 34.3 for lognormal, gamma and Weibull distributions.
Note that, comparing the upper 5th percentile of a chi-square distribution with 1 degree of freedom,
the three distributions are not applicable to the current data set. Therefore, we choose to fit the
data under a generalized gamma distribution.

To select covariates for use in model (2), we fitted the data with all possible models and found
the reduced model that gives the smallest value of AIC (=675.9) contains only age and body
weight. The associated quantile–quantile plot, in Figure 4, of the residuals for fitting the selected
model shows a tendency that is relatively close to the straight line through the origin with slope 1.
This, again, confirms that the selected model together with a generalized gamma distribution is
reasonable for fitting into the data under study.

Based on B=2000 number of bootstrapped samples, we estimated the 90 per cent upper
confidence bound for supt∈[t1,tm ] |D(t)| to be 0.061 (|D̂(tS)|=0.046 and �0.1=0.015), which is
smaller than 0.223, the bioequivalence margin as stated in Section 3. Therefore, the proposed test
claims, at significant level 0.10, the drugs Euricon and Urinorm are bioequivalent in the reduction
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Figure 3. Drug concentrations observed for Urinorm (top) and Euricon (bottom) drugs.

of uric acid. Note that the fitted concentration–time curves are rather close to each other for the
volunteer at any age with any body weight. Therefore, the univariate test based on AUC only and
the bivariate test based on both AUC and Cmax also lead to the conclusion of the bioequivalence
of the two drugs.

For old people with possible sampling time points at, for instance, 0.5, 2, 4, 6, 10 and
14 h (m=6) after the drug been administered, the related 90 per cent upper confidence bound for
the supreme distance is 0.089 (|D̂(tS)|=0.072 and �0.1=0.017). Therefore, the test also concludes
the bioequivalence between the two drugs. Note that both the univariate and bivariate tests reject,
at significance level 0.10. Hence, all the three tests, again, reach the same conclusion of bioequiv-
alence.

Since lognormal distribution is usually used in practice, we also analyze the data set under such
a distribution when sampling time points are either 6 or 14. For m=6, we observe |D̂(tS)|=0.267
with �0.1=0.141, and the 90 per cent upper confidence bound for supt∈[t1,tm ] |D(t)| is 0.408. In
addition, for m=14, we have |D̂(tS)|=0.309 and �0.1=0.112, and hence the 90 per cent upper
confidence bound for supt∈[t1,tm ] |D(t)| is 0.421. Comparing the bioequivalence margin of 0.223,
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Generalized gamma quantiles

Figure 4. Quantile–quantile plot of the residuals of model (2) under the generalized gamma distribution.

the test does not reject the null hypothesis for m=6 or 14. Therefore, applying model (2) with
lognormal error variables to the data set, the proposed test does not support, at significant level
0.10, the bioequivalence between Euricon and Urinorm in reducing uric acid.

6. DISCUSSION AND CONCLUSION

In this paper, we propose a statistical model for the drug concentrations in a PK study under
2×2 crossover designs. This statistical model includes a one-compartment PK model for the mean
concentrations over time that allows for covariate-related between-subject variation, a fixed period
effect and an error variable that is distributed according to a generalized gamma distribution.
Note that the one-compartment PK model is usually used for orally taken drug. If the drug is
administered subcutaneously or by intravenous bolus or infusion, other feasible PK models can
be used. Moreover, the generalized gamma distribution is an extensive family that contains the
most commonly used distributions. Therefore, the proposed statistical model would be of wide
application in most of the practical PK studies.

Both the univariate and bivariate tests for the equality of the bioavailability parameters fail to
maintain their levels and, hence, tend to erroneously conclude the bioequivalence between the test
and reference drugs when the two drug concentration–time curves are, in fact, not equivalent. On
the other hand, the multiple test proposed in this paper provides with a global investigation in
the bioequivalence study that not only reasonably maintains its level but also has a better power
performance than the bivariate test. Moreover, note that the proposed multiple test can be adapted
to a variety of models and distributions involved in the PK study. For example, when any suitable
compartment model and any reasonable distribution for the error variable are considered, the
proposed test is still applicable only if we remedy the parametric bootstrap procedure stated in
Section 3 accordingly.

Our simulation study shows that the number of the sampling time points would majorly affect
the power performance of the proposed test, although the test tends to be more conservative on
holding its level with more sampling time points. Therefore, by adding more sampling time points
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so that the appropriate model under study can be more accurately estimated would be a reasonable
way to have a better chance to conclude the bioequivalence of a generic drug to the reference
drug.
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