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Abstract

In this paper, we consider identifying the minimum effective dose (MED) in a dose–response study when survival data are subject
to random right-censorship, where the MED is defined to be the smallest dose level under study that has survival advantage over the
zero-dose control. To this end, we suggest single-step-down testing procedures based on three different types of weighted logrank
statistics, respectively. The comparative results of a Monte Carlo error rate and power/bias study for a variety of survival and
censoring distributions are then presented and discussed. The application of the testing procedures for identifying the MED is finally
illustrated by using a numerical example of prostate cancer data.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Dose–response studies are frequently conducted to evaluate the treatment effects of a drug in animal experiments
or clinical trials for drug development, where subjects or patients are randomly allocated to groups to receive several
increasing dose levels of the drug and a zero-dose control. One factor of interest in such studies is to identify the
minimum effective dose (MED) of the drug, where the MED is defined to be the smallest dose level producing a
clinically important response that can be declared statistically significantly more effective than the placebo response
(Ruberg, 1995). Under the assumption that responses are distributed according to normal distributions with a common
variance, Ruberg (1989) proposed single-step multiple tests based on different contrasts of sample means to identify the
MED. Tamhane et al. (1996) then suggested use of more powerful step-down closed testing procedures based on some
contrasts of sample means for the MED identification. On the other hand, when the assumption of normal distribution is
not tenable, Chen (1999) considered the step-down closed testing procedure as suggested in Tamhane et al. (1996), but
based on the Mann–Whitney statistics for identifying the MED. Jan and Shieh (2004) further proposed some contrasts
of average ranks incorporated with the step-down closed testing scheme for the MED identification.

However, in animal experiments or clinical trials, it occurs quite often that the response corresponding to a certain
dose level of a drug is time to tumor occurrence or the prolonged survival time of patients with a particular disease. In
such studies, the survival data are usually subject to random right-censorship since these studies may be terminated at
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preassigned times or subjects who randomly enter a study may be lost to follow-up randomly. Therefore, to identify the
smallest dose level for randomly right-censored survival data that has survival advantage over the zero-dose control,
we need new testing procedures.

For the ith sample (i = 0, 1, . . . , k), let Xi1, . . . , Xini
be independent and identically distributed (i.i.d.) random

variables each with a continuous survivor functionSi , andCi1, . . . , Cini
be i.i.d. random variables each with a continuous

survivor function Fi , where Ciu is the censoring time associated with the survival time Xiu. Suppose that the zero
population (i = 0) is the control and the other k populations correspond to the increasing dose levels. Furthermore,
assume that the k + 1 samples are independent of each other and the censoring time Ciu is distributed independently
of the lifetime Xiu. In such a setting, we often observe the bivariate vectors {min(Xiu, Ciu), �iu}, where �iu = 1, if
min(Xiu, Ciu) = Xiu, and 0, otherwise. Let S0 < Si denote S0(t)�Si(t) for all t and S0(t) < Si(t) for some t. In this
paper, specifically, we consider to identify the MED

MED = min{i : S0 < Si, i = 1, . . . , k},
for the situation where the survival data are randomly right-censored.

In Section 2, we consider single-step-down multiple tests based on three types of weighted logrank (WLR) statistics,
respectively, for the MED identification. In Section 3, the results of a Monte Carlo study investigation of the relative
error rate, power and bias performances of the competing procedures are presented. Finally, in Section 4, the use of
these testing procedures is illustrated with the numerical example involving patients with stage III prostate cancer (Byar
and Corle, 1977) (Table 5).

2. Proposed testing procedures

For identifying the MED with randomly right-censored survival data, we consider testing for the null hypotheses
H0i : (S0 = S1 = · · · = Si), i = 1, 2, . . . , k. Since the family of null hypotheses H = {H0i} is closed under intersection
in the sense that H0i ∈ H and H0j ∈ H imply H0i ∩ H0j ∈ H (Marcus et al., 1976), we use a level � single-step-down
closed testing scheme for identifying the MED based on adjusted p values (Wright, 1992). Suppose that T1, . . . , Tk are
the statistics involved. The single-step-down closed testing procedure starts at the first step testing for H0k based on the
statistic Tk and computing the associated p value p1 = P {Tk � tk|H0k}, where tk is the observed value of Tk . If the test
based on Tk fails to reject H0k , then the MED is identified to be MÊD = k + 1. In this case, the MED is declared to
be a higher dose that is not under study. Otherwise, the test proceeds to next step testing for H0(k−1). In general, at step
i involving with the zero-dose control and the first ki = k − i + 1 non-zero dose groups, the statistic testing for H0ki

is Tki
. Moreover, if the observed value of Tki

is tki
, the adjusted p value of the closed test at this step is then given by

p∗
i = max(p1, . . . , pi), where pj =P {Tkj

� tkj
|H0kj

} is the p value of the individual test based on Tkj
, j = 1, 2, . . . , i.

Therefore, if p∗
i �� and i >1, then the test proceeds with ki+1 = ki − 1, but if p∗

i > � or i = 1, the test stops and the

MED is identified to be MÊD = ki + 1 or MÊD = 1. Finally, the associated adjusted p value for the closed testing
procedure is p∗

MÊD
, which provides with the evidence of data for supporting the identified MED.

In this paper, to identify the MED with randomly right-censored survival data based on the single-step-down closed
testing scheme stated above, appropriate test statistics and the associated p values are needed. To this end, we consider
in the following three types of WLR statistics. One called pairwise WLR statistic compares a certain dose-group with
the zero-dose control, another referred to as the combined-groups WLR statistic contrasts a certain dose-group with
all the lower dose groups combined, and the other termed step-type WLR statistic makes a comparison between the
higher dose groups and the lower dose groups.

2.1. Pairwise weighted logrank statistics

For i = 0, 1, . . . , k, let Di(t) = #{u : Xiu � t, �iu = 1, u = 1, 2, . . . , ni} be the number of patients in group i who
have been dead by time t and let Yi(t) = #{u : Xiu � t, u = 1, . . . , ni} be the number of patients in groups i who are
still alive and uncensored at time t. Then, the pairwise WLR statistic comparing the ith dose level with the zero-dose
control is given by

Ui =
∫ t0i

0
W0i (t)

Y0(t)Yi(t)

Y0i (t)

{
dD0(t)

Y0(t)
− dDi(t)

Yi(t)

}
, i = 1, 2, . . . , k,
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where t0i = sup{t : Y0(t)Yi(t) > 0}, Y0i (t) = Y0(t) + Yi(t), and, as suggested in Fleming and Harrington (1991),
W0i (t)={Ŝ0i (t−)}�{1− Ŝ0i (t−)}�, with Ŝ0i (t) the Kaplan–Meier (Kaplan and Meier, 1958) estimator computed from
the pooled groups 0 and i. Notice that setting � = 0, � = 0 produces the logrank (LR) statistic (Mantel, 1966) which
is optimal for the proportional hazards model, while setting � = 1, � = 0 yields the Peto–Prentice–Wilcoxon (PPW)
statistic (Peto and Peto, 1972; Prentice, 1978) which is appropriate for hazards different at early times.

Let, for i �= j = 1, 2, . . . , k, t0ij = sup{t : Y0(t)Yi(t)Yj (t) > 0}, D0i (t)=D0(t)+Di(t), D0ij (t)=D0(t)+Di(t)+
Dj(t) and Y0ij (t) = Y0(t) + Yi(t) + Yj (t). Set N = ∑k

u=0 nu. Under the null hypothesis H0i , the variance of Ui and
covariance between Ui and Uj can be estimated by

sU
ii =

∫ t0i

0
W 2

0i (t)
Y0(t)Yi(t)

Y0i (t)

{
1 − �D0i (t) − 1

Y0i (t) − 1

}
dD0i (t)

Y0i (t)

and

sU
ij =

∫ t0ij

0
W0i (t)W0j (t)

Y0(t)Yi(t)Yj (t)

Y0i (t)Y0j (t)

{
1 − �D0ij (t) − 1

Y0ij (t) − 1

}
dD0ij (t)

Y0ij (t)
,

with �D.(t)=D.(t)−D.(t−1). Let U∗
i =Ui/

√
sU
ii , i=1, 2, . . . , k. The results in Chen (1998) imply that the asymptotic

null (H0k) distribution of the random vector (U∗
1 , . . . , U∗

k ) is a k-dimensional normal distribution with mean vector zero

and the associated covariance matrix can be consistently estimated by RU
k = (rU

ij ), with rU
ii = 1, and rU

ij = sU
ij /

√
sU
ii s

U
jj ,

i �= j = 1, 2, . . . , k.
At step i in the closed testing procedure, the statistic involved is

U∗
(ki )

= max(U∗
1 , . . . , U∗

ki
). (1)

Suppose that u(ki ) is the observed value of U∗
(ki )

, then the associated adjusted p value is p∗
i = max(p1, . . . , pi), where,

for j = 1, 2, . . . , i,

pj = P {U∗
(kj ) �u(kj )|H0kj

} ≈ P {max(Z1, . . . , Zkj
)�u(kj )|H0kj

}
= 1 − P {Zl < u(kj ), l = 1, . . . , kj }

and (Z1, . . . , Zkj
) is a normal random vector with mean vector zero and covariance matrix RU

kj
. Notice that the

approximate p value stated above can be computed by using the program in Gassmann et al. (2002).

2.2. Combined-groups weighted logrank statistics

The second type of WLR statistics compares the ith dose group with all the lower dose groups combined, including
the zero-dose control. Therefore, the combined-groups WLR statistics under consideration are

Gi =
∫ ti

0
W0+i (t)

Y0+(i−1)(t)Yi(t)

Y0+i (t)

{
dD0+(i−1)(t)

Y0+(i−1)(t)
− dDi(t)

Yi(t)

}
, i = 1, 2, . . . , k,

where ti = sup{t : Y0(t)Y1(t) . . . Yi(t) > 0}, D0+i (t) = ∑i
j=0 Dj(t) and Y0+i (t) = ∑i

j=0 Yj (t), i = 1, 2, . . . , k. The
associated variances are then given by

sG
ii =

∫ ti

0
W 2

0+i (t)
Y0+(i−1)(t)Yi(t)

Y0+i (t)

{
1 − �D0+i (t) − 1

Y0+i (t) − 1

}
dD0+i (t)

Y0+i (t)
, i = 1, 2, . . . , k.

Let G∗
i = Gi/

√
sG
ii , i = 1, 2, . . . , k. Notice that the statistics G1, . . . , Gk are uncorrelated under the null hypothesis

H0k (Liu et al., 1993). Therefore, the asymptotic null (H0k) distribution of the random vector (G∗
1, G∗

2, . . . , G
∗
k) is a

k-dimensional normal distribution with zero mean vector and identity covariance matrix.
At step i in the closed testing procedure, we suggest use of the statistic

G∗
(ki )

= max(G∗
1, . . . , G

∗
ki

). (2)
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Suppose that the observed value of G∗
(k)i

is g(ki ). The associated adjusted p value of the test is then given by p∗
i =

max(p1, . . . , pi), where pj = P {G∗
(kj ) �g(kj )|H0kj

} ≈ 1 − {�(g(kj ))}kj , j = 1, . . . , i, and �(·) is the distribution
function of a standard normal distribution.

2.3. Step-type weighted logrank statistics

The step-type WLR statistic that compares the involved higher (i − j +1) dose levels with all the lower j dose levels,
including the zero-dose control, is given by

V
(i)
j =

∫ ti

0
W0+i (t)

Y0+(j−1)(t)Yj+i (t)

Y0+i (t)

{
dD0+(j−1)(t)

Y0+(j−1)(t)
− dDj+i (t)

Yj+i (t)

}
, 1�j � i�k.

A standard argument on the asymptotic results about the two-sample WLR statistics implies that the related variances
and covariances can be consistently estimated by, for 1�j �= m� i,

sV (i)

jj =
∫ ti

0
W 2

0+i (t)
Y0+(j−1)(t)Yj+i (t)

Y0+i (t)

{
1 − �D0+i (t) − 1

Y0+i (t) − 1

}
dD0+i (t)

Y0+i (t)

and

sV (i)

jm =
∫ ti

0
W 2

0+i (t)
Y0+(j−1)(t)Ym+i (t)

Y0+i (t)

{
1 − �D0+i (t) − 1

Y0+i (t) − 1

}
dD0+i (t)

Y0+i (t)
.

Let V
(i)∗
j = V

(i)
j /

√
sV (i)

jj , 1�j � i. Then, under the null hypothesis H0i , the distribution of (V (i)∗
1 , . . . , V

(i)∗
i ) can be

approximated by an i-dimensional normal distribution with zero mean vector and covariance matrix RV
i = (rV (i)

jm ),

where rV (i)

jm = 1 and rV (i)

jm = sV (i)

jm /

√
sV (i)

jj sV (i)

mm , 1�j �= m� i.
At step i of the single-step-down testing procedure, the test statistic involved is

V ∗
(ki )

= max(V
(ki )

∗
1 , . . . , V

(ki )
∗

ki
). (3)

Suppose that the observed value of V ∗
(ki )

is v(ki ). Then, the associated adjusted p value of the test is given by p∗
i =

max(p1, . . . , pi), where for j = 1, 2, . . . , i,

pj = P {V ∗
(kj ) �v(kj )|H0kj

} ≈ P {max(Z1, . . . , Zkj
)�v(kj )|H0kj

}
= 1 − P {Zm < v(kj ), m = 1, . . . , kj }

and (Z1, . . . , Zkj
) is a normal random vector with mean vector zero and covariance matrix RV

kj
. The associated

approximate p values can be obtained, again, by using the program in Gassmann et al. (2002).

3. A simulation study

3.1. Description of the study

We conducted a Monte Carlo study to examine the relative error rate, power and bias performances of the proposed
closed testing procedures based on the pairwise WLR statistics (1), combined-groups WLR statistics (2) and the step-
type WLR test statistics (3), denoted by U, G and V, respectively. The error rate performances of the tests were evaluated
by the experimentwise error rate (EWE, the probability of incorrectly declaring MED under the global null hypothesis
H0k) and familywise error rate (FWE, the probability of underestimating the MED). The probability of correctly
identifying the MED and E(MÊD) − MED, respectively, were then used to assess the power and bias performances
of the tests. We consider k = 3 and 4 treatments with sample sizes n0 = n1 = · · · = nk = n = 10, 30 and 50 in the EWE
study and n = 30 and 50 in the FWE and power/bias study.

Notice that, under the Weibull distributions with the same shape parameters, the hazard functions are proportional.
On the other hand, the hazard functions are different at early time under the lognormal distributions. Therefore, we
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Table 1
Estimated experimentwise error rates for �=0.05, various survivor functions with uniform censoring distribution U(0, r) and n0 =n1 =· · ·=n4 =n

r n LR PPW

U G V U G V

Weibull
4.410 10 0.062 0.045 0.061 0.051 0.036 0.053

30 0.055 0.045 0.053 0.050 0.042 0.049
50 0.050 0.044 0.049 0.046 0.043 0.046

1.745 10 0.059 0.039 0.057 0.051 0.030 0.052
30 0.055 0.044 0.052 0.051 0.040 0.053
50 0.049 0.043 0.049 0.048 0.040 0.049

Lognormal
6.381 10 0.056 0.040 0.055 0.047 0.036 0.051

30 0.055 0.046 0.054 0.050 0.044 0.049
50 0.054 0.048 0.052 0.053 0.045 0.050

2.297 10 0.055 0.038 0.055 0.049 0.035 0.050
30 0.055 0.043 0.054 0.051 0.045 0.053
50 0.052 0.044 0.046 0.052 0.044 0.050

consider both the Weibull and lognormal distributions as survivor functions with proportional hazards and early hazard
difference. We take the uniform distribution over (0, r) as the censoring distribution in which patients are allowed to
drop out the study at anytime with equal chance. The IMSL (International Mathematical and Statistical Library) routines
RNUN, RNWIB and RNNOR were used to generate appropriate uniform, Weibull and normal variates, respectively
(Morton and Popova, 2001). The exponential-transformed normal variate then gives necessary lognormal variate. In
the EWE study, the survivor functions under study were Weibull with scale parameter 1 and shape parameter 2, and
lognormal distribution with normal mean 0 and normal variance 1

2 . Various values of r, which correspond to the
probability of censorship as 0.2 or 0.5 were considered in the EWE study. The corresponding uniform censoring
distributions were then employed in the FWE and power/bias study. Notice that, in the FWE and power/bias study, the
Weibull distributions under consideration have a common shape parameter 2 but various values of scale parameters
�i , i = 0, 1, . . . , k with �0 = 1, and the lognormal distributions have a common normal variance 1

2 , but different
values of normal means �i , i = 0, 1, . . . , k with �0 = 0. Also notice that the dose–response configurations under
study include both the ordered and umbrella patterns of treatment effects with either step or linear type of increments
or decrements.

For each of these settings, 10,000 replicates were used to obtain the estimated EWE, FWE, power, and bias un-
der the nominal level � = 0.05. Therefore, the maximum standard error for the error rate and power estimators is
about 0.005 (≈ √

(0.5)(0.5)/10, 000). In fact, the standard deviation of the error rate estimator is about 0.002 (≈√
(0.5)(0.95)/10, 000). Since the relative EWE performance of the three testing procedures is similar for k = 3 and 4,

we only presented the estimated EWE for k = 4 in Table 1. Again, the relative FWE and power/bias performances of
the three testing procedures are similar for k = 3 and 4 and for n = 30 and 50. Therefore, we report, for simplicity, the
estimates of FWE, power and bias for k = 4 and 50 in Tables 2–4, respectively. Notice that, when the true MED is 1,
the FWE is zero since no type I error is involved. Therefore, we did not consider any treatment effect configurations
with MED = 1 for the FWE study. Also notice that, in the bias study, we conventionally assign MÊD = 5 for k = 4 if
the MED is identified not to be any dose levels under study.

3.2. Description of the results

It is evident, upon examination of Table 1, that all the tests hold their EWE when sample size is 30 or larger. When
sample size is 10, the pairwise and step-type PPW tests still maintain their EWE. However, for such a small sample
size, both the combined-groups LR and PPW tests tend to be conservative in hold its EWE, while the pairwise and
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Table 2
Estimated FWE for � = 0.05, n0 = n1 = · · · = n4 = 50, and various survivor functions with uniform censoring distribution U(0, r)

�1 �2 �3 �4 True MED LR PPW

U G V U G V

Weibull and r = 1.745
1 1 1 1.5 4 0.051 0.043 0.048 0.051 0.040 0.048
1 1 1.5 1.5 3 0.051 0.044 0.051 0.049 0.042 0.050
1 1.5 1.5 1.5 2 0.048 0.043 0.049 0.047 0.041 0.048
1 1 1.3 1.5 3 0.048 0.037 0.049 0.045 0.035 0.046
1 1.3 1.3 1.5 2 0.044 0.030 0.046 0.042 0.028 0.044
1 1 1.5 1 3 0.051 0.043 0.047 0.048 0.041 0.044
1 1 1.5 1.3 3 0.051 0.043 0.051 0.049 0.041 0.049
1 1.3 1.5 1.3 2 0.045 0.033 0.046 0.043 0.031 0.045
1 1.5 1.3 1 2 0.048 0.041 0.046 0.046 0.038 0.043

Lognormal and r = 2.297
0 0 0 0.5 4 0.052 0.041 0.049 0.052 0.042 0.053
0 0 0.5 0.5 3 0.051 0.045 0.053 0.050 0.044 0.050
0 0.5 0.5 0.5 2 0.050 0.045 0.051 0.048 0.043 0.049
0 0 0.3 0.5 3 0.047 0.035 0.051 0.046 0.035 0.048
0 0.3 0.3 0.5 2 0.044 0.029 0.047 0.043 0.029 0.045
0 0 0.5 0 3 0.051 0.044 0.050 0.050 0.043 0.047
0 0 0.5 0.3 3 0.051 0.044 0.053 0.050 0.043 0.050
0 0.3 0.5 0.3 2 0.045 0.032 0.048 0.044 0.033 0.046
0 0.5 0.3 0 2 0.050 0.043 0.047 0.048 0.042 0.045

step-type LR tests do not maintain their EWE. Moreover, as shown in Table 2, the FWE of all the testing procedures
are well under controlled.

It is not surprising to find, from Tables 3 and 4 that, in terms of power and bias, the LR test performs better
than the PPW test for Weibull distribution, while the PPW test is superior to LR test for lognormal distribution,
since the Weibull distributions under study have the proportional hazards, but the hazards of lognormal distributions
differ in early time. The step-type test outperforms in power and bias performances for ordered dose–response, but it
performs poorly for umbrella patterned dose–response, especially, with a dramatic down turn. In general, when the
true MED is the first dose level, the power or bias performance of the pairwise test is better than that of the combined-
groups test. When the true MED is higher than first dose level, however, the combined-groups test is superior to the
pairwise test.

To sum up, when the sample size is 30 or larger for each group, both the experimentwise and familywise error
rates of the three WLR tests are under controlled. In terms of power and bias performances, the step-type WLR test is
recommended for ordered dose–response. For umbrella patterned dose–response, however, the pairwise or combined-
groups WLR test is suggested. In fact, the pairwise WLR test is preferred if the true MED is relatively close to the first
dose level; otherwise, the combined-groups WLR test is suggested.

4. An example

The data from a randomized and double-blinded clinical trial involving patients with stage III prostate cancer (Byar
and Corle, 1977) were used for illustration. There were 292 patients with local extension of the disease, but without
evidence of distant metastasis, where 75 took the placebo pill and served as the control group, 73 received 0.2 mg
of diethylstilbestrol (DES) as dosage group 1, 73 were treated with 1.0 mg of DES as dosage group 2 and 71 were
assigned to take 5.0 mg of DES as dosage group 3. Patients were followed according to a standard protocol at 6-month
intervals or more frequently if required, and the survival times of the patients in the four groups since randomization
were recorded. For patients who had not yet died or were dead due to causes other than the prostate cancer, the observed
times were regarded as censored data. Herein, we are concerned with the minimum dosage of DES under study so that
the survivor function of the involved patients is better than that of the patients taking the placebo pill. The Kaplan–Meier
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Table 3
Estimated power for � = 0.05, n0 = n1 = · · · = n4 = 50, and various survivor functions with uniform censoring distribution U(0, r)

�1 �2 �3 �4 True MED LR PPW

U G V U G V

Weibull and r = 1.745
1 1 1 1.5 4 0.596 0.774 0.810 0.547 0.711 0.756
1 1 1.5 1.5 3 0.624 0.767 0.806 0.576 0.710 0.759
1 1.5 1.5 1.5 2 0.657 0.736 0.787 0.612 0.681 0.742
1.5 1.5 1.5 1.5 1 0.766 0.667 0.763 0.719 0.614 0.714
1 1 1.3 1.5 3 0.315 0.428 0.496 0.281 0.373 0.447
1 1.3 1.3 1.5 2 0.347 0.392 0.459 0.301 0.341 0.403
1.3 1.3 1.5 1.5 1 0.451 0.345 0.448 0.407 0.309 0.399
Average (ordered) 0.537 0.587 0.653 0.492 0.534 0.603

1 1 1.5 1 3 0.603 0.750 0.440 0.555 0.693 0.359
1 1 1.5 1.3 3 0.611 0.756 0.773 0.562 0.698 0.715
1 1.3 1.5 1.3 2 0.364 0.415 0.489 0.319 0.364 0.433
1 1.5 1.3 1 2 0.619 0.709 0.518 0.576 0.652 0.438
1.3 1.5 1.3 1 1 0.479 0.380 0.371 0.431 0.338 0.320
1.3 1.5 1 1 1 0.471 0.378 0.223 0.423 0.336 0.187
Average (umbrella) 0.525 0.565 0.469 0.478 0.514 0.409
Average (overall) 0.531 0.577 0.568 0.485 0.525 0.513

Lognormal and r = 2.297
0 0 0 0.5 4 0.630 0.795 0.828 0.668 0.826 0.850
0 0 0.5 0.5 3 0.654 0.784 0.822 0.689 0.820 0.850
0 0.5 0.5 0.5 2 0.688 0.761 0.815 0.724 0.795 0.844
0.5 0.5 0.5 0.5 1 0.793 0.705 0.801 0.827 0.747 0.834
0 0 0.3 0.5 3 0.281 0.363 0.433 0.307 0.398 0.465
0 0.3 0.3 0.5 2 0.304 0.341 0.414 0.332 0.374 0.447
0.3 0.3 0.5 0.5 1 0.424 0.329 0.421 0.454 0.359 0.453
Average (ordered) 0.539 0.583 0.648 0.572 0.617 0.678

0 0 0.5 0 3 0.635 0.768 0.440 0.670 0.802 0.434
0 0 0.5 0.3 3 0.640 0.771 0.777 0.675 0.805 0.812
0 0.3 0.5 0.3 2 0.327 0.372 0.445 0.355 0.408 0.477
0 0.5 0.3 0 2 0.648 0.733 0.502 0.680 0.763 0.518
0.3 0.5 0.3 0 1 0.458 0.366 0.356 0.488 0.403 0.377
0.3 0.5 0 0 1 0.453 0.365 0.221 0.482 0.402 0.219
Average (umbrella) 0.527 0.563 0.457 0.558 0.597 0.473
Average (overall) 0.533 0.573 0.560 0.565 0.608 0.583

(Kaplan and Meier, 1958) estimates of the survivor functions for the four groups were shown in Fig. 1. The relevant
summary statistics, including the statistics at each step, the identified MED, and the associated adjusted p values were
then given in Table 5.

To apply the single-step-down close testing procedure based on the pairwise LR statistics, we compute u(3) =
u(2) = 2.37 and u(1) = 0.44, which gives p1 = P {U∗

(3) �2.37|H(03)} ≈ 0.025, p2 = P {U∗
(2) �2.37|H02} ≈ 0.017, and

p3 = P {U∗
(1) �0.44|H01} ≈ 0.331. Therefore, we identify the MED to be 1.0 mg of DES and the adjusted p value

is p∗
2 = 0.025. The test based on the pairwise PPW statistics reaches the same conclusion as stated above, but has a

different adjusted p value as 0.027.
The combined-groups LR statistics are obtained as g(3) = g(2) = 2.26 and g(1) = 0.44, which produces p1 =

P {G∗
(3) �2.26|H03} ≈ 0.035, p2 = P {G∗

(2) �2.26|H02} ≈ 0.024, and p3 = P {G∗
(1) �0.44|H01} ≈ 0.331. Therefore,

the LR statistics identifies the MED to be 1.0 mg of DES with an adjusted p value of 0.035. The test based on the
combined-groups PPW statistics also identifies the 1.0 mg of DES to be the MED, but with a different adjusted p value
of 0.034.
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Table 4
Estimated power for � = 0.05, n0 = n1 = · · · = n4 = 50, and various survivor functions with uniform censoring distribution U(0, r)

�1 �2 �3 �4 True MED LR PPW

U G V U G V

Weibull and r = 1.745
1 1 1 1.5 4 0.239 0.091 0.053 0.290 0.162 0.109
1 1 1.5 1.5 3 0.436 0.221 0.099 0.524 0.321 0.166
1 1.5 1.5 1.5 2 0.556 0.449 0.198 0.660 0.591 0.279
1.5 1.5 1.5 1.5 1 0.611 1.164 0.628 0.729 1.345 0.767
1 1 1.3 1.5 3 0.856 0.687 0.466 0.943 0.800 0.553
1 1.3 1.3 1.5 2 1.312 1.331 0.855 1.444 1.489 0.991
1.3 1.3 1.5 1.5 1 1.393 2.120 1.390 1.544 2.265 1.552
Average (ordered) 0.772 0.866 0.527 0.876 0.996 0.631

1 1 1.5 1 3 0.610 0.347 0.956 0.716 0.469 1.124
1 1 1.5 1.3 3 0.549 0.307 0.210 0.648 0.422 0.311
1 1.3 1.5 1.3 2 1.088 1.069 0.691 1.220 1.228 0.828
1 1.5 1.3 1 2 0.882 0.675 1.237 1.005 0.848 1.476
1.3 1.5 1.3 1 1 1.334 1.953 2.275 1.479 2.133 2.474
1.3 1.5 1 1 1 1.431 1.979 3.050 1.589 2.156 3.197
Average (umbrella) 0.982 1.055 1.403 1.110 1.209 1.568
Average (overall) 0.869 0.953 0.931 0.984 1.095 1.064

Lognormal and r = 2.297
0 0 0 0.5 4 0.201 0.075 0.034 0.168 0.043 0.002
0 0 0.5 0.5 3 0.389 0.190 0.070 0.326 0.132 0.042
0 0.5 0.5 0.5 2 0.495 0.396 0.142 0.407 0.313 0.099
0.5 0.5 0.5 0.5 1 0.549 1.047 0.526 0.445 0.888 0.423
0 0 0.3 0.5 3 0.880 0.761 0.524 0.820 0.691 0.479
0 0.3 0.3 0.5 2 1.401 1.448 0.955 1.307 1.343 0.863
0.3 0.3 0.5 0.5 1 1.447 2.107 1.407 1.327 1.983 1.281
Average (ordered) 0.766 0.861 0.523 0.686 0.770 0.456

0 0 0.5 0 3 0.546 0.308 0.946 0.481 0.242 0.967
0 0 0.5 0.3 3 0.510 0.284 0.210 0.446 0.219 0.158
0 0.3 0.5 0.3 2 1.119 1.131 0.754 1.029 1.015 0.675
0 0.5 0.3 0 2 0.819 0.608 1.286 0.730 0.521 1.250
0.3 0.5 0.3 0 1 1.326 1.909 2.307 1.213 1.767 2.243
0.3 0.5 0 0 1 1.392 1.926 3.052 1.277 1.786 3.068
Average (umbrella) 0.952 1.028 1.426 0.863 0.925 1.394
Average (overall) 0.852 0.938 0.939 0.767 0.842 0.888

Finally, we use the single-step-down closed testing procedure based on step-type LR statistics to identify the MED.
We observed v(3) =2.12 and computed p1 =P {V ∗

(3) �2.12|H03}=0.046, which leads to the next step with k2 =2. Since
v(2) = 2.26 with p2 =P {V ∗

(2) �2.26|H02}= 0.022, we go to the next step with k3 = 1. Now p3 =P {V ∗
(1) �0.44|H01} ≈

0.331, so we identify the MED to be 1.0 mg of DES and the adjusted p value is 0.046. Moreover, the test based
on the step-type PPW statistics reaches the same conclusion as stated above, but the associated adjusted p value
is 0.043.

Notice that, under significance level 0.05, all the three methods considered herein identify the 1.0 mg of DES as
the MED at which the involved patients have a better chance to live longer than the patients taking the placebo
pill. However, the survivor estimates in Fig. 1 show an apparent downturn in survivor function at the highest dose
level, it is not surprising to see that the step-type test produces the largest adjusted p values. This result is, in fact,
in a good agreement with the simulation results presented in previous section. Therefore, regarding to this par-
ticular application, either the combined-groups test or the pairwise test is better than the step-type test for MED
identification.
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Fig. 1. Kaplan–Meier estimate of survivor functions for the prostate cancer data.

Table 5
Summary statistics for the prostate cancer data

i LR PPW

U∗
i (Ui , s

U
ii ) 1 0.44 (1.06, 5.89) 0.32 (0.69, 4.57)

2 2.37 (5.00, 4.47) 2.33 (4.45, 3.63)
3 1.15 (2.59, 5.10) 1.09 (2.19, 4.04)

MÊD 2 2
Adjusted p value 0.025 0.027

G∗
i (Gi, s

G
ii ) 1 0.44 (1.06, 5.89) 0.32 (0.69, 4.57)

2 2.26 (5.68, 6.30) 2.28 (5.18, 5.16)
3 0.33 (0.80, 6.01) 0.33 (0.74, 4.97)

MÊD 2 2
Adjusted p value 0.035 0.034

V
(3)∗
i (V

(3)
i , sV (3)

ii ) 1 1.67 (4.39, 6.92) 1.62 (3.88, 5.76)
2 2.12 (6.25, 8.71) 2.14 (5.74, 7.21)
3 0.33 (0.80, 6.01) 0.33 (0.74, 4.97)

V
(2)∗
i (V

(2)
i , sV (2)

ii ) 1 1.64 (4.14, 6.35) 1.57 (3.59, 5.23)
2 2.26 (5.68, 6.30) 2.28 (5.18, 5.16)

V
(1)∗
i (V

(1)
i , sV (1)

ii ) 1 0.44 (1.06, 5.89) 0.32 (0.69, 4.57)
MÊD 2 2
Adjusted p value 0.046 0.043
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