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ABSTRACT

We are concerned with testing procedures for umbrella alternatives in the k-sample location
problem without making the assumption that the underlying populations have the same shape.
Modifications of the Mack-Wolfe tests are proposed for the cases when the peak of the umbrella
is known or unknown. The proposed procedures are exactly distribution-free when the continuous
populations have the same shape. The modified test for peak-known umbrella alternatives remains
asymptotically distribution-free when the continuous populations are symmetric, but not necessarily
with the same shape.

RESUME

On s’intéresse a des procédures pour tester I’égalité de k parameétres de position versus des
alternatives de type parapluie (8, < --- <0, > ... > 6, pour un p, avec au moins une inégalité
stricte), cela sans supposer que les populations sous-jacentes ont la méme forme. On propose
des modifications aux tests de Mack-Wolfe dans le cas ou le sommet du parapluie est connu et
aussi dans le cas ou il est inconnu. Lorsque les lois des populations sous-jacentes sont de type
continu et ont la méme forme, les procédures proposées sont indépendantes de celles-ci. Dans le
cas d’alternatives avec sommet connu, le test modifié demeure asymptotiquement indépendant des
populations sous- jacentes si celles-ci sont de type continu et symétriques, mais pas nécessairement
de la méme forme.

1. INTRODUCTION

Suppose that X;i,...,Xi,, i = 1,...,k, are k independent random samples from
populations with continuous distribution functions Fj(x),...,Fi(x), respectively. For
each i = 1,...,k, let 6; be the unique median of the ith population. In this article,
we consider testing the null hypothesis H, : (8; = --- = 6;) against the umbrella
alternatives H; : (0; < --- < 0, > ... > 6, for some p, with at least one strict
inequality) without assuming the same shapes for the k populations. Since we are
concerned with testing for location parameters without making the assumption that
the underlying populations have the same shape, this problem can be regarded as a
generalization of the Behrens-Fisher problem.

Nonparametric tests for differences between two medians in the generalized Behrens-
Fisher problem have been extensively studied; see Fligner and Policello (1981) for
detailed references. For a k-sample setting with symmetric underlying populations
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having possibly different shapes, Rust and Fligner (1984) suggested an asymptoti-
cally distribution-free test for general location alternatives based on a modification
of the Kruskal-Wallis statistic (Kruskal and Wallis 1952). They also noted that their
modified Kruskal-Wallis test is distribution-free when the populations are identical.

The ordinary nonparametric tests for umbrella alternatives, such as the Mack-Wolfe
tests (Mack and Wolfe 1981), require the assumption that the continuous populations
have the same shape to ensure the distribution-free property. However, the levels of
these tests will not necessarily be preserved when the populations have different shapes
or scale parameters. In this paper, rank-based modifications of the Mack-Wolfe tests
are proposed which are exactly distribution-free when the continuous populations have
the same shape. In addition, the modified Mack-Wolfe test for a peak-known umbrella
alternative is still asymptotically distribution-free when the continuous populations are
assumed symmetric, even if they differ in shape.

In Section 2 we review the Mack-Wolfe tests for umbrella location alternatives with
either known or unknown umbrella peak. In Section 3 we modify the Mack-Wolfe
statistics to obtain tests in the generalized Behrens-Fisher problem for both the setting
where the peak of the umbrella is known and that where it is unknown. In Section 4 we
present and discuss the results of a substantial Monte Carlo level and power study.

2. MACK-WOLFE TESTS

For testing H, against an arbitrary peak-known ( p) umbrella alternative %, Mack and
Wolfe (1981) suggested rejecting H, for large values of

p—1 p k-1 k
Ap=>"SU+> > Up, Q1)
i=1 j=i+l i=p j=i+l

where Uj; is the usual Mann-Whitney statistic (Mann and Whitney 1947) corresponding
to the number of observations in sample j that exceed observations in sample i. In
particular, the test based on Ay is the Jonckheere-Terpstra test (Jonckheere 1954, Terpstra
1952) for ordered location altneratives. Moreover, suppose that N — 0o in such a way
that n; /N — A;, with 0 < A; <1, i = 1,...,k. Mack and Wolfe also noted that, under

Ho, the statistic
At _ AP - %AP

= (22)
P (‘Varo Ap)%
has an asymptotic (N — oo) distribution that is standard normal, where
1 k
Fodp = 3 (le +N =D "l - nf,) (2.3)
i=1
and
1 k
Vary A, = = (2(N,3 +N3)+3(N? +N2) — Z n2(2n; +3) — n2(2n, + 3)
i=1
+12n,N\N, — 12n,2,1v), (2.4)

with Ny = 3 n; and N, = EL n;, are the mean and variance, respectively, of A,
when the F;’s are identical.



1990 UMBRELLA TESTS IN BEHRENS-FISHER MODELS 247

For the more general unknown-peak alternatives and ¢ = 1,...,k, let

Z = ZU,., (2.5)
i#t
and set
o _ L= B,
" (Ve z)t’
where N )
n(N—n
FoZ, = ’_2__’ (2.6)
and N N+1
Vary Z, = L%)L__l X))
with N = Zle n,, are the respective mean and variance of Z, when F(x) = - - - = Fi(x).
For the unknown-peak alternative, Mack and Wolfe then proposed to reject H; for large
values of A
ay = =Ty (2.8)

P (Varo Ap)t

where p is a sample estimate of the unknown peak p such that Z; = max{Z’, t =
1,..., k}. It was noted, however, that there is a positive probability of observing several
(say r) populations tied for the largest value of Z;. In this case, the values of A7 is set
equal to the average of those standardized p known statistics corresponding to peaks at
each of the r samples tied for the maximum Z}.

3. MODIFICATIONS OF MACK-WOLFE TESTS

When the underlying populations are symmetric, the problem considered in this paper
is in fact that of testing the null hypothesis #,* : (T; = % for all pairs of i and j) against
the class of alternatives .’}[A*:(nij > %, 1<i<j<p andm < %,p§i<j§k,
for some p, with at least one strict inequality), where ®t; = pr(X;; > X;;) = f F; dF;,
i#j=1,...,k It is obvious that, under 17-()*, the expected values in (2.3) and (2.6)
remain the same. However, when the underlying populations have different shapes, the
variances in (2.4) and (2.7) are changed even under %*. To modify the Mack-Wolfe
statistics for testing umbrella location alternatives with fewer assumptions on the shapes
of the populations, we therefore need to first find the respective variances of Z, (2.5) and
A; (2.1),t=1,...,k, under a general setting. Let

¢,~,~,=/F,<I~}dF,— (/Fi dF,) (/F, dF,), iLj.t=1,... k.

From the results of Birnbaum and Klose (1957), we have, for i #j =1,...,k,
EU; = ninjm;; (3.1)
and
Var U,_, = n;nj{(nj - 1)¢in +(n; — 1)¢,,_, + nijnﬁ}. ) (32)

After some algebraic manipulations, we also have the following result:

ninjngd;;  for i=r, j#s,
mnn,di,;;  for i#r, j=s,
Cw(qu Ui) = —ninjns¢,-sj for j=r, i # S, 3.3)
—minin§;; for j#r, i=s,
0 if i, j, r, s are distinct.
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By using the results in (3.1), (3.2), and (3.3) we obtain, after some straightforward
computations, that, for r = 1,...,k,

Var 2, =) mind(n — D + (1 — D + T} +2 ) > mimmbye  (3.4)
i#t i<j; i j#t

and

t—1 ¢
Yar A, = Z z nini{(n; — D + (nj — 1)j;i + 757 }
i=1 j=i+l
=1 &
+ Z z n,-n,-{(n,- = Dby + (nj — D)y + 1075 }

i=t j=i+l

=2 t—1 t
(555 manton+0n- 00

i=1 j=i+] s=j+1
k=2 k=1 &k

i=t j=i+l s=j+1
t—1

k
+n Z z n,-n,-d),-,-,). 3.5

i=1 j=t+1

In what follows we find consistent estimators of N~3 Var Z, and N~3 Var A,
t=1,...,k. Following the suggestion of Fligner and Policello (1981), we estimate the
m;’s and ¢y;,’s by replacing the F;’s with their sample distribution function analogues
Fo . Fori#j=1,...,k, let

n;

P,‘; = niFr;;(va) = Z\I[(,va _Xiu), V= l,” .,nj,

u=1
and .
P; = ZP,‘J’ /nj,
Where w(a) = { 1 for a>0,
0 for a<O.

Note that the statistic P is actually the placement of Xj, with respect to the ith sample
(Orban and Wolfe 1982). We then estimate m;; and ¢y, by, respectively,

Ry = Py [n;

&)iﬁszﬂiF"dem'—(/FmdFm) (/Fndem)

1 ¢ 5 "
Pj; — Py)(P;; — Pjr).
p— g( i = Pu)P — Py)
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Now we estimate the exact variances, Var Z, and ‘Var A,, by replacing the involved
m;’s and ¢;;’s with the #;’s and ¢y;’s, respectively. However, in order to simplify the
computation of the estimators, we set

n
wie =D (Ph—P)Py— Py,  ij.t=1,....k

and replace the (n; — 1)’s with n;’s. The estimators of Var Z, and Var A, are then given

by —
Var Z, =) Wi +wui +PuPi) +2) ) wi (3.6)
i#t i<j; i#t; j#t
and
o t—1 1t k-1 k
‘Var A= Z Z(W,'ij + Wi +P,'iji) + z Z(Wﬁj +wji + P,_,PJ,)
i=1 j=i+l i=t j=i+l
=2 11
+2 ( z Z Z (Wus + Wjsi — Wt.\'])
i=1 j=i+l s=j+1
k—2 k—1
f TS e+ 53 ). 37
i=t j=i+l s=j+1 i=1 j=t+1

respectively, ¢ = 1,...,k. Consequently, we propose rejecting #,* in favor of the
peak-known (p) umbrella alternative #,* for large values of

L 2 )

—7F, (3.8)
(Var A,)?

*
14

where Ap, FoAp, and ‘T/;z\r A, are given in Equations (2.1), (2.3), and (3.7), respectively.
For the more realistic practlcal setting where the peak is unknown, we first choose the
group p such that Z; = max{Z}, t = 1,...,k}, where Z} = (Z, — ‘E)Z,)/(’Var Z)1,

t=1,...,k, with Z, FyZ, and Var Z, given by (2.5), (2.6), and (3.6), respectively. The
null hypothesis #4* is then rejected for large values of

L Rl 205

Ay = ATy
(Var Az)?

3.9

*
14

For the situation where two ore more groups are tied for having the largest Z,* sample
values, let  be the set of the groups tied for the maximum Z*. We then take the value
of Af, as the average of the A*’s for those 7 in the set ¥.

Suppose that N — oo in such a way that n; /N — A, with 0 <A < 1,i = 1,...,k.
From the results of Archambault, Mack, and Wolfe (1977), we observe that the random
variable (A, — FoA,) /(’Var Ap)% has an asymptotic (N — o0) null (.‘7-(,*) distribution
that is standard normal, where A,, EoA,, and Var Ap are given in Equations (2.1), (2.3),
and (3.5), respectively. Furthermore, applying the Glivenko-Cantelli theorem [see, for
example, Theorem 2.1.4A of Serfling (1980)], it follows that F,, converges uniformly to

F; with probability one for i = 1,...,k. Using this result we obtain that (Var A,)/( "l//;r
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Ap) converges to one almost surely as N — oo. This implies that the statistic fi; (3.8)
has an asymptotic (N — 00) null (_‘I-I(') ) distribution that is standard normal. Therfore,
we observe that the test based on A‘ is asymptotlcally distribution-free under #{*.

Note that since the ‘Var Z’s and ‘Var A,’s involve ranks only, the tests based on A*
and A* are both exactly distribution-free when the populations are identical. In addltlon
for the case k = 2, the test based on either A* or A* is the same as the modified
Mann-Whitney test proposed by Fligner and Policello (1981) for differences between
two medians.

4. MONTE CARLO STUDY
4.1. Discussion of Study.

To compare tests based on the modified Mack-Wolfe statistics A; (3.8) and ﬁ; 3.9
with those based on the original Mack-Wolfe statistics Aj and A}; given in (2.2) and (2.8),
respectively, we conducted a Monte Carlo study. For these simulations, we selected three
families of distributions: normal, contaminated normal, and Cauchy. Appropriate normal
and Cauchy deviates were generated by the International Mathematical and Statistical
Libraries (IMSL) routines mnor and mchy. The contaminated normal distribution utilized
was a mixture of the standard normal distribution and a normal distribution with mean
zero and standard deviation 5 in proportions 0.9 and 0.1, respectively.

To study the effect that heteroscedasticity has on the significance levels of the test
procedures, we considered distributions with the same medians but different scale pa—
rameters, namely, Fi(x),..., Fy(x) with Fi(x) = F(x/c;), i = 1,...,k, and F(0) =
Several choices of 6,/Gy,...,0,/0; in combination with the three distributions men—
tioned above were studied. Note that for the case of known umbrella peak (p) the level
performance of the test based on A; relative to that of the test based on A;‘, is similar
for p = 1,...,k. Therefore, we simply considered the case p = k in this study. The
estimated levels are presented in Tables 1 and 2.

The results of a second Monte Carlo study, designed to compare the powers of the
modified tests with the original tests for a variety of umbrella location alternatives when
the populations are otherwise the same, are presented in Tables 3 and 4. Specifically, we
considered distribution functions F;(x) = F(x — 6;), i = 1,...,k, for various choices of
0, —0y,...,6, — 8, and F being normal, contaminated normal, or Cauchy.

Both the level and power studies were conducted for k = 3 and k = 4 populations
with ny = --- = n = 10 observations per sample. For each setting we used 10,000
replications, and the estimated level or power was obtained by computing the frequency
of the test statistic falling in the level-0.10 critical region. Since we took 0.10 as the
nominal level of the tests, the standard deviation of the estimated levels in Tables 1 and
2 is 0.003 = {(0.10)(0.90)/10,000}%. We then indicate, by + (—) signs, whenever the
estimated level is two or more standard deviations above (below) 0.10.

4.2. Discussion of Results.

It can be seen from Tables 1 and 2 that the tests based on the statistics A} and A} do
not hold their levels when the populatnons have different scale parameters, while those
based on the modifications A} and A hold their levels quite well across all situations.
These findings also demonstrate the fact that the modified tests are exactly distribution-
free when the distributions are identical. Following the results in Section 3, we have, for
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TaBLE 1: Estimated levels for nominal & = 0.10 when k = 3 and n; = n, = n; = 10.7

Distribution 02/, o3/0, A¥ A¥ A} A}
Normal 1 1 0.103 0.103 0.100 0.101
1 2 0.127+ 0.107+ 0.119+ 0.101
2 1 0.058— 0.096 0.083— 0.096
2 2 0.088— 0.103 0.094— 0.103
1 3 0.135+ 0.109+ 0.136+ 0.105
3 1 0.036— 0.086— 0.082— 0.094—
3 3 0.087— 0.103 0.098 0.104
Contaminated normal 1 1 0.104 0.103 0.091— 0.092—
1 2 0.125+ 0.108+ 0.116+ 0.101
2 1 0.067— 0.099 0.077— 0.092—
2 2 0.094— 0.103 0.092— 0.100
1 3 0.127+ 0.102 0.128+ 0.101
3 1 0.042— 0.083— 0.081— 0.093—
3 3 0.094— 0.106+ - 0.097 0.102
Cauchy 1 1 0.098 0.100 0.098 0.099
1 2 0.112+ 0.102 0.110+ 0.103
2 1 0.073— 0.096 0.088— 0.100
2 2 0.090— 0.100 0.095 0.099
1 3 0.119+ 0.103 0.118+ 0.104
3 1 0.062— 0.092—- 0.087— 0.099
3 3 0.088— 0.099 0.097 0.101
9+: At least two standard deviations above 0.10, computed as if o = 0.10. —: At least two standard

deviations below 0.10, computed as if « = 0.10.

TABLE 2: Estimated levels for nominal o« = 0.10 when k = 4 and n, = n, = n; = n, = 10.2

Distribution o,/ay os/0y a,loy AF A¥ A; A;
Normal 1 1 1 0.100 0.101 0.101 0.101
1 1 2 0.125+ 0.103 0.126+ 0.101
1 2 3 0.124+ 0.104 0.127+ 0.099
2 1 3 0.115+ 0.103 0.115+ 0.097
3 3 1 0.032— 0.091— 0.078— 0.093—
1 3 5 0.135+ 0.105 0.138+ 0.102
5 3 3 0.060— 0.096 0.082— 0.096
Contaminated normal 1 1 1 0.097 0.097 0.100 0.101
1 1 2 0.111+ 0.100 0.120+ 0.100
1 2 3 0.110+ 0.099 0.121+ 0.101
2 1 3 0.105 0.100 0.114+ 0.098
3 3 1 0.055— 0.094— 0.074— 0.090—
1 3 5 0.118+ 0.100 0.133+ 0.101
5 3 3 0.072— 0.097 0.084— 0.098
Cauchy 1 1 1 0.099 0.100 0.103 0.101
1 1 2 0.115+ 0.101 0.117+ 0.100
1 2 3 0.113+ 0.102 0.115+ 0.100
2 1 3 0.110+ 0.102 0.111+ 0.102
3 3 1 0.055— 0.096 0.082— 0.098
1 3 5 0.121+ 0.104 0.121+ 0.099
5 3 3 0.073— 0.098 0.086— 0.097

“+: At least two standard deviations above 0.10, computed as if « = 0.10. —: At least two standard deviations
below 0.10, computed as if « = 0.10.
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TaBLE 3: Estimated powers for nominal a = 0.10 when k = 3 and n; = n, = n; = 10.

Distribution 6,-6, 85-6, AS A} A} A}
Normal 0.0 1.0 0.799 0.806 0.601 0.620
0.5 1.0 0.808 0.806 0.610 0.613
1.0 2.0 0.999 0.999 0.988 0.988
1.0 0.0 0.883 0.881 0.749 0.749
1.0 0.5 0.709 0.711 0.574 0.585
2.0 1.0 0.988 0.990 0.971 0.976
Contaminated normal 0.0 1.0 0.692 0.699 0.474 0.486
0.5 1.0 0.714 0.705 0.491 0.490
1.0 2.0 0.986 0.983 0.932 0.923
1.0 0.0 0.781 0.774 0.616 0.613
1.0 0.5 0.601 0.602 0.472 0.482
2.0 1.0 0.946 0.944 0.881 0.882
Cauchy 0.0 1.0 0.445 0.443 0.248 0.250
0.5 1.0 0.458 0.450 0.274 0.267
1.0 2.0 0.804 0.786 0.612 0.585
1.0 0.0 0.515 0.503 0.353 0.349
1.0 0.5 0.392 0.388 0.285 0.286
2.0 1.0 0.698 0.690 0.566 0.564

TaBLE 4: Estimated powers for nominal « = 0.10 when k = 4 and n, = n, = n; = ny = 10.

A

Distribution 0-0, 05-0, 04-6; AY Ar Ay A}
Normal 0.0 0.0 1.0 0.754 0.772 0.503 0518
0.0 0.5 1.0 0.860 0.864 0.649 0.645
0.5 1.0 1.0 0.861 0.862 0.698 0.690
0.5 1.0 L5 0.985 0.983 0.909 0.905
0.0 1.0 0.0 0.870 0.872 0.693 0.700
0.0 1.0 0.5 0.764 0.769 0.607 0.616
0.5 1.0 0.5 0.772 0.767 0.613 0.601
0.5 1.0 0.0 0.874 0.871 0.741 0.731
Contaminated normal 0.0 0.0 1.0 0.664 0.671 0.410 0.410
0.0 0.5 1.0 0.774 0.770 0.530 0.521
0.5 1.0 1.0 0.776 0.773 0.589 0.576
0.5 1.0 L5 0.941 0.935 0.809 0.791
0.0 1.0 0.0 0.773 0.767 0.565 0.565
0.0 1.0 0.5 0.658 0.659 0.504 0.508
0.5 1.0 0.5 0.669 0.662 0.513 0.498
0.5 1.0 0.0 0.782 0.772 0.618 0.605
Cauchy 0.0 0.0 1.0 0.415 0.420 0.205 0.203
0.0 0.5 1.0 0.500 0.494 0.269 0.260
0.5 1.0 1.0 0.503 0.499 0.326 0.317
0.5 1.0 15 0.698 0.680 0.460 0.435
0.0 1.0 0.0 0.508 0.499 0.309 0.307
0.0 1.0 0.5 0.420 0.418 0.284 0.279
0.5 1.0 0.5 0.435 0.424 0.298 0.282

0.5 1.0 0.0 0.513 0.504 0.356 0.347
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large N, .

Vary A, \?

iy 2wl = 1- (g2 ) |

where ®(z,) = 1 — a, with ® being the standard normal distribution function, and A;,

Vary Ap, and Var A, are given by (2.2), (2.4), and (3.5), respectively. This means that

the asymptotic level of the test based on A3 depends on the value of (Varo A,/ Var Ap).

This, in some sense, explains the evidence presented in Tables 1 and 2 that for some

choices of 6,/0y,...,0x /0 the level of the based on A; is inflated, while for the other
choices its level is deflated.

The power study presented in Tables 3 and 4 shows that, for small sample sizes, the
estimated powers of the modified tests are sometimes slightly lower than those of the
corresponding original tests. However, these small power differences do not seem too
high a price to pay for holding the levels over the broader null hypothesis.

In conclusion, we recommend use of the modified Mack-Wolfe tests for two reasons.
First, since the modified tests are strictly distribution-free when the populations are
identical, the levels of these tests are exactly controlled for different distributional types,
just as with the original procedures. Second, the levels of the modified tests are also
maintained when the populations have different scales, and for small sample sizes there
is no appreciable loss of power relative to the associated unmodified tests when the
populations differ only in locations.
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